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Abstract

The Schlögl system is governed by a nonlinear reaction-diffusion partial differential equation with a cubic nonlinearity that
determines three constant equilibrium states. It is a classical example of a chemical reaction system that is bistable. The
constant equilibrium that is enclosed by the other two constant equilibrium points is unstable.

In this paper, Robin boundary feedback laws are presented that stabilize the system in a given stationary state or more
generally in a given time-dependent desired system orbit. The exponential stability of the closed loop system with respect to
the L2-norm is proved. In particular, it is shown that with the boundary feedback law the unstable constant equilibrium point
can be stabilized.

Key words: Lyapunov function, boundary feedback, Robin feedback, parabolic partial differential equation, exponential
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1 Introduction

The Schlögl system has been introduced in [19] as a
model for chemical reactions for non-equilibrium phase
transitions. It describes the concentration of a sub-
stance in 1-d. In neurology, the same nonlinear reaction-
diffusion system is known under the name Nagumo equa-
tion and models an active pulse transmission through an
axon ([15], [8]). It is also known as Newell-Whitehead-
Segel equation (see [16], [20]). This system is governed
by a parabolic partial differential equation with a cubic
nonlinearity that determines three constant equilibrium
states u1 < u2 < u3, where u2 is unstable. In view of its
simplicity, the Schlögl system may serve as a test case for
the stabilization of an unstable equilibrium for reaction
diffusion equations that generate traveling waves. While
this task might appear a little bit academic for the Schögl
model, it is of paramount importance for more compli-
cated equations such as the bidomain system in heart
medicine, cf. Kunisch and Wagner [12]. Here, the goal of
stabilization is to extinguish undesired spiral waves as
fast as possible and hereafter to control the system to
a desired state. However, there are similarities between
these models and it is therefore reasonable to consider
the same problem for the Schögl system.
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The control functions can act in the domain (distributed
control) or on its boundary. In this paper, the problem
of boundary feedback stabilization is studied. Example
1 illustrates that, without the influence of the boundary
conditions, the system state approaches exponentially
fast a stable equilibrium, even if the initial state is arbi-
trarily close to the unstable equilibrium.

Also, the more general case of boundary stabilization
of time-dependent states of the system is considered in
this paper. This includes the stabilization of periodic
states that is interesting as a tool to stabilize the periodic
operation of reactors, see [21]. This case also includes
the stabilization of traveling waves.

In this paper, linear Robin-feedback laws are presented
that yield exponential stability with respect to the L2-
norm for desired orbits of the system. The term desired
orbit is used to describe a possibly time–dependent solu-
tion of the partial differential equation that defines the
system. The exponential stabilization is particularly in-
teresting since the boundary feedback allows to stabilize
the system in the unstable equilibrium that is enclosed
by the other two constant equilibrium points.

To show that the system is exponentially stable, we con-
struct a strict Lyapunov function. The construction of
strict Lyapunov functions for semilinear parabolic par-
tial differential equations has also been studied in [14].
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In [14], it is assumed that the feedback is space-periodic
or the boundary conditions are chosen in such a way
that the product of the state and the normal derivative
vanishes at the boundary. This assumption implies that
the boundary terms that occur after partial integration
in the time derivative of the Lyapunov function become
nonpositive.

For the state feedback that is presented in this paper,
this assumption does not hold. Therefore a different ap-
proach is used in the analysis: The Poincaré-Friedrichs
inequality is used to show that the Lyapunov function
is strict. Note that the Poincaré-Friedrichs inequality is
often used to prove the existence or uniqueness of the so-
lution of partial differential equations. However, to our
knowledge, up to now it has not been used to show that
a Lyapunov function is strict.

The Schlögl system has the interesting property that it
allows traveling wave solutions (i.e. uniformly translat-
ing solutions moving with a constant velocity) that have
the shape of the hyperbolic tangent (see [11]). The trav-
eling wave solutions connect the two stable constant sta-
tionary states. The problem to steer associated wave
fronts to rest by distributed optimal control methods was
considered in [5] for the Schlögl model and in [7] for the
FitzHugh-Nagumo system, where spiral waves occur. In
the present paper, we propose a boundary control law
that stabilizes the system exponentially fast to a desired
orbit.

The boundary control of a linear heat equation via
measurement of domain-averaged temperature has
been studied in [4], [13]. Results about the control of
parabolic partial differential equations with Volterra
nonlinearities are given in [25], [26]. In particular, these
results are applicable to semilinear parabolic equations.
The constructed control laws are expressed by Volterra
series. The authors prove the local exponential stability.

In [25] [26], a feedback law is proposed to locally stabi-
lize stationary profiles for arbitrarily large reaction coef-
ficients and lengths of the system. Here we show that,
under restrictions on the magnitude of the reaction term
and the length of the system, a simpler feedback law
using boundary values only can globally exponentially
stabilize any reference trajectory.

In this paper, a 1-d system of length L is studied. In
the reaction-diffusion equation, the diffusion coefficient
is normalized to 1. The parameter K determines the size
of the reaction term. To show the exponential decay of
the solution, it is assumed that L2K is sufficiently small.
Thus, if the reaction rate K is large, the space interval
[0, L] has to be sufficiently short. In this case, Lemma
1 states that the stationary states are uniquely deter-
mined by the corresponding boundary value problems.
An example illustrates that, if L2K is too large, several
stationary states may exist that satisfy the same Robin
boundary conditions. Thus, in this situation it is impos-
sible to stabilize the system using these Robin boundary
conditions.

This paper has the following structure: In Section
2, the model is defined and a result about the well-
posedness is given. Moreover, the stationary states and
time-dependent orbits are discussed. In Section 3, the
result about two-sided boundary feedback stabilization
is presented: if the length L of the reactor is sufficiently
small, there is a feedback constant C > 0 such that the
Robin boundary conditions ensure stability. Numerical
experiments illustrate the results. Section 4 contains
conclusions.

2 The model

2.1 Definition of the model

In this section, the Schlögl model is defined.

Let real numbers u1 ≤ u2 ≤ u3 be given. Define the
polynomial

ϕ(u) = (u− u1)(u− u2)(u− u3). (1)

Due to its definition, ϕ has the property

mϕ = inf
u∈(−∞,∞)

ϕ′(u) > −∞, (2)

that is the derivative ofϕ is bounded below. The infimum
mϕ < 0 is attained at the point (u1 + u2 + u3)/3.

The system that is considered in this paper is governed
by the semilinear parabolic partial differential equation

ut = uxx −Kϕ(u) (3)

with a constant K > 0 complemented by appropriate
initial and boundary conditions. In the reaction diffu-
sion equation (3), the diffusion coefficient is equal to 1
and the constant K determines the size of the reaction
term. If K equals zero, the reaction term vanishes and
the partial differential equation (3) models a pure diffu-
sion process.

Let the length L > 0 be given. Let ustat ∈ H2(0, L)
denote a stationary solution of (3), that is u = ustat

solves the equation

uxx(x) = Kϕ(u(x)), x ∈ [0, L]. (4)

To define a feedback law, introduce a real constant C >
0. For the stabilization of (3), for (t, x) ∈ [0,∞)× [0, L],
consider the Robin boundary conditions

ux(t, 0) =C(u(t, 0)− ustat(0)) + ustatx (0), (5)

ux(t, L) =−C(u(t, L)− ustat(L)) + ustatx (L). (6)

Notice that the boundary values ustatx (0) and ustatx (L)
are well defined since ustatx ∈ H1(0, L).

With the feedback laws (5), (6), if

L2K <
1

2 |mϕ|,
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the Lyapunov function presented in Theorem 3 decays
exponentially.

2.2 Existence and uniqueness of the solutions

In [5], the well-posedness of the system governed by (3)
is studied for homogeneous Neumann boundary condi-
tions. It is shown that for initial data in L∞(0, L), the
system has a unique weak solution that is continuous for
t > 0. If the initial state is continuous, the solution of
the system is continuous for all times. The same result
extends to the Robin boundary conditions (5),(6). In the
associated theorem below, the standard Sobolev space

W (0, T ) = L2(0, T,H1(0, L)) ∩H1(0, T ;H1(0, L)
′
)

is used. Moreover, the notation

QT = (0, T )× (0, L)

is used.

Theorem 1 Suppose that it holds K ≥ 0 and u1 < u2 <
u3. Then, for all f ∈ L2(QT ), u0 ∈ L∞(0, L), gi ∈
Lp(0, T ), i = 1, 2, p > 2, the parabolic initial-boundary
value problem

ut(t, x)−K uxx(t, x) + ϕ(u(t, x)) = f(t, x) in QT

ux(t, 0)− Cu(t, 0) = g1(t) in (0, T )

ux(t, L) + Cu(t, L) = g2(t) in (0, T )

u(0, x) = u0(x) in (0, L)

(7)
has a unique solution u in

L∞(QT ) ∩W (0, T ) ∩ C((0, T ]× [0, L]).

If u0 ∈ C[0, 1], then u is also continuous on [0, T ]×[0, L].

Proof. The derivative ϕ′ is bounded from below by
mϕ < 0. Define µ = |mϕ| and introduce a new unknown
function v by

u(t, x) = eµ tv(t, x).

Inserting this expression in (7), an easy calculation yields

eµ tvt −Keµ tvxx + ϕ(eµ tv) + eµ tµv = f

and finally the new initial-boundary value problem

vt(t, x)−Kvxx(t, x) + e−µ tϕ(eµ tv) + µv = e−µ tf(t, x)

in QT
(8)

vx(t, 0)− Cv(t, 0) = e−µ tg1(t) in (0, T )

vx(t, L) + Cv(t, L) = e−µ tg2(t) in (0, T )

v(0, x) = u0(x) in (0, L).

For each fixed t, the function v 7→ e−µ tϕ(eµ tv) + µv is
monotone non-decreasing and differentiable. Moreover,
it is continuous w.r. to t for all fixed v. Therefore, the
monotonicity and Carathèodory conditions are satisfied
that are needed for existence and uniqueness of a solu-
tion v. Since Ω = (0, L) is one-dimensional, the equa-
tion (8) admits for all given f ∈ L2(QT ), gi ∈ Lp(0, T )
with p > 2, and u0 ∈ L∞(0, L) a unique solution v ∈
L∞(QT ) ∩W (0, T ) ∩ C((0, T ] × [0, L]). If u0 ∈ C[0, L],
then there even holds v ∈ C([0, T ]× [0, L]). For this re-
sult on existence, uniqueness and regularity, we refer to
Casas [6], Raymond and Zidani [18] or to the exposition
in [22], Theorem 5.5. Associated with v, we also obtain
in turn a unique solution u with the same regularity as
v. 2

This result will not be needed here in its full generality.
In (3), (5), (6), it holds f = 0 while the gi are constant.
In this case, u(·, t) ∈ H2(0, L) holds for all t > 0. Again,
we slightly extend a result of [5].

Theorem 2 Let u0 ∈ L∞(0, L) be a given initial func-
tion and assume that f = 0 and that gi(t) = ci for all t ∈
[0, T ]. Then the solution u of (7) exhibits the regularity
u ∈ C((0, T ], H2(0, L)). Therefore, for all t ∈ (0, T ], the
function u(t, ·) belongs to H2(0, L).

Proof By Theorem 1, u is bounded, i.e. u ∈ L∞(QT ).
Now Theorem 4 by Di Benedetto [3] can be applied
that ensures Hölder continuity of bounded solutions to
parabolic equations. By this theorem, we obtain u ∈
C0,α([ε, T ], C0,α[0, L]) for arbitrarily small ε > 0 with
some Hölder constant α ∈ (0, 1) that may depend on ε.

Next, the initial boundary value problem with non-
homogeneous but constant boundary values

ux(t, 0)− Cu(t, 0) = c1

= −Custat(0) + ustatx (0) in (0, T )

ux(t, L) + Cu(t, L) = c2

= Custat(L) + ustatx (L) in (0, T )

is transformed to one with homogeneous boundary data.
To this aim, write u as u(t, x) = v(t, x) + w(x), where
w(x) = α1x+ 0.5α2x

2 is constructed such that the con-
ditions

wx(0)− Cw(0) = c1

wx(L) + Cw(L) = c2

are satisfied. Then the function v satisfies the system

vt(t, x)−K vxx(t, x)− α2 + ϕ(v(t, x) + w(x)) = 0

in QT

(9)
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vx(t, 0)− Cv(t, 0) = 0 in (0, T )

vx(t, L) + Cv(t, L) = 0 in (0, T )

v(0, x) + w(x) = u0(x) in (0, L).

The Hölder continuity of u extends also to v, hence the
function F : (t, x) 7→ −α2 + ϕ(v(t, x) + w(x)) is also
Hölder continuous on [ε, T ] × [0, L] with some constant
α̃ ∈ (0, 1). Considering v on the interval [t0, T ] with t0 :=
ε and starting with vε := v(t0,×) ∈ C[0, L] ⊂ L2(0, L)
yields

vt(t, x)−Kvxx(t, x) = −F (t, x), t ≥ t0,

where the right-hand side F belongs to

C0,α̃([t0, T ], C0,α̃[0, L]),

hence also to C0,α̃([t0, T ], L2(0, L)). Now Theorem 1.2.1
in Amann [2] can be applied, where the differential op-
erator A = −∂xx with domain D(A) = {v ∈ H2(0, L) :
vx(0) − Cv(0) = vx(L) + Cv(L) = 0} and spaces E0 =
L2(0, L), E1 = H2(0, L) is used.

This theorem ensures that the solution v belongs to
C((t0, T ], H2(0, L)). Therefore, v(t) is in H2(0, L) for all
t ≥ t0 + ε = 2ε. Since ε can be taken arbitrarily small,
the claim follows immediately for v and hence also for
u. 2

Example 1 Here, a solution of (3) is constructed that
is independent of x. Assume that u1 = −1, u2 = 0 and
u3 = 1. Let C0 < 1 be given. Define the function

u(t, x) =
1√

1− C0 exp(−2Kt)
.

Then, for all t > 0, u satisfies ut = −Ku(u2 − 1), hence
u solves (3). Note that −u also solves (3).

For ε > 0 and C0 = 1 − 1
ε2 we have u(0, x) = ε. The

number ε > 0 can be chosen arbitrarily small, so the
initial state can be arbitrarily close to the stationary state
zero, but still limt→∞ u(t, x) = 1. Moreover, the state
converges to 1 exponentially fast and the convergence rate
is determined by the reaction rateK. This illustrates that
the stationary state u2 is unstable.

2.3 Stationary States

One of the important targets of control is to reach the
stationary state ustat = u2 that is unstable, if u1 < u2 <
u3. For instance, in the case u2 = 0, the extinction of
wave type solutions to the Schögl system is of interest.

There are several types of stationary solutions. The sys-
tem has three constant solutions, namely ustat = u1,
ustat = u2 and ustat = u3.

If ustat > u3, ustatxx = Kϕ(ustat) > 0 hence ustat is a
strictly convex function. On the other hand, if ustat <

u1, ustatxx = Kϕ(ustat) < 0 hence ustat is a strictly con-
cave function.

In general stationary continuous solutions of (3) that
do not attain the value u1, u2 or u3 are either convex or
concave.

Example 2 Assume that
√
K L < π. An example for a

convex stationary state with u1 = −1, u2 = 0 and u3 = 1
is

ustatc (x) =

√
2

cos
(√

K(x− L
2 )
) (10)

with ustat(x) ≥ ustat(L/2) =
√

2 > 1.

An example for a concave stationary state with u1 = −1,
u2 = 0 and u3 = 1 is −ustatc with ustatc from (10).

Observe that stationary solutions that attain the value
u1, u2 or u3 and are not constant are neither convex nor
concave.

Example 3 For u1 = −1, u2 = 0 and u3 = 1, solutions
can be found that are neither convex nor concave and
have the representation

ustat1 (x) = tanh

(
C1 −

√
K

2
x

)
. (11)

Here, u1 < ustat1 (x) < u3 and if the constantC1 is chosen
appropriately, ustat1 (x) attains the value u2 = 0.

Now consider the constant stationary state

ustat(x) = u2.

This state satisfies the Robin boundary conditions

ux(t, 0) =C(u(t, 0)− u2), (12)

ux(t, L) =−C(u(t, L)− u2). (13)

In Lemma 1 it is stated that, if L2K is sufficiently small
and the feedback parameter C is sufficiently large, the
boundary value problem (4) with the Robin boundary
conditions (12) and (13) only has the constant solution
u2.

Example 4 Consider the Jacobi elliptic function
sn(x, m) with m = (0.5)2 (see [1]). The function
ustatj (x) = sn(x, 0.25) solves the differential equation

(ustatj )xx =
1

2
ustatj

(
(ustatj )2 − 5

2

)
.

Thus ustatj is a nonconstant stationary state forK = 1/2,

u1 = −
√

5/
√

2, u2 = 0 and u3 =
√

5/
√

2. Fig. 1 shows
ustatj . Note that ustatj is periodic with respect to x (see
Example 8).
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Fig. 1. The stationary state ustat
j (x) from Example 4

Example 5 Now the case u1 = u2 = u3 = 0 is consid-
ered. Choose a constant α > 0 or α < −L. Then

ustat+ (x) =

√
2√

K (x+ α)
, ustat− (x) = −

√
2√

K (x+ α)

are stationary states because (ustat± )xx = K(ustat± )3.

2.4 Instationary Orbits

Often in the applications, time-dependent orbits are de-
sired. For example, time-periodic states in the periodic
operation of chemical reactor systems are of interest.
Here, periodic control can generate higher conversion
than the steady state mode of operation. Therefore, in
this section we consider time-dependent orbits, for ex-
ample periodic states with period T > 0, that is solu-
tions u = uperi of (3) with u(t + T, x) = u(t, x) for all
t > 0 and all x ∈ [0, L]. Notice that in general these
states will have non homogeneous boundary data.

Periodic states can be constructed by exact controllabil-
ity results for the semilinear heat equation. If the sys-
tem is exactly controllable, any given stationary state
can be steered to any other stationary state belonging to
the same connected component of the set of stationary
states. Thus, to obtain a periodic state, we can move the
system periodically between the two stationary states.

The global steady-state controllability of one-dimensional
semilinear heat equations has been studied in [10]. In
[10], a function y ∈ C2[0, L] is called a steady state
of (3) if y(0) = 0 and u = y satisfies (4). Note that
for our system, if u3 = −u1 and u2 = 0, there holds
ϕ(u) = u(u2 − u21), thus ϕ(−u) = −ϕ(u), i.e. ϕ is odd.
It is stated in Proposition 3.1 in [10] that in this case
the set of steady states is connected.

Thus, in this case one can move back and forth between
any two steady states: one starts with a steady state u0
at the time t = 0 and controls the system to a steady

state u1 at the time T1. Then the system is controlled
back to u0 in the time T2. Repeating the process yields
a periodic state with period T = T1 + T2.

We also consider the case of general time-dependent de-
sired orbits udesi that satisfy (3).

Example 6 Traveling waves solutions of (3) with speed
v satisfy ut = −vux. Hence (3) implies that they satisfy
the ordinary differential equation

uxx + v ux −K ϕ(u) = 0.

For real numbers D > L and α > 0,

y(z) =
1

1− exp(α(z −D))

solves

y′′ + 3α y′ − 2α2 y (y2 − 1) = 0.

So, for u1 = −1, u2 = 0, u3 = 1 and

K = 2α2,

the traveling waves solution u(t, x) = y(x − 3α t) is
obtained with speed v = 3α. In Section 3.2, the traveling
waves solution

udesi(t, x) =
1

1− exp(α(x− 3αt−D))

will be considered as an example for a desired orbit.

3 Two-sided boundary feedback stabilization

3.1 Exponential Stability

In this section, we present our main result about the
exponential stability in the L2–sense of our system. A
boundary feedback law is constructed that stabilizes the
system around a given desired orbit udesi, for exam-
ple a stationary state ustat, a periodic state uperi or
a non-periodic desired instationary orbit. To construct
a stabilizing Robin-feedback, only the boundary values
udesi(t, 0), udesi(t, L), udesix (t, 0), and udesix (t, L) of the
given desired state udesi are used.

An essential tool in the analysis is the 1-d Poincaré-
Friedrichs inequality (see also [22] for the general case)
in the following form: let L > 0 be given. For all u ∈
H1(0, L), the following inequality holds:

∫ L

0

u2(x) dx (14)

≤ L
[
u(0)2 + u(L)2

]
+ 2L2

∫ L

0

(∂xu(x))
2
dx.
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Proof: Consider the inequality

u2(x) =
1

2

(
u(0) +

∫ x

0

∂xu(s) ds

)2

+
1

2

(
u(L)−

∫ L

x

∂xu(s) ds

)2

≤

u(0)2 +

(∫ L

0

|∂xu(s)| ds

)2


+

u(L)2 +

(∫ L

0

|∂xu(s)| ds

)2


≤ u(0)2 + u(L)2 + 2L

∫ L

0

(∂xu(s))
2
ds.

Integrating on the interval [0, L] yields (14). 2

Now the stabilization result for desired orbits is given.

Theorem 3 (Exponential Stability) Assume L > 0
is sufficiently small in the sense that

L2K <
1

2 |mϕ|
. (15)

Let a desired state udesi ∈ H2(QT ) be given that satisfies
(3). Let a feedback parameter C ≥ 1

2L and an initial state
u0 ∈ L∞(0, L) be given.

Then the solution u of (3) subject to

ux(t, 0) =C(u(t, 0)− udesi(t, 0)) + udesix (t, 0) (16)

ux(t, L) =−C(u(t, L)− udesi(t, L)) + udesix (t, L) (17)

converges exponentially fast in the L2-sense to udesi in
the sense that for

µ =
1

L2
− 2K |mϕ|

there holds the inequality

∫ L

0

(
u(t, x)− udesi(t, x)

)2
dx (18)

≤
∫ L

0

(
u0(x)− udesi(0, x)

)2
dx exp (−µt) .

The function V (t) = 1
2

∫ L
0

(
u(t, x)− udesi(t, x)

)2
dx is a

strict Lyapunov function for the system (3), (16), (17)
in the sense that it satisfies the inequality

V ′(t) ≤ −µV (t).

Proof. Define the function

V (t) =
1

2

∫ L

0

(
u(t, x)− udesi(t, x)

)2
dx. (19)

For initial data u0 in H2(0, L), the time-derivative of V
obeys

V ′(t)

=
∫ L
0

(
u(t, x)− udesi(t, x)

) (
ut(t, x)− udesit (t, x)

)
dx

=
∫ L
0

(
u(t, x)− udesi(t, x)

) (
uxx(t, x)− udesixx (t, x)

)
dx

−K
∫ L
0

(
u(t, x)− udesi(t, x)

)(
ϕ(u(t, x))− ϕ(udesi(t, x))

)
dx

= −
∫ L
0

(
ux(t, x)− udesix (t, x)

)2
dx

+
[(
u(t, x)− udesi(t, x)

) (
ux(t, x)− udesix (x)

)]
|Lx=0

−K
∫ L
0

(
u(t, x)− udesi(t, x)

)(
ϕ(u(t, x))− ϕ(udesi(t, x))

)
dx.

Thanks to the boundary feedback conditions (16), (17),
this yields

V ′(t) = −
∫ L
0

(
ux(t, x)− udesix (t, x)

)2
dx

−C
(
u(t, 0)− udesi(t, 0)

)2
−C

(
u(t, L)− udesi(t, L)

)2
−K

∫ L
0

(
u(t, x)− udesi(t, x)

)(
ϕ(u(t, x))− ϕ(udesi(t, x))

)
dx.

Due to (2), for all v1, v2 ∈ (−∞,∞) it holds

(v2 − v1)(ϕ(v2)− ϕ(v1)) ≥ (v2 − v1)2mϕ.

This yields the inequality

V ′(t) ≤ −
∫ L
0

(
ux(t, x)− udesix (t, x)

)2
dx

−C
(
u(t, 0)− udesi(t, 0)

)2
−C

(
u(t, L)− udesi(t, L)

)2
−Kmϕ

∫ L
0

(
u(t, x)− udesi(t, x)

)2
dx.

Since C ≥ 1
2L , due to the Poincaré-Friedrichs inequality

(14) this implies

V ′(t) ≤ − 1
2L2

∫ L
0

(
u(t, x)− udesi(t, x)

)2
dx

+K |mϕ|
∫ L
0

(
u(t, x)− udesi(t, x)

)2
dx

= −
(

1
2L2 −K |mϕ|

) ∫ L
0

(
u(t, x)− udesi(t, x)

)2
dx

= −
(

1
L2 − 2K |mϕ|

)
V (t)

= −µV (t).
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Since H2(0, L) is dense in L∞(0, L), the same estimate
remains true (by continuous extension) for any initial
state u0 in L∞(0, L). Thus V is a strict Lyapunov func-
tion and the assertion (18) follows (see for example [9]).

2

Example 7 Let u1 = −1, u2 = 0 and u3 = 1. Then
mϕ = −1 and Theorem 3 states that, if

L2K <
1

2
,

the Lyapunov function decays exponentially, i.e. the state
converges exponentially fast in the L2-sense to a desired
orbit udesi with the rate µ = 1

L2 − 2K.

As proved below, an interesting consequence of Theo-
rem 3 is the following uniqueness result: the stationary
state ustat that solves the equation (4) subject to the
Robin boundary conditions (5) and (6) with given values
ustat(0), ustatx (0), ustat(L), ustatx (L) as parameters in the
boundary conditions, is uniquely determined provided
that C is sufficiently large and L2K > 0 is sufficiently
small.

Lemma 1 (Uniqueness) Let real numbers s00, s01,
sL0, sL1 be given.

If L2K < 1
2 |mϕ| and C ≥ 1

2L , then the boundary value

problem uxx = Kϕ(u), with the Robin boundary condi-
tions

ux(0) =C(u(0)− s00) + s01 (20)

ux(L) =−C(u(L)− sL0) + sL1 (21)

has at most one solution. In particular, this implies that
for j ∈ {1, 2, 3} the boundary value problem with the
Robin boundary conditions

ux(0) =C(u(0)− uj) (22)

ux(L) =−C(u(L)− uj) (23)

only has the constant solution uj.

Proof. Suppose that the stationary states ustat1 and ustat2
solve the boundary value problem. In particular, both
satisfy the boundary conditions (20), (21). Choose the
initial state u0 = 0 and udesi = ustat1 . Then the state u
that solves the initial boundary value problem (3), (16),
(17) considered in Theorem 3 is well-defined. Then u
satisfies the boundary conditions

ux(t, 0) =C(u(t, 0)− ustat1 (0)) + (ustat1 )x(0) (24)

ux(t, L) =−C(u(t, L)− ustat1 (L)) + (ustat1 )x(L). (25)

Thus Theorem 3 implies∫ L

0

(
u(t, x)− ustat1 (x)

)2
dx (26)

≤
∫ L

0

(
ustat1 (x)

)2
dx exp (−µt) .

Moreover, u also satisfies the boundary conditions

ux(t, 0)− Cu(t, 0) = (ustat1 )x(0)− Custat1 (0)

= (ustat2 )x(0)− Custat2 (0),

ux(t, L) + Cu(t, L) = (ustat1 )x(L) + Custat1 (L)

= (ustat2 )x(L) + Custat2 (L),

hence there holds

ux(t, 0) =C(u(t, 0)− ustat2 (0)) + (ustat2 )x(0), (27)

ux(t, L) =−C(u(t, L)− ustat2 (L)) + (ustat2 )x(L). (28)

Thus Theorem 3 implies∫ L

0

(
u(t, x)− ustat2 (x)

)2
dx (29)

≤
∫ L

0

(
ustat2 (x)

)2
dx exp (−µt) .

In particular, this implies that for all t > 0 we have

(∫ L

0

(
ustat1 (x)− ustat2 (x)

)2
dx

)1/2

≤

(∫ L

0

(
u(t, x)− ustat1 (x)

)2
dx

)1/2

+

(∫ L

0

(
u(t, x)− ustat2 (x)

)2
dx

)1/2

≤

(∫ L

0

(
ustat1 (x)

)2
dx

)1/2

exp
(
−µ

2
t
)

+

(∫ L

0

(
ustat2 (x)

)2
dx

)1/2

exp
(
−µ

2
t
)
.

Since t can be chosen arbitrarily large, this yields(∫ L

0

(
ustat1 (x)− ustat2 (x)

)2
dx

)
= 0

and thus ustat1 = ustat2 holds almost everywhere, which
yields the uniqueness. 2

The following examples illustrate that, if L2K is too
large, i.e. if the assumptions of Lemma 1 do not hold,
the boundary value problem uxx = Kϕ(u), (20), (21)
in general does not have a unique solution. In this case,
Robin boundary feedback stabilization is not possible,
but for local stabilization the approach from [25], [26]
can be used.
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Example 8 Consider Example 4. In this case, we have
K = 1/2, u1 = −

√
5/2, u2 = 0, u3 =

√
5/2 and mϕ =

−5/2, thus (15) and Lemma 1 require L ≤
√

2
5 .

For the nonconstant stationary state ustatj = sn(·,m),
where sn(·,m) denotes the Jacobi elliptic function with
m = (0.5)2 (see Fig. 1), we have ustatj (0) = 0 and

(ustatj )x(0) > 0.

Since ustatj (x) is oscillating, one can find a number L

such that ustatj (L) = 0 and (ustatj )x(L) = −(ustatj )x(0).
Then, for

C := −
(ustatj )x(0)

u1
=

(ustatj )x(L)

u1
> 0,

the function ustatj satisfies (22) and (23) for the constant
stationary state u1. In particular, in this case, the corre-
sponding boundary value problem does not have a unique
solution. The smallest possible choice of L, where this
construction works, is the smallest strictly positive root

of ustatj (x) which is strictly greater than
√

2
5 .

3.2 Numerical Experiments

In our numerical experiments, we select u1 = −1, u2 =
0, and u3 = 1. Then we have

ϕ(u) = u(u2 − 1)

and it holds mϕ = −1. Let L = 1 and C = 1
2 ; the

constant K will be specified below.

In the Examples 9 to 11, the stationary state ustat = 0 is
considered. The corresponding Robin feedback is given
by

ux(t, 0) =Cu(t, 0), (30)

ux(t, L) =−Cu(t, L). (31)

Example 9 Select K = 1
4 . Then (15) holds; fix u0 = 1.

We have discretized the system by the method of lines on
an equidistant grid of 31 nodes. In Fig. 2a, the result-
ing approximation of the state u is displayed on the time
interval [0, 16]. As theoretically predicted, the state con-
verges exponentially fast to zero with respect to the time.

Example 10 Consider nowK = 2. Then the inequality
(15) is not satisfied. Let again u0 = 1. Fig. 2b displays
the resulting approximation of the state u(t, x) on the
time interval [0, 16].

Note that the state converges with time to a noncon-
stant concave stationary state with values between zero
and one, and not to the zero state. This nonconstant sta-
tionary state is compatible with the homogeneous Robin
boundary conditions (30), (31). The assumptions of the

(a) The generated state for Example 9

(b) The generated state for Example 10

Fig. 2. Pictures of the states for Examples 9 and 10

uniqueness Lemma 1 are not fulfilled here. So this exam-
ple illustrates that if K is too large, in general the bound-
ary value problem considered in Lemma 1 does not have
a unique solution.

Example 11 As in Example 10 fix K = 2; then (15)
does not hold. Here we start with the inital state u0 =
0.001 that is quite close to zero. Fig. 3a shows the result-
ing approximation of the state u(t, x) on the time interval
[0, 16].

Note that the state converges with time to the nonconstant
concave stationary state that is also the limit in Example
10, although this time the initial state is very close to the
zero state that is also stationary.

Example 12 Now the desired orbit udesi defined in Ex-
ample 6 is considered. Select α = 1

4 and K = 1
8 . Then

(15) holds. We choose D = 2 and start with u0 = −2.

8



(a) The generated state for Example 11

(b) The generated state for Example 12

Fig. 3. Pictures of the states for Examples 11 and 12

The boundary feedback is defined in (16), (17). Fig. 3b
illustrates that the system state approaches the desired
traveling wave very fast, as we could expect from Theo-
rem 3.

4 Conclusion

In this paper, boundary feedback laws have been pro-
vided that stabilize the Schlögl system globally to a given
stationary state. It was shown that, with a similar feed-
back of Robin type, the system can also be stabilized to
a given desired instationary orbit.

The case of feedback on both ends of the interval was
considered. In the feedback laws, the values and the
derivatives of the stationary states at the boundary
points are used. A strict Lyapunov function was con-
structed to show the exponential stability of the re-

sulting closed-loop system in the L2-sense. In fact, it
can be shown that also the velocity decays exponen-
tially. In the proof of the exponential stability, the 1-d
Poincaré-Friedrichs inequality was used.

For these results, it was assumed that L2K is suffi-
ciently small and C is sufficiently large. This assumption
also ensures that the stationary states of our system are
uniquely determined by the corresponding Robin bound-
ary conditions. It was illustrated by an example that, if
the assumptions are violated, the boundary conditions
do not in general uniquely determine a stationary state.

For one-sided feedback with a homogeneous Neumann
boundary condition at the free end, a similar analysis
is possible for the stabilization to stationary states: if
L2K is sufficiently small (in the sense of (15)) and if
C ≥ 1/(2L), then V decays exponentially.

The extension of the results to the case of chemical re-
actors that can be modeled by coupled systems of reac-
tion diffusion equations is an open problem. This would
allow the stabilization of the periodic operation of such
reactors, which is discussed for example in [21].
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