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1 INTRODUCTION

In the past years, Sequential Quadratic Programming (SQP) methods have shown to be
very useful for solving optimal control problems. In Troltzsch (1994 a,b) their convergence
was proven for the application to simplified nonlinear parabolic control problems. To show
similar results for more general classes of parabolic problems, certain stability results for
linear-quadratic approximations of the nonlinear problem are needed. This note presents
a stability estimate, which seems to be very useful for the convergence analysis of SQP
methods.

To have an application in mind, let us regard the following nonlinear control problem:
(NP)  Minimize
fO,u) = [oolz,0(T,z))dx+ [ [oU(t,x,0(L,2))dxdl (1.1)
+ [ fsp x(t 2, 0(L, x), u(l, x))dSdt '
subject to the nonlinear initial-boundary value problem

0:(t,x) = Ab(t,z) on )
6(0,z) = 6,(x) on (1.2)
d0/on = b(t,z,0(t,z),u(t,z)) onlT,

t € [0,T], and subject to the constraints on the control u,

bi(t,z) <wu(t,z) < by(t,z) on St. (1.3)



Here, Q C IR™ is a bounded domain with sufficiently regular boundary S, Sy = [0,7] x S,
Q=10,T] xQ, 0, C(Q), p =¢,0),V=U(z0),x=x(z0u),b=>0blz0mu)
are real-valued functions, twice continuously partially differentiable with respect to # and

u. Moreover, bounded and measurable real-valued functions by, by are given on Sp, such
that by(t,z) < by(t, z) a.e. on St.

2 OPTIMALITY CONDITIONS

In the paper, the following notations are used: || - ||par := || - ||z, (), | (2, 9)|[p0r =

= Nl + Wollpats 10,0l = [0+ Wl + [60rss + iy Tor (0,u) €
C(Q) x Lo(S7). For certain perturbations = we define a norm |||, in section 3. The
natural inner product of Ly(M) is written (- -)a. Moreover, we introduce the space
W(0,7) = {0 € Ly(0,T; H'(Q)) : 6, € L,(0,T; H'()*)} endowed with its natural norm
(cf. Lions (1968)). In W(0,T) x Ly(S7) we introduce ||(6, u)||fy, = H@H%V(O’T) + Jlull3 s,-

Let a bilinear form a be defined on H'(92)? by
a(@,n) = (VO; Vn)q.

The Lagrange function associated to (NP) is

£00.0,9) = [0.0) ~ [ [0 v)a+ a0 )] di+ [ (66,0u); y)s i

This function is defined and twice differentiable with respect to (6, v) in a certain sense. We
shall not discuss this and refer to Troltzsch (1994 a). The linear parts of £ are differentiable
as a linear function on W(0,T'), while its nonlinear part can be formally differentiated with

respect to § and u in C(Q) X Lo (St) according to the rules of differentiating Nemytski
operators.
Let © = (#,u) denote a fixed locally optimal reference pair for (NP). The standard first
order necessary optimality conditions are
Lo(0,a,5) = 0 (2.1)
L.0,u,9)(u—u) > 0 YuecU™
where U C L.,(St) is defined according to (1.3). We shall denote derivatives of v, U, ete.
at the pair © by a bar and by according subscripts, for instance @gg(z) = %Lp(:c, 6(T,z))
etc. With this notation, formula (2.1), the adjoint equation for y = y, reads
—Y = Ay+
y(T) = @8 (2.3)
dy/on = bgy+ V.

The derivative £, can be identified with a function of L., (S7), which is denoted by £, (¢, z).
We have )

Lo(t,x) = xu(t, ) + by(t,z)y(t, z).
Thus the first order condition (2.2) implies u(t,z) = by(t,2), if L,(t,z) > 0, u(t,z) =
bo(t, ), if L£,(t,2) < 0. Here, we mention also the form of f'(v)v, namely

S () = (a3 0(T))a+ (o5 0)g + (Xo: 0)sy + (Xus; w)sy (2.4)



vy [vla 1’2]7

Lyyvr, v2] 1= fou(0)[vr, va] + (75 buu[v1, v2]) 57 (2.5)
where f,, is defined through the expression

fvv(ﬂ)[vlvz)?] = fQ 9599($)01(T,I)92(T7$)dx + fo(ZZ(Mglg?)(tvx)dIdt
- + f fsT [)20}91 0 + Xou(O1uz +792U1) + Nuwtaus](t, x)dSdt
buu[vi,v9] = bggb10y + bau(91u2 + 92U1) + buytr .

Let us take o > 0 arbitrarily small but fixed and define I, = {(¢,z) € Sp : |£,(t,2)| > 0}.
We assume the sufficient second order condition (SSC): There is a § > 0 such that

Loo(0,8,7)[v,v] = 6]lully,s, (2.6)
for all v = (0, u) with u(t,z) =0 on I, and
0, = Ab

9(0) = go B (27)
00/0n = bgl + byu.

The linear mapping v +— 6 is continuous from Ly(S7) to W(0,T'), hence (2.6) and (2.7)
imply ) ) )

Loo(0,1,9) = 61030,y + llullz,s,) = 8110, u)li (2.8)
with some § > 0.

From now on we regard the following perturbed linear-quadratic approzimation of (NP),
which is related to the investigation of sequential quadratic programming methods: Let

7= (d,e) =(dq,dg.ds,dy,,e) €Il :=C(Q) X Lo X Loo(ST)? be a given perturbation.
(7) ( ) 0Q, ¢S, 7) ( ) (Q) ( ) g P

(LQr) Minimize
1 -
F(v,d) = f'(v)(v—0) + §Ew[v — 0,0 — 0] —d(v—0v) (2.9)
subject to v = (6, u) and
b, = Af
0(0) = 4, (2.10)

D0/on = b(,u) + by (0 —0) + by (u—u) +e,
u € U™, and u(t,z) = u(t, ) for all (,z) € I, (d, e are given fixed).
The linear functional d in (2.9) is defined by
d(v) = (da; 0(T))a + (dg; 0)q + (ds; 0)s, + (du; u)s,-

The derivatives [’ and L,, are introduced formally through the expressions (2.4), (2.5).
We do not have to discuss their sense. In view of our assumptions, the derivatives by, by
etc. are bounded and measurable functions. The following result is a standard conclusion
of strong convexity due to (SSC):

THEOREM 1 For all © € Il the problem (LQ);) admits a unique minimizer v,.



3 STABILITY THEOREM

First, we show a stability result with respect to the Ly-norm.

THEOREM 2 Let perturbations w, 7o € Il be given, vy,vy be the associated unique
solutions of (LQ:). There is a positive constant L, which does not depend on w1, g such
that

[o1 = 02|z < L[m — 7|2, (3.1)

Before proving this theorem, we introduce the Lagrange function associated to (LQ) by

T
LO.uy.m) = FlOud)~ [ [0 y)a+a(b,y)de
+(b+bg (0 —0) + b, (u—1u)+e;y)sy. (3.2)
From L4 = 0 the associated adjoint states yy .y, are obtained,

—Yit Ay 4 Vg - (0; — 0) B
yi(T) ¢9 — dia + dag - (0:(T) — 0(T)) B (3.3)
dy;i/On = byy; + Xo —dis+ (Xoo + ybag) - (6; — 0) '
+(X/t9u + gbf)u) : (ui - ﬂ)a

i=1,2.
Proof of Theorem 2: From the first order necessary condition,
0 < L,(0;,us,yi,m)(v—v;)
= (f'(v) = d;)(v—v;) + Low[vi — 0,0 — v;] (3.4)
T _ _
— [0 =0 yida + a0 = i) = (ba(0 = 0,) + bl — i) yi)s).

¢t = 1,2. We insert v = vy in the first and v = vy in the second variational inequality.
After adding them, we arrive at

0 < (dy—di)(vg—v1)+ Zvu[vl — vg, U3 — 1]

- T
—/0 {02 — 0145 y1 —y2)a + alys — y2,02 — 01)
—(y1 — y2; bo(0s — 01) + by(uz — ur))s}dt (3.5)

= (dz - dl)(UZ - Ul) - »Cw[vl — Uz,U1 — U2] - (62 — €15 Y1 — Z‘J2)ST-
Now L,, is added on both sides of (3.5), and (SSC) applies to obtain

Ollor —wallipe < ellm — w2 |va — vallviz 4 [le2 — erllz,sy ly1 — yell2,s,
< df|m = mallz lor — vallwz + (|71 = 7allasr lyr — yall2,sp,

(3.6)

as |d(v)| < ¢||d||2 ||v]|v,2 and 7”1)”1/’2 < ¢||v|lw;z2. From (3.3), parabolic Ly-regularity, and
the uniform boundedness of ¢g, Wyy etc. we derive
1 — yall2.s7 ciflvr = v2llva + ea [T — m2|2 (3.7)

<
< e ||lor = va|lwz + e2 || — w2|2,



thus (3.6) implies
6 lor = vallys < llma = malla on — wallw + Eallms — mall (3.3)

If ||m1 — 2|2 < |Jur — ve]|w2, then (3.1) follows from (3.8). In the opposite case we have
|lo1 — v2|lw2 < 1-||m — m2||2. Therefore, (3.1) is an easy conclusion. O

The main aim of this paper is to derive (3.1) in the Lo-norm. This can be done com-
bining the full regularity of parabolic operators with a detailed discussion of necessary
optimality conditions. In the proof of the next theorem, we shall employ regularity pro-
perties in domains with sufficiently smooth boundary S. They are based on the well known
variation of constants formula

0(t) = S(1)0, + / AS(t — s)N(bg 0(s) + by u(s) + b(B,0))ds (3.9)

and the estimates

IAS ()N |1, (5)—wg @y < et™0 7= (3.10)

0<o<oa <1+4+1/p,
ISl 1pe)—wg (@ < ct™7/2, (3.11)

where A = —A + I, defined on {6 € W2(Q) : 90/0n = 0 on S}, N is the so-called
Neumann operator and S(t) := e’ exp(—At) in L,(Q). We refer for the details to Amann
(1986). (the equation (2.7) can be transformed by (t) = e'w(t) to w; = Aw—w). Further,

we make use of properties of the weakly singular integral operator K,

(K2)(1) = /k(t,s)z(s) ds, (3.12)

where k is a continuous real function on 0 < s <t < T, |k(t,s)| < c(t —s)™*, a € (0,1):
K transforms continuously L,(0,7") into L,(0,T), if

1 1

and L,(0,T) into C[0,T], if
1
—— 14
e (3.14)
The following generalized Legendre-Clebsch condition is needed to derive the L -estimate:
There is a constant A > 0 such that

Nuu(t,2) + 5 (t, 2)bu(t,2) > X V(t,2) € St (3.15)

THEOREM 3 Suppose that © = (0, @) satisfies the first order conditions (2.1), (2.2) to-
gether with (SSC) and the generalized Legendre-Clebsch condition (3.15). Suppose further
that the boundary S of Q is sufficiently smooth and 0, € C(Q). Then there are positive
constants ¢y, cg, such that

lor — valle@yxcasn < et lm — malls (3.16)

holds for arbitrary perturbations m; € I with ||7;||e < er,¢=1,2.



Proof: a) Preparations

We first mention the variational inequality £,(0;,u;, yi, 7i)(v — u;) > 0 for all w € U™
for all u € U, A standard pointwise discussion yields

Ui(twr):P(tvx)(ﬁ_ ¥ _{_gz

)(t, x) (3.18)

with the projection operator P(t,z) : IR — [by(t,2),by(,z)]. Note that P is Lipschitz
with constant 1. Moreover, P(t, z)u(t, z) is measurable, if u is measurable.

b) Ly(St)-estimate — L,(St)-estimate with some p > 2:

From (3.1),
lun = wslla,sr < [m — w2 (3.19)
The difference of states 6; — 0, satisfies
(01 —03); = A6 —0,)
o —y (3-20)
# —bo(0r —02) = Du(wr —us) + (&1 — €3).

By parabolic regularity, right hand sides in the boundary condition contained in Ly(ST)
are transformed continuously into L,(0,7; W7 (Q)), provided that

> (3.21)

S |
no| 9
|

(cf. section 4). To achieve boundary data of 6; — 6, in L,(S7) we need W7 (Q) C WPE+E(Q)
(¢ > 0 arbitrarily small), hence we require according to the Sobolev embedding theorem
1

n n
- = > - - —. .22
c—52 +e » (3.22)

3

From (3.21), (3.22) the chain 2/p+1/2 > 0 > 1/p — n/p + n/2 follows. It is satisfied, if

n+1
< . 3.23
P<— (3.23)
Summarizing up the first step,
101 = Oallp.sr < e(flur — uallz,sr + llex — e2]l2,57) (3.24)

is obtained (in what follows, ¢ denotes a generic constant). In the adjoint equation, the
term (6; — 6;)(T') must be defined in L,(9), hence we need 6, — 8, € C([0,T], W7(Q)).
This holds true for o < 1/2 (cf. section 4) and WJ(Q) C L,(Q). The latter takes place, if
o=1/2—ec>n/2—n/p,i.e.

p<2——. (3.25)

n—1



We take p = p; := 24 2/(n —1). Then (3.23), (3.25) are jointly satisfied, p; > 2, and

101 = Oall (0,17, (2)) < €([lun — u2ll2,s, + [ler — eall2,s,) (3.26)

holds. Note that our gain of smoothness is v = p; —2 = 2/(n—1). Next we discuss y; — y».
From (3.3),

= Ay —y2) — (d1,g —dyq) + Pee - (01 — 62)
dig — dyq) + dag - (0:(T) — 05(T))

dis — dg,s) + (Xoo + ybgs ) (61 — 62)
+(Xou + Ybou)(ur — uz).

—(Z’Jl - y2)t
(y1 — yz)(T; =

(n-v2) 7 3.27
2 ylanyz _ be(y1 — s ( )

(
—(
=

(

Let us write y1 — y2 = yg + ya + ys, where yg belongs to the right hand side of the
heat equation (3.27) with yo(T) = 0,0yg/dn — byyg = 0, yq solves the homogeneous
heat equation in (3.27) with homogeneous boundary data, and ys is the remaining part
(belonging to the inhomogeneous boundary data). Parabolic regularity applies to show

lyall Lo S c(ll@mlleonll(Or = 0)(T) o+ ldog — dagllp). (3.28)

py (0,175 P1 (£2))

In the same way,

lyall dye < ([0 = b:llpo + ldig — d2ollnQ) (3.29)
Lipy (OvT?Wml (2))

lysll pve S ([0 = bollpy,sr + [lur — usllzs,

LP1 (OvT?prll (Q))
+Hdlvs - dQ,Sle,ST> (330>

holds. (3.29) can be derived from the usual variation of constants formula for parabolic
equations with inhomogeneous right hand side. Thus

1 = yellprsr - < e (|(6r = 2)(T)lps,0 + 101 = b2lps @
01 = Oalp sz + llun = walz,sr (3.31)
Hlm = wallp,)-

In view of (3.18), (3.15),

1
[(ur = u2)(t,2)] < T(ldvw — dau] + el = O2] + elyr — )¢, 2) (3.32)
holds on S, hence
lun = uallpy,sr < elllm = mallpy + 1161 = Oallps,57 + llv1 = w2llps,sz)- (3.33)
Now
lun = wsllpy 57 < e [lm1 = ma[, (3.34)

follows from (3.24), (3.31), (3.26), (3.19), and || - ||2;ar < ¢]| - ||y ,ar for any set M.

¢) Ly, (St)-estimate — ka+1(ST)—estimate for pry1 > p

We have shown
[ — vallpy,s7 < ek [l — w2y, (3.35)



for some py > 2 4 . This estimate yields together with the system (3.20)

161 = 02l oo,z ) < cllmr = malpys (3.36)
if
1
o<1l—— (3.37)
Pk
(cf. section 4). To get traces in Lle(ST), where prr1 > pr, we need W]fk(Q) -
P ! 1+E :
ka’fl (Q), hence 0 — n/pp > 1/prp1 + € — n/pey, 1€
1—
o>— 4L (3.38)
Pk+1 Pk

Put pry1 = I pg. (3.37), (3.38) have a non-void intersection, if

n—1
{

If p. > n+ 1, then this holds for all [ > 0. In the case p, > n + 1 we are able to finish
our bootstrapping procedure (cf. d)). Assume p, < n+ 1. We know p; > 2, hence (3.39)
holds true for [ = 1, and we may satisfy it for some [ > 1. From (3.39),

pr>n—+1— (3.39)

—1
o=l (3.40)
n+1-—pg
hence
(n—1)px
_ — Ip — AT PR
Pk+1 — Pk Pk pk<n+1—pk Pk
PE— 2
_— 3.41
v p— (3.41)

On the other hand, the right end of this chain is greater than 2y/(n + 1 — 2), thus the
optimal gain of smoothness would be pry1 — pr = 27/(n —1). We may ensure at least the
gain

Pkt+1 — Pk = — 1 T (3.42)

In the case pr = n + 1 we may take [ and thus pgyq arbitrarily large. Continuing our
bootstrapping process, from (3.36), (3.38),

164 = ]| e Seflm = mlp,, (3.43)
c

(0. T Wy ()

is found. Next we may improve (3.31) to

g1 = y2llprgrsr < el = 02)(T)llppgr0 + 161 = Oallpnyr
H0r = Osllpyr,sr + lur = wsllpysy (3.44)

+“7T1 - 772“17k+175'T>'
Continuing as before, in view of (3.15), (3.18), (3.43), and (3.44)
1 = ualpyyr,57 < Cran |71 = Talpyys- (3.45)

is derived.



d)pk>n—}—1

This case is obtained after finitely many steps. In (3.37), all 0 < 1 — n+i+€

The inequality o > n/p; can be fulfilled in this case, ensuring W7 (Q2)) C C(2). In view
of this, controls from L,, (St) are transformed into the state-space C'([0,7],C()). Now
(3.36) admits the form

can be taken.

101 = balloc,a < cllm = mallp, < eflm = 2o (3.46)

The estimation of y; —y, is along the lines of the preceding steps. Owing to the maximum
principle (proved by means of the integral equation method),

lyallc@ < e (lgesllooa (01 = 0)(T)looa + lldzg — d2llo.0) (3.47)
follows from (3.27), cf. (3.28). This leads to

1 = yalloo,sr < (62 = 02)(T) oo + 11 — balloc, + (161 = Ozl o057

3.48
Hlen = s+ i = wollc)- (3.4)
In view of (3.15) (3.32), (3.46), (3.48), (3.35)
Jur — wallco,s7 < c(llm1 — malloo + |lus — uzllp,.sr)
< ce(llm = mallo + 71— 72[p)
< cllm = 72|l (3.49)
holds. (3.49), (3.46) yield the desired result. O

4 REMARKS

It can be shown that the second order condition (SSC') considering the active set of «
is sufficient for local optimality of u for (N P) with respect to the topology of L.,. This
information was not needed to prove Theorem 2. The theorem expresses more or less
the following simple fact: (SSC) implies local optimality of @ for the problem (N P) with
constraint b, < u < by, where by and by are redefined such that by = by = @ on I,.

However, we are able to show more: The (global) solution v, of (LQ),) remains locally
optimal for this problem (local in L..-sense), if the restriction u(t, z) = u(t, z) is deleted in
(LQ@x), provided that ||7]| is sufficiently small. Moreover, it is the only local minimizer
in a sufficiently small L.,-neighborhood of v,. The radius of this neighborhood is uniform
with respect to all sufficiently small perturbations #. Therefore, the main stability theorem
3 is a result concerning a set of local minimizers of (L)) without the restricton u(¢,z) =
u(t,z) on I,. The discussion of these facts would go beyond the scope of this paper.

Let us comment some of the estimates used in the proof of Theorem 3. First, we derive

(3.21): Apply (3.10) for p = 2 and o = 3/2 — 2¢, where ¢ is arbitrarily small. Then

”AS(t)NHL2(S)—>W2°(Q) < (;t_(l_(3/2—25—0)/2)

— g (4.1)

3



where @« = 1+ 0/2 —3/4 4+ ¢. According to the transformation property (3.13) of K, the
(Bochner) integral operator

ult) / AS(t — s)Nu(s) ds (4.2)

0

transforms continuously L,(0,7; Ly(S)) into L,(0,7; WJ(Q)), if

This inequality is satisfied for sufficiently small ¢, if 1/p > o /2 — 1/4, i.e. (3.21).

Moreover, we comment (3.37). Regard the operator (4.2), defined on Ly, (0,T; L, (5)).
Then (3.10) applies,
[ASN |y, (5)~wg, @) < 177

where o« = 1 — (1 +1/pp —2e —0)/2 = 1/2 —1/(2px) + 0/2 + ¢. The operator (4.2) is
continuous from L,, (0,7 L, (.5)) to C([0,T], W7 (2)), if

S 1
Pk 1—a

(cf. (3.14)). This amounts to 1 — 1/p; > o.

Finally, it should be mentioned that the theory holds true for any uniformly elliptic
differential operator A instead of —A, which allows to derive the estimates (3.10), (3.11).
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