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Abstract A class of parametric optimal control problems for semilinear parabolic
equations is considered. Using recent regularity results for solutions of such equations,
sufficient conditions are derived under which the solutions to optimal control problems
are locally Lipschitz continuous functions of the parameter in the L°-norm. It is shown
that these conditions are also necessary, provided that the dependence of data on the

parameter is sufficiently strong.

1 Introduction

The presence of inequality type constraints in optimization problems introduces
anonsmoothness even if all data are smooth. That is the reason why the classical
implicit function theorem can not be used in stability analysis of solutions to
such problems. Instead of that, the main tool in such analysis is Robinson’s
implicit function theorem for so called generalized equations (see, [18] and [7]
for extentions). This theorem allows to reduce the stability analysis for the
original nonlinear optimization problems to such analysis for linear-quadratic
accessory problems.

This approach was used by Robinson in [18] to derive sufficient conditions
of local Lipschitz continuity for solutions to parametric mathematical programs
in finite dimensions. Later on these results were extended to cone constrained
optimization problems in abstract Hilbert or Banach spaces (see, e.g., [1, 15,
20]), including applications to optimal control [1, 8, 15].

The main difficulty in applications to optimal control problems is connected
with the presence of the so called two-norm discrepancy (see [16]). Namely,
the original nonlinear problems are well defined and differentiable in a stronger
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topology of L*®-type, whereas the accessory problems are coercive in a weaker
topology of L2-type. Hence the natural topology in which the solutions to
accessory problems are stable is L?, while to apply Robinson’s theorem we need
L>-stability.

In case of control-constrained problems for ODEs, stability in L2 can be
strenghtened to L® using Pontryagin’s maximum principle. In that step, the
crucial point is that the solutions of state and adjoint equations are uniformly
bounded functions of time. The situation is much more delicate for PDEs, where
weak solution are not necessarily bounded.

Some L%-stability results were obtained for convex distributed control prob-
lems in papers on sensitivity analysis ( see, e.g.,[14, 21]). Moreover, estimates
of this type were derived for numerical approximations of convex distributed
control problems by discretization methods. Here, the perturbation parameter
is the underlying mesh size. We refer to [23] and to the references therein. Quite
a few papers have been devoted to Holder estimates in spaces of type L? or L®.
We should mention, for instance, [19] and [22] where such estimates for inverse
problems with respect to data perturbations were obtained. Auxiliary Holder
stability results were derived for the convergence analysis of SQP methods [2],
[11], [12].

Recently, an important step was done in [24], where new regularity results
for parabolic equations, due to Casas [5] and Raymond and Zidani [17], were
used to get L*°-stability for linear-quadratic optimal control problems.

In the present paper, the results of [24] together with Robinson’s theorem
are used to derive L stability of solutions to a class of parametric optimal
control problems for semilinear parabolic equations.

It is important to evaluate how far sufficient conditions are from necessary
ones. Using the approach proposed in [9], it is shown that the obtained sufficient
stability conditions are also necessary, provided that the dependence of the data
on the parameter is sufficiently strong. Thus, we derived a characterization of
the Lipschitz stability property.

The organization of the paper is the following. In Section 2 we recall some
needed regularity results for parabolic equations and formulate the class of op-
timal control problems to be studied. In Section 3 the application of Robinson’s
implicit function theorem in stability analysis is recalled. In Section 4 the re-
sults of [24] are used to get conditions of Lipschitz stability for the accessory
problems. Sufficient conditions of local Lipschitz continuity of solutions to the
original nonlinear problems are derived in Section 5, while the necessity of these
conditions is discussed in Section 6.

2 Preliminaries

Let H be the Banach space of parameters endowed with the norm || - ||z and
G C H a bounded open set of feasible parameters. For any h € G consider the



following semilinear parabolic initial-boundary value problem

y(z,t) + Ay(z,t) + a(z,t,y(z,t),u(z,t),h) = 0in Q,
d,y(z,t) + b(z,t,y,h) = 0in X, (2.1)

y(z,0) = x(z) = 0in Q.

Here, A is the elliptic differential operator
N
Ay :=— Z Dj (ai; D; y)
i,j=1

with sufficiently smooth coefficients a;; = a;;(z) satisfying the condition of
symmetry a;; = aj;. This equation is considered in Q@ = Q x (0,7"), where

Q C RN (N > 2) is a bounded domain with boundary 0Q =T, X =T x (0,7)
and T > 0 is a fixed time. By 8, the co-normal derivative of y at T is denoted,
where v is the outward normal to T'. Thus we have

0,y = Z a;;v; Djy.
i,j=1

By (-, ) we shall denote the inner product in IRY. The function u stands for a
distributed control, while x is a fixed initial state function. Following Casas [5]
and Raymond and Zidani [17] we assume the following properties of the data:

(A1) T is of class C** for some a € (0,1]. A is uniformly elliptic (see, e.g.,
the definition given in [5]). Its coefficients a;; belong to C1*(Q).

(A2) The distributed nonlinearity a = a(z,t,y, u, h) is a real-valued function
defined on Q x IR? x H and satisfies the following Carathéodory type
condition:

(i) For all (y,u,h) € R*> x H, a(-,-,y,u, h) and its first- and second or-
der derivatives ay, ay, dyy, dyu, duu (all depending on (-, -, y, u, h)) are
Lebesgue measurable on Q.

(i1) For almost all (z,t) € @, a(z,t,,-,") is twice continuously differen-
tiable with respect to (y,u) € IR? on IR? x G.

Throughout the paper, the control u and the perturbation h are uniformly
bounded by a certain constant K.

(A3) The function a fulfils the assumptions of boundedness
(1)
la(z,t,0,u, h)| < ar(x,t) Y(z,t)eQ,|u/<K,hedG, (2.2)

where ag € L1(Q) and ¢ > % + 1. There is a number ¢q € R, and
a non-decreasing function 5 : Ry — Ry such that

Co S ay(a:,t,y,u,h) S 77(|y|) (23)



forae. (2,t) €@, allye R, all lu| < K ,heG.
(i1) The Lipschitz condition

la(z,t, y1, ur, h1) — a(z,t, ya, uz, ho)]
+ |Da(z,t,y1,u1,h1) — Da(z,t, y2, uz, ho)]
+ |D%a(z,t,y1,u1, hi) — D% a(z,t, y2, us, hs)|
< Lk (ly1 — y2| + [ur — uo| + [[h1 — ha||m)

(2.4)

is fulfilled for almost all (z,t) € @, all |y;| < K,

w| < K,i=1,2,

and all h € G.
Here, D and D? stand for gradient and Hessian matrix with respect
to the variables (y, u), while | - | is used to denote Euclidean norms

of real numbers, 2-vectors and 2 x 2-matrices.

(A4) The boundary nonlinearity b = b(z,t,y, h) is a real-valued function de-
fined on ¥ x IR x H. It is assumed to satisfy a Carathéodory type con-
dition and boundedness assumptions analogously to (A2), (A3). These
conditions are obtained substituting ¥ by () and deleting u in (A2), (A3).

A weak solution of (2.1) is understood as a function y € L%(0,T; H(Q)) N
C(Q) such that

[(=y pt+ (Voy, Vep))dadt + [a(x,t,y,u, h) p dedt+

Q Q
+il’b(a:,t,y, h) p dSdt —fgx(;r)p(a:,O)d:c =0 (2.5)

holds for all p € W;’l(Q) satisfying p(x,T) = 0. The following theorem is a
conclusion of a more general result proved in [5] or [17].

TuREOREM 2.1 Suppose that (A1)-(A4) are satisfied, x € C(Q), u € L=(Q).
Then the system (2.1) has a unique weak solution

y € L*(0,T; HY(Q)) N C(Q).

Let us introduce the following spaces

W(0,T) = {y € L0, T; H\(Q)) | we € L*(0,T; (')},
W= {y € W(O,T)ly + Ay € L*(Q), oy € L (X), y(0) € C(@D)}  (2.6)
70 =W x L*(Q).

The space Z° is used for elements { = (y, u), while adjoint states p belong
to W?*. In W*, we shall use the norm

lollwe = lly: + Ayllze@) + 19wylls (z) + 1¥(0)]l )



For s > max{N/2+ 1, N + 1}, this space is continuously embedded into C(@).
This follows from [5] and [17]. By the definition of the norm in W?* | the operators
y¢++ Ay and d,y are continuous from W* to L*(Q) and L*(X), respectively. This
fact will be used in the definition of the generalized equation at the end of this
section. The normal trace is defined, for instance, as in Casas [5].

For each h € G consider the following optimal control problem

(Pn) Find (p := (yn, un) € Z% such that
In(Cr) = mcinjh (€)

subject to (2.1) and to the pointwise control constraints
r(x,t) < u(z,t) < rb(x,t) a.e on @, (2.7)

where

TIn(C) == Tn(y,u) = /Q Y(a,t,y,u, h) daedt. (2.8)

We assume:
(A5) The real-valued function 1 satisfies the assumptions (A2), (A3) imposed
on a, except the growth condition (2.3).

(A6) The functions 7% and r? are of class L°°(@Q) and a constant d > 0 exists
such that
rP(z,y) —r*(z,1) >d ae. on Q. (2.9)

Let us introduce the Hamiltonian H = H(z,t,y,u,p,h) : RN** x G = R,
H =1zt y,u,h)—p-a(x,t,y,uh) (2.10)
and the Lagrangian £ : W x L*(Q) x W(0,T) x G - R

L(y,u,p,h) = fQ’H(y,u,p, h) dzdt — [, p-b(y, h) dSdt—

— o P(0)(9(0) = x())d — fo(ws + Ay) pdudt. (2.11)

Assume:

(A7) For a fixed reference value hg € G of the parameter there exists a solution
Co = (yo0,u0) = (Yno, un,) € Z° of (Pp,) and an associated adjoint state
Po = pr, € Y such that the following first order necessary optimality
conditions hold:
Dy L(yo, uo, pa,,ho) y =0 forall ye W™, (2.12)
Dy L(yo, vo, po, ho)(u — ug) =

:/Du?-l(yo,u(],pg,ho)(u—uo)dmdtzO for all u € U,(2.13)
Q



where

U ={ue L7Q) | r(x,t) <u(z,t) < rb(m,t)} (2.14)
1s the set of feasible controls.

In the sequel, to simplify notation, the subscript 0 will be used to denote that
a given function is evaluated at the reference solution, e.g., Ho := H(x,t, yo, o,
Po, hg)

Condition (2.12) yields the adjoint equation

—(po)e(z,t) + Apo(z,t) = DyH(x,t,y0,u0,po, ho) 1n Q,

Ovpo(z,t) + Dyb(x,t, y0, ho) po(z,t) =0 in X,
pg(l’,T) =0 in Q.
(2.15)

Without loss of generality we can assume
x =0. (2.16)
Define the spaces:

Wg ={yeW?’ | y(0) =0}, Wp:={peW*|pT)=0},
X =W x L°(Q) x WEe, (2.17)
A = L0(Q) x Lo°(T) x L®(Q) x Lo(Q) x Lo(T).

Introduce the normal cone operator N of the feasible set i/:

[ Ae{L®@Q) | JoMv—u)dedt <O0VveU} ifuel,
N(“)_{@ ¢ ifugU.
(2.18)

Using (2.18), the optimality system consisting of (2.12), (2.13) as well as of (2.1)
and (2.7) can be expressed in the form of the following generalized equation

0 € F(o, ho) + T (&), (2.19)

where & = (y,u,p), while F : X x G — A and T : X — 22, are, respectively, a
function and a set valued mapping with closed graph, given by

—pt +Ap—DyH(y,u,p,h)  inQ

Ovp+ Dyb(y, h)p in ¥

F(&,h)= | DuH(y,u,p,h) inQ@ |, (2.20)
Y+ Ay+a(y,uh) in Q
0,y + by, h) in X%

T = [{0}, {0}, A'(w), {0}, {0}]" (2.21)



3 Application of an abstract implicit function
theorem

The problem that we are interested in can be formulated as follows:

Find conditions under which there exists a neighborhood Gy C H
of hy such that for each h € Gy there is a locally unique solution
&n = (yn, un, pr) of the generalized equation

0€F(Eh)+T(E), (3.1)

where (yn,un) is a local solution of (P}), and ¢, is a Lipschitz
continuous function of h.

To solve this problem, we are going to apply to (3.1), in a standard way, an ab-
stract implicit function theorem for generalized equations [18, 7]. Note that, by
our assumptions, F is Fréchet differentiable. Along with (3.1), let us introduce
the following generalized equation, obtained from (3.1) by linearization and by
perturbation of F:

d € F(&o, ho) + DeF (o, ho) (€ — &) + T (£), (3.2)

where § € A.

We will denote by B;((l‘()) ={x € X | ||z — xzo||x < p} the closed ball of
radius p around zg in a Banach space X.

Our sufficiency analysis is based on the following Robinson’s abstract implicit
function theorem (see, Theorem 2.1 and Corollary 2.2 in [18]):

THEOREM 3.1 If

(j) there exist p1 > 0 and ps > 0 such that, for each § € BPAI(O) there is a
unique in Bffg (&0) solution to (3.2), which is Lipschitz continuous in 4,

then

(j3) there exist o1 > 0 and o3 > 0 such that, for each h € Bfl(ho) there is a
unique in Bg‘; (&0) solution to (3.1), which is Lipschitz continuous in h.

<&

Verifying necessity of the derived sufficient conditions of Lipschitz continuity,
we will consider a special situation, where the dependence upon the parameter
in (3.1) is strong in the following sense:

H = H® x A, where H® is an arbitrary Banach space and

3.3
F(€,h) = FO(£,h%) + h', with h® € HO and h! € A. (3:3)

The next theorem follows from Theorem 3 in [10]:



THEOREM 3.2 If (3.3) holds, then (jj) implies (j). <

Theorem 3.1 allows to deduce existence, local uniqueness and Lipschitz conti-
nuity of solutions to (3.1) from the same properties of the solutions to the linear
generalized equation (3.2). In general, these last properties are much easier to
verify than the original ones.
Let
d=(Ag,Ad) e A (3.4)

be a vector of perturbations, where

Ag = (Agq, Agu, Ags) € (L7(Q))? x L®(T),

Ad = (Adg, Ads) € L™ (Q) x L™(X).

Recall that the subscript 0 will be used to denote that a given function is
evaluated at the reference solution. In view of (2.20) and (2.21), the generalized
equation (3.2) takes on the form

—q:+Aq+ ag q = g% + Agg + DZy%(] z+ DZUHQU,

LO 3.5
(LOs) 3yq+bgq :g%-i—Ag)]—po -Djyboz, (3.5)
DZyHO z+ DZUHOU - (12 q— gg - Agu S N(U)J (36)
w+Az+adlz :dOQ—{—AdQ—agv, 3.7)
3,,z—|—byz :d%-l—Adg, (3.7
where
11§ = Dya(yo,uo, ho), ay = Dya(yo,uo, ho), by = Dyb(yo,uo, ho),
90 = Dy¥(yo,uo, ho) — Dzyﬁoyo - DSuHOUO;
g% = po-Dyybyo, ho)yo,
9% = —Dyu(yo,uo, ho) + Dgy}lo yo + D2, Houo,
dy = —a(yo,uo, ho) + Dya(yo, uo, ho) Yo + Dua(yo, o, ho) uo,
do): = —b(yo,ho) -|- Dyb(yo,h()) yo.
(3.8)

An inspection shows that (LOjs) constitutes an optimality system for the fol-
lowing linear-quadratic accessory problem

(QPs) Find (s := (25, vs) € Z°° that minimizes
T4(6) = 56 DEG 00 + foloy + Aga)s i+ [olo + g dodiy
+ 5 (9% + Ags) z dSdt

subject to
zt—{—Az—{—agz :dOQ—{—AdQ—agv in @
8,,z+b22 =d% + Ady, inX (3.10)
z(0) =0 in Q,
and
r*<v<r® inQ, (3.11)



where the quadratic form in the cost functional Zs(¢) is defined on %% x Z? by

D2 7‘[0 l)2 7‘[0 z9
2 _ y u
(G Décocz) = Jolevoil | piyy DEiarg | | vs | 220EF (3.12)

+IE Z1po - DzybOZQ dSdt.

Certainly, the reference solution (yg,uo) together with the associated adjoint
state py constitutes a solution of (LOg) i.e., a stationary point for (QPy).

4 Lipschitz stability for accessory problems

In this section, conditions are derived under which the solutions to (LOy), i.e.,
stationary points of (QPjs), are locally Lipschitz continuous functions of the
parameter §.

For any a > 0 let us introduce the sets

I* = {(z,t) € Q | DuHo(z,t) > a}, J*={(z,t) € Q|— DuHo(z,t) > a}.
(4.1)
Moreover, define the mapping C§ : W& x L3(Q) — U2 := L}(Q) x L*(X) x
L2(1% U J®)

zt-l-Az-l-agz-l-agv in @
Ci¢ =\ dvz+ b2 z in X . (4.2)
v in I*UJ?
Assume
(AC) (Coercivity) There exist @ > 0 and v > 0 such that
(¢, DELo¢) 2 7 |Ic]f3 for all C € ker CF, (4.3)
where [[C[13 == v(|lz[lfy 0,7) + Il|72(q))-

Define the following modification (6135) of problem (QPjs), where the in-
equality constraints are modified.

(6}35) Find (5 1= (Z5,vs) € Z°° which minimizes
Z5(¢) subject to (3.10 ) and to
7 (x,t) < wv(z,t) < Fb(a:,t) a.e. on (4.4)

where

r on J% r® on I*

a:{r" onQ\JO" fb:{rb on Q\ I



This choice of 7%, 7 yields 7% = #* = ug on I* U J?.
Problem (QPj) coincides with the quadratic problem considered in [24], and
by Theorem 4.6 in that paper we get:

ProOPOSITION 4.1 Let (A1)-(A7) and (AC) hold, then for any § € A, problem

(QP; ) has a unique solution {5 = (Z5,7s,) € Z° and a unique associated adjoint
state g5 € W . Moreover, there exists a constant ¢ > 0 such that

1250 — Zsulc(qys 1T — Tsunllpos (@), 196 — Gorllcgy < clld” — 6" |la. (4.6)

<&

REMARK 4.2 Assumption (2.9) is not needed to get (4.6). It will be used in
Section 6 in deriving necessary conditions of Lipschitz continuity. <

We are going to show that for § sufficiently small (Z5,vs, ¢5) is a stationary
point of (QPjs), i.e., it satisfies (LOs). Since the state equation (3.5) and the
adjoint equation (3.7) are satisfied, it is enough to show that the variational
inequality (3.6) holds. Note that, for d = 0 we have (Zo,v0) = (Yo, %0), g0 = po
and the linearized generalized equation (3.2) reduces to the original nonlinear
one (2.19). In particular, it follows from (2.20) and (3.6) that

Dgy'}-lo(;r,t)zo(a:,t) + D2, Ho(z, ) 0o(x,t) + ad(z,)qo(x, 1) — g0 (z,t) =
= Du?‘[o(l',t).
Hence, by (4.1) we have
Dgy’Ho(az, t)Zo(z,t) + D2, Ho(x, t)Vo(x, )+

~ >« for (z,t) € I*,
sl ile )~ o { 2, PPl

and in view of (4.6), for any ¢ € BPA(O), with p > 0 sufficiently small, we obtain

Dzy'Ho(m, 1) Zs(z, 1) + D2 Ho(z, )05 (2, t) + al (2, 8)qs(x, t)—

o o 4.7)
0 B > 3 for (x,t) € 1, (
9u(@,8) = Agul@,1) { <=2 for (x,t) € J"
It can be easily seen that by (4.7) condition (3.6) is satisfied, i.e.,
(Zs5,s,q5) = (25,05, q5) (4.8)

is a stationary point for (QPs).
Let us denote ¢ = 2, then each stationary point &5 := (zs,vs, ¢5) € B (¢o)

of (QP;) is a stationary point of (62755). Hence, by the uniqueness of stationary
points of (QPg), we arrive at:

10



THEOREM 4.3 If conditions (A1)-(A7) and (AC) hold, then there exist con-
stants p > 0 and ¢ > 0 such that for each § € BPA(O) there is a unique in BZ( (&0)
stationary point

(25,v5,q95) € ZF XY™

of (QPs). Moreover, there exists a constant ¢ > 0 such that
260 — 251l (qys llver — v llLes (@), llgsr — gsllc(gy < clld” — 6" |la,  (4.9)
for all §',6" € Bﬁ(O), <&

Note that in view of (4.1) condition (AC) constitutes sufficient optimality con-
dition for (QPs). Hence we obtain:

COROLLARY 4.4 If (AC) holds, then for § € BPA(O), (zs,vs) in Theorem 4.3 is
a locally unique solution of (QPs) and qs is the associated adjoint state.
<

5 Lipschitz stability for nonlinear problems:
sufficiency

In this section, sufficient conditions of Lipschitz stability of the solutions to
the original nonlinear problem (Pj) are derived. The proof will be based on
Theorem 3.1 as well as on the results of Section 4. Applying Theorem 3.1 to
the generalized equation (2.19) and using Theorem 4.3 we obtain:

THEOREM 5.1 If (A1)-(A7) and (AC) hold, then there exist constants p1 > 0,
pa > 0 and £ > 0 with the following property: for each h € Bg (ho) there exists

a unique in Bf:oxwm (éo) stationary point £, = (yn, un,pn) of (Pn) and
lyn =y llegys lun = unslle(@), IPnr = Pl < € 1B = h"|lm,  (5.1)
forall B’ " € Bg (ho). <&

Now we are going to show that (y, up) is a local solution of (Pp). As in case
of the reference point, the subscript h will denote that the relevant function is
evaluated at £p,. In particular

D2 M, D2, Hx Y2
D?.L = Y u ° | dadt
(. DecnCe) = Jolomd | D g DEat | | wa | #9F (5.2)
+f2 Z1 pp - DZythQ dSdt.

Cr Wi x L*(Q) — UZ,
yt+Ay+aZy+aZu in Q

Ci¢=| dy+ b; Y inX . (5.3)
u in [*UJ?

11



LemMa 5.2 If (AC) holds, then there exist constants € > 0 and p > 0 such
that
(¢, D2 LaC) > %||¢||g holds for all ¢ € ker C2, (5.4)

provided that ||yo — thC(Q) + [|uo — up||L=(@) < € and h € Bf(ho_). <&
Proof Let ¢ = (y,u) € ker Cf be given and define E: (¥, u), where § € W is
the solution to _ _ B
yt+Ay+a2y+a3u =0
Ay+byy =0
io) =o.
Notice that ¢ € ker C&, hence (E, DgC,CgE) >y ||E||% Thanks to Theorem 5.1
and the Lipschitz properties of a, b, there is a L > 0 such that

max {[|ay — ayllz=(q), [lay — ayllz=(q), Iby = byllz=(z)} < L(e+p). (5.5)

and
(¢, (DELr — DE Lo)C)| < e L (e + p) [IC13- (5.6)
Moreover, w = y — § solves
wt-l—Aw-i-a%w = (a§ —aé})y-l—(ag —al)u,
Oyw+byw = (b, —by)y,
w(0) =0.

Now the L2Z-theory of parabolic equations yields the existence of a constant
C > 0, independent of y, u, h, such that

lwllwory = ly = dllwor < Cle+p) (Il ) + lullz2(g)
< ele+p) Kl

Therefore, for any ¢ € ker Cj there exists EE ker C§ such that

1€ =iz < e e+ p) 1€z (5.7)
Condition (5.4) follows easily from (5.6), (5.7) by a standard argument. |

LeMMA 5.3 For py > 0 sufficiently small, there exist constants p > 0 and¥y > 0
such that for all h € Bg (ho) we have

Tn(€) > Tn(Cn) +7IC = Call3

5.8
for all feasible ¢ such that || — iz~ < P, (5.8)

i.e., in view of Theorem 5.1, (n is a, locally isolated in 7, local solution of

(Pn). &

Proof This result can be shown using the same arguments as in the proof
of the abstract Theorem 1 in [§8]. We refer also to the detailed discussion of an
analogous result in the case of elliptic boundary control in [6]. The statement
of our Theorem can be derived in exactly the same way. Therefore, we omit the
corresponding lengthy and tedious estimates. O

12



6 Lipschitz stability for nonlinear problems:
necessity

In this section, we are going to show that (AC) is not only a sufficient but also
a necessary condition of local Lipschitz continuity of solutions to (Pj), provided
that the dependence of data upon the parameter h is sufficiently strong, in the
sense that (3.3) holds.

Let us start with some preliminary results. Introduce the mapping

Sh: L2(Q) — L*(Q) x L} (%),

6.1
Siv= (82 87) = (z.219) 01
given by the solution of the following boundary value problem
zt-l—Az-l-aZz-l—aZv:O in @,
8,,z+bZz =0 in X, (6.2)

z(0) =10 in Q.

The mapping Sy : L3(Q) — L?(Q) x L*(X) is compact. This property is
obtained by the following arguments: Sf? is continuous from L2(Q) to W(0,T).
Therefore, the linear mappings v — z and v ~ z, are bounded from L?(Q)
to L2(0,T; H(Q)) and L?(0,T; H'(Q)'), respectively. We have the inclusions
HY(Q) := By C L?(Q) C By := H'(Q)', where the embedding By C L*(Q) is
compact. A well known result by Aubin [3] yields that S,? C L2(Q) — L*(Q)
is compact. The embedding Bg C B = H3/4(Q) is compact as well, and
By C B C B;i. Applying Aubin’s result again, we find that the mapping
v+ z is compact from L%(Q) to L%(0, T H3/4(Q)). The trace operator z — z|x
is continuous from L?(0, T} H3/4(Q)) to LQ(O,T;Hl/z(F)). This implies the
compactness of v = z|s, from L?(Q) to LQ(O,T;Hl/z(F)) C L%*(X), so that S}
is compact, too.

On the other hand by recent results of Raymond and Zidani (see, Theorem
3.1in [17]) we have

S is bounded from L™ (Q) into L™ (Q) x L™ (X), for r > % + 1. (6.3)
It follows from (5.3) and (6.2) that { = (z,v) € kerCy' if and only if
¢=(8%v,v), withveV? (6.4)
where
VP ={ve IP(Q) | v(z,t) = 0a.e.on I*UJ*}, pe]l, o0l (6.5)
By (2.11) and (6.4), for any { = (z,v) € ker C; we have
(¢ DEL(Chr pas )C) = (v, (Kn + D H{Chpas b)) v)va, (6.6)
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where D2, H((h,pn, h) : L2(Q) — L?(Q) is the linear mapping given by

(DZuH(Chapha h)v)(z,t) = DZU?'{(Z‘, t,Ch(w,t), pa(e,t), h)u(x,1)
and
Kn VZo V2,
(Knu)(z,t) = [(S7)" (D, H(Cnypn, h) - SF w) + 2 D H(Ch, oy h) - (S w)+
-|-(SE)*(D§yb(zh, h) - SE u)](x,t) a.e. on Q\ (I*UJ%),
(6.7)
Note that (AC) is equivalent to the condition that the quadratic form (6.6) is
coercive at h = hg.
In our further analysis we will require that the abstract condition (3.3) holds.
In view of (2.20), condition (3.3) is satisfied if the following strong dependence
condition holds

(SD) H=H°xL™(Q) x L™(X) x L=(Q) x
X L®(Q) x L®(%) (6.8)
and

In(C) =

=/Q(w(a:,t,y,u,h“)+y(:c,t)h1(:c,t)+u(m,t)h3(z,t)) dzdt +

-|-/ y(z, t)h*(z,t) dSdt, (6.9)
b

yr + Ay +a(y,u, h%) + h* =0,

dyy +b(y, h°) + h® =0,

where

R® € H°, h' € L™(Q), h? € L™ (X), h* € L™(Q),
= L=(Q), n® e L= (D).

(6.10)

We assume that (jj) in Theorem 3.1 holds, where the solution &, = (yn, un, pa)
to (3.1) corresponds to a local solution (yj,u,) of (Py) and the associated
adjoint state pp. In other words, we assume the L°°-Lipschitz stability of local
solutions of (P}) and the associated adjoint states with respect to the parameter.
We would like to show that this Lipschitz stability implies that (AC) holds,
provided that (SD) is satisfied. The idea of the proof is very similar to that in
[9]. Tt uses Theorem 3.2 and it is based on a construction of a small perturbation
of the reference value hq of the parameter, such that, in a neighborhood of the
perturbed value h of hg, the constraints in the problems (Pj) can be treated as
being of equality type.

We proceed in a similar way as in [9]. In view of (6.8)- (6.10), the first order
optimality conditions for (Pp) can be written in the form:
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—pi(x,t) + Ap(x,t) — DyH(z,t,y(z, 1), u(z, 1), p(x, y), hn_)—

—hl(lf,t) = 0 in Q, (6 11)
Oyp(z,t) + Dyb(x,t,y(z,t),h%) — h?*(z,1) =0 in X, .
p(x, T)=10 in Q.

(DuH(z,t,y(x,t), u(x,t),p(z,t), ho) + hS(x,t))(v —u(z,t)) >0

(6.12)
for all v € [r?(z,t),r"(2,t)] and a.a. (z,1) € Q.

Let hg = (h, hi, h3, hi, b, hY) be the reference value of the parameter. De-
fine the following set:

K ={(z,t) € Q| vo(z,t) < %(ra(w,t) + (1))}

Let us choose any a < Z- and € < min{cy,d}, where o1, 05 and d are given in
(Jj) of Theorem 3.1, and in (A6), respectively. Introduce the following variations

Au and Ah of the reference control ug and parameter hg, respectively:

0 on [*U J%,
Au(z,t) =< ¢ on K \ 1%, (6.13)
—€ on [@\ K]\ J?,

Ahl = DyH(yO; UOJpﬂahg) - Dﬁl/%(yO; Ug + Au)pOa hg))
AR — —DyH(yo, uo + Au, pg, h) — hi on @\ ([*UJ),
0 on I*UJ?, (6.14)
ARh* = a(yo, uo, hY) — a(yo, uo + Au, hY),
AR =0, AR?=0, AR’ =0.

Note that Ah? is chosen in such a way that (6.12) is satisfied at up = ug+Au.
On (I* U J?) it is satisfied for Ah®(t) = 0, since Au(t) = 0 on that set. On
Q\ (1*UJ*) we put DyH (yo, uo+ Au, po, hY) +h3 = DyH(yo, uo+ Au, po, h) +
h3 4+ Ah3 =0, i.e., Ah3 = =Dy, H(yo, uo + Au, po, h) — h3.

Let us denote h = ho + Ah. A simple calculation shows that

& = (v, v, py) = (Yo, uo + Au, po) (6.15)

is a solution of the optimality system (6.10)-(6.12), i.e., of the generalized equa-
tion (2.19) with hg substituted by h.

Note that, in view of (6.13), the control constraints for ug are active on the
set I* U J* and they are nonactive with the margin ¢ > 0 on the complement
of this set:

r t) on [%,
=rb(z,1) on J%, (6.16)
€ [ri(z,t) + e, 7z, t) =]  on @\ (I*UJ?).



Moreover, in view of (4.1), (6.13) and (6.14)

DuH(z,t, yp(2,1), u/};(ac,t),pﬁ(a:,t),/ﬁo) + 13 =

= D H(z,t,yo(x, 1), uo(x,t) + Au, polx,t), ho") + ho® (6.17)
> 1%,
= Du%(m,t,yo(m,t),11,0(:17,t),p0(r,t),h00)+h03{ <ia ZE Jo
LEMMA 6.1 For a > 0 and € > 0 sufficiently small
(¢, DEL(G P h)C) > 0 for all { € ker 2. (6.18)

Proof Since

| = DuH(yo, uo + Au, po, h§) — h| <
S |Du7{(y0;u0;p0;h8) - DU%(yOauU + Au,po,h8)|+
+| _DUH(yOaUOapoahg) _hgla

then, in view of (6.14),

|Ah3(]7at)| < |Du7{(y0;“0;p0;h8) - DU/H(yOaU'O + A“apoahg)|
on Q\ (I*UJ%).

Hence, it follows from (6.13) and (6.14) that, shrinking ¢ > 0 if necessary, we
get he B,,Hl (ho), i.e., (y;, up) is a locally unique solution of (P;) and py is the
associated adjoint state.

Note that, in view of (6.16), the constraints (2.7) in (P7) can be locally

treated as equality type constraints:

=r(z,1) on %,
ux(2,1) ¢ = rb(x,t) on J¢, (6.19)
free on @\ (I*UJY),

in the sense that, for any Aw, such that

=0 on I*UJ?,

|Au(z, )] { <e on Q\ (I U J9), (6.20)

the control function u = w; + Aw is feasible for (P;). In particular, (2.13)
together with (6.20) implies

DuH(x,t, g (2, 1), un(z, 1), o, 1), ) + B3 =0 on Q\ (I UJ¥). (6.21)
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Let ( = (y,u) be feasible for (P;), where u = uy + Au, and Au is any
increment satisfying (6.20). Using standard perturbation results for parabolic
equations and the notation (6.1), (6.2) we find that

¥ + Ay + o(Ay), _
_ lo(an)lzz N (6.22)
Where Ay = S&;Au and vl T 0 as ||Ay||C(Q) — 0.
By (6.4) and (6.22)
A( = (Ay, Au) € ker C’S (6.23)

Using the second order Taylor expansion at & and taking advantage of necessary
optimality conditions (2.12) and (6.21) as well as of (6.22) we get
0 <FHQ) - K(G) = LG+ AGp ) - LGy, h) =

- (6.24)
= (AC DEL(Gppy )AL + (AL,

where ”JA%)— — 0 as ||AC||z= — 0.

Passing to the limit in (6.24) and using (6.23) we obtain
(AC, D3 LG, pp, ))AC) > 0 for all AC € {¢ € ker €2 | Aue V™l
By density of the embedding V> C V2 we arrive at (6.18). 0

LemMA 6.2 If (j) holds with a Lipschitz constant £ > 0, then

1K + D (G ) ollve > €7 [o]|v=. (6.25)
%

Proof Let us introduce the generalized equation (Ijbg) analogous to (LOjs),
which is the linearization of the optimality system (2.19) evaluated at (&, h)

rather than at (o, ko). For ¢ =0, (Ijb(]) has a locally unique solution

~

(€0, 70) = (&, P7)- (6.26)

Moreover, it follows from Theorem 3.2 that there exls‘rq ps > 0, such that, for all
de BA (0 ) there exists a locally unique solution (Cg, 75) := (%5, 0s,qs) of (LOg)
Which is Lipschitz continuous with modulus £.

Note that by (6.16) and (6.26)
*(x,1) on %,
)

3 on J%, (6.27)
€ [ri(z,t) +¢,r'(z,t)—¢] on@Q\(I*UJ%).
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On the other hand by (3.6), (3.8), (6.17) and (6.26)

~ 9 ~ B~ 7l >a on [®
DZyHﬁ Zo + DZUHOUO - GZ qo — !]Z { <—a on Ja’.

(6.28)
In view of the Lipschitz continuity of (zs, vs, q5) around (Zy, vg, qo), we can shrink
pa > 0 so that

ﬁdg,t) € [r*(z,t) + %,rb(m,t) —slon Q\ (I*UJ?)

~ o o S (6.29)
DZ H+ %0 + D7, Hoto — alt Go — gt — Agu { < 2

on %,
5 on J%.

for all § = (Agq, Ags, Agu, Adg, Ady) € B2, (0).
In the same way as in (6.19) and in (6.21), relations (6.29) imply that, for
all § € B2, (0) we have

=r%a,t) onI?%,

ﬁg(:c,t){ —r(et) oo (6.30)
D M %o+ Do Hoto — alh o — gi — Agy = 0on Q\ (I* U J*)(6.31)

Let us use (3.7) and (3.5) to find z5 and g5 as functions of U5 and substitute
to (6.31). Taking advantage of definitions (6.1) and (6.7), after straightforward

but tedious calculations we obtain

(K + D2, H(G, 17, D) Ts = 5(Agq, Ags, Adg, Ads) + Agy,

6.32

in V&, (6.52)
where s(-,-,-,-) is an affine function. By (j), equation (6.32) has a unique
solution for any ¢ = (Agg,Ags, Agu, Adg, Ads) € BQ(O). Putting § =

(0,0, Agu,0,0) we obtain from (6.32)

(K5 + D2H(G, py 0) (05 — Bo) = Aga.

Since by (j), the unique solution (vs — vy) to this equation is a Lipschitz con-
tinuous function of Ag, with modulus ¢, we arrive at (6.25). |

LEMMA 6.3 If (6.25) holds, then
|D2 H(G(2,), pr, 1), h)| > €71 for a.a. (x,t) €Q\ (I*UJ®). (6.33)
&
Proof Suppose that (6.33) is violated, i.e., there exists a set S C Q\ (I* U J%)

of positive measure and a constant ¢ > 0 such that

|D2,H(G (2, 1), pr(2,1),h)| < €7 — ¢ for a.a. (z,1) € S. (6.34)
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Let R C S be any subset of positive measure. Choose

B(t) = 1 on R,
10 on @\ (/*UJ*)\ R.
By (6.3), ||S’]_;’D||Loc — 0 as meas R — 0. So, in view of (6.7) and (6.34), for
meas R sufficiently small we get [|(K; + D2 H(G p’ﬁ,’};))@”{/w <t — /2,

h’
while ||7||v= = 1. That violates (6.25) and completes the proof. |

LEMMA 6.4 If (6.25) holds, then

(v, (K5 + D2 H(G oy B))o)ve > 7 ol|2a for all C € V2,

ie., (¢, DX L(Gopy 1)C) = £HICNGe for all € € ker C2.
(6.35)
o

Proof By a well known property of the spectrum of self-adjoint operators in a
Hilbert space (see, e.g., Theorem 2, p.320 in [25]) we have

min{p € R | p€oc}= R
= inf{(v, (IC;; + DZU’H(G};,pE,h))v)Vz |ve V2, |jv]|lve =1},

o~

where o is the spectrum of (K/E + DguH(C/E,pﬁ, h)) : V2 — V2. Hence, in view

of (6.18), condition (6.35) will be satisfied if the operator

- 2 7 . 2 2
Ko + (D3 H(Gpp h) —p) 12 ViV

o (6.36)
is invertible for any u € [0,£71).

Note that by (6.33), the real function
(Dt (Gopp ) (1) = )7

is nonnegative, bounded and measurable on @ \ (I* U J?) for any p € [0,£71).
Define the operators

o 2 N -1 .
M% = (Dwﬂ-l(C;,pﬁ,h) — 1) -IC;+ I1: VP 5 VP pe[l,o0].  (6.37)

By (6.25) M/:\o is invertible. Tt can be easily seen that (6.36) is satisfied if M% is

invertible. Note that, in view of compactness of S : L3(Q) — L*(Q) x Li(%)
and of the definition (6.7), the mapping

2 7 -1 . 12 2
is compact. Therefore, M% is a Fredholm operator. By well known properties

of Fredholm operators (see, e.g., Theorem VI.6 in [4]), the range of M% is closed
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in V2. Choose any b € V2 and let {b;} C V*° be such that b; — b in V2, By
invertibility of M/h?o, for each b; there exists a unique solution v; € V> C V?

of the equation M%Ov = M%v = b;, i.e., b; € range M% In view of closedness
of the range, we have b € range M% Since b € V2 is arbitrary, it shows that
range M% = V2 for any p € [0,£71). By the Fredholm theory, the inverse
(./\/l%)_1 : V2 — V? exists and is bounded. That shows that (6.36) holds and

completes the proof of (6.35). O
We can formulate now the principal result of this paper, 1.e., a characteriza-
tion of the Lipschitz stability property for solutions to (Pj).

THEOREM 6.5 If (A1)-(A7) hold, then (AC) is a sufficient condition in order
that

(LC) there exist constants py > 0, ps > 0 and £ > 0 such that for each h €
Bg(ho) there exist a unique in Bf; (Co) solution ¢, = (yn,un) of (Pn)
and the associated adjoint state py, € W™ . Moreover,

lyn —ynllc@ys llun —unnllL=(q) lIPn =P llcqy < € 1A' =h"||a, (6.38)
for all M, A" € Bg(hg),
If, in addition, (SD) holds, then (AC) is necessary for (LC) to be satisfied. <

Proof Sufficiency follows immediately from Theorem 5.1 and Lemma 5.3. To
show necessity, note that from (6.35) we have
(v, (Ko + D, H (o, po, ho))v)va > €7 |v]|fa—
~[(v, (K + DLuH (G ppy h)w)ve = (v, (Ko + DE,H(Co, po, ho))v)va).
(6.39)
By (6.7) and (6.38), choosing sufficiently small « and ¢ in (6.13), we obtain

|(va (IC'}; + DguH(C’E,p”;,/ﬁ))v)v2 - (Ua (’CU + Dzu%(coapoa ho))v)Vzl

] (6.40)
< vl

In view of (6.6), conditions (6.39) and (6.40) show that (AC) holds. O
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