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1 Introduction

The subject of this paper is an analysis of convergence for certain numerical ap-
proximations of nonlinear parabolic boundary control problems. We consider a
semidiscrete Ritz—Galerkin scheme as a prototype for the numerical treatment of
the state—equation — here a parabolic initial boundary value problem with nonli-
near boundary condition. Proceeding in this way, the optimal control problem is
converted to an approximate one.

We aim to prove strong convergence of optimal controls for the approximate pro-
blems as the discretization parameter of the numerical method tends towards zero.



As the problem is nonconvex, this can only be expected under additional assump-
tions on the exact optimal control that is to approximate. In our approach, this is
the assumption of sufficient second order optimality conditions derived recently by

GOLDBERG and TROLTZSCH [10], [11] for parabolic control problems.

Results on the convergence of numerical methods for distributed control systems
have already been obtained by ALT and MACKENROTH [2], KNOWLES [13], LLA-
STECKA [14], [15], MALANOWSKI [17] or TROLTZSCH [19] for linear equations
of state and convex objectives. The present work may be considered as a natural
extension of these results to the technically more difficult nonlinear case.

We continue the investigations for the one— dimensional heat equation with non-
linear boundary condition in the author’s paper [21]. In our approach we shall draw
from several sources:

The first is the general theory of second order conditions for programming problems
in Banach spaces going back to early papers by IOFFE [12] and MAURER [18].
This subject has been under rapid development in the past years and was applied
succesfully to control problems governed by ordinary differential equations. The
extension to parabolic control systems was established in [10], [11].

A second basis, the key to extend the results obtained for ordinary differential equati-
ons to our problems, is the geometric theory for parabolic equations with inhomoge-
neous boundary conditions. The corresponding semigroup technique was developed
by many authors, including BALAKRISHNAN [5], FATTORINTI [8], LASTECKA
[14], [15]. The extension to nonlinear boundary conditions was studied extensi-
vely by AMANN [3], [4]. For other aspects related to the application of semigroup
theory to nonlinear distributed control systems we refer to FATTORINI [9], and
LASTIECKA and TRIGGIANTI [16].

Moreover, we proceed analogously to ALT’s paper [1], which contains a general
theory of convergence for approximate mathematical programming problems in Ba-
nach spaces.

We shall investigate the following model problem: Minimize
T
F(w,u) = [ ¢(&w(T,§))dE + [ [, & w(t, §))dEdt
Q 9.8 (1.1)
+ E)”f[X(t’ 57 'w(ta 5)) u(ta f))ds‘fdt

subject to
Quie) = Aqn(t,6) —w(t,€) inQ
w(0,8) = w,(¢) in Q (1.2)
duwir 6) = b(t,&w(t,€),u(t,€)) onT,
0 <t<T,and to the constraints

ur(t,€) <u(t, &) < uy(t,€) (1.3)
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a.e. on [0,T] x T,
/Cbz-(f)w(t,f)df —a(t) <0 (1.4)

on [0,T],i = 1,...,k. The state-function w € C([0,T], W7(€2)) is defined as mild
solution of (1.2) (compare the definition in section 2). The control u is looked upon
in Loo((0,7) x T).

In this setting, the following quantities are given:

Q C IR", n > 2,1s a bounded domain with C"*~boundary I' , 7" > 0 a fixed time, and
O € WI(Q), ¢ € C0,T], i =1,..., kyw, € WI(Q) N W,3(Q), u; € C([0,T] x T),
i =1,2, ug(t, &) < uz(t,€) on [0, T] x T' are real-valued functions.

Moreover, nonlinear functions ¢ = ¢({,w) : A x R — R , ¢ = (1,& w) :
0,T]xOxR— R, x =x(t,{,w,u), b=b(t,{,w,u) - [0, T] xI'x Rx IR — IR, are
given, which are supposed to satisfy the following Carathéodory type conditions:

For fixed (t,¢) they are twice continuously differentiable with respect to (w,u) €
IR*. The functions and their derivatives up to order two are measurable with respect
to (t,€) for fixed (w,u). In addition they are assumed to be uniformly continuous
and bounded with respect to (w,u) in the following sense: Let S C IR* be an
arbitrary bounded set. Then continuity and boundedness are uniform with respect
to (&, w,u), where (w,u) € S and ¢, & belong to their corresponding domains.

d/0n stands for the outward normal derivative at T', dS¢ is the surface measure on
I'. Throughout the paper we shall use the following notations:

Spaces: X = C([0,T],C(T))=C([0,T] xT)

Uw = L&((0,7)xT)
Xy = Uy=Ly((0,T),Ly(T)), 1 < p < oo,

Xoa = C([0,T], Ly(T))

Norms: |l = vr(e%’ig)lg[l(%%xr lu(t, &)|
T
lull, = (] ] Ju(t, ) dSedt)'/r
lelloa = max ([ le(t, O dso)"”
P
(s u)llas = max{[[z]la; [[u]ls}
Gz u)lla = (s u)la

Moreover, we denote by ||.||s,o the usual norm of H*(Q) .

Pairings: For (possibly vector-valued) functions z,y we define
(z,9)a = S{iv(f)y(f) d¢
N LT



2 Semigroup approach to the control problem

In order to work with the concept of mild solutions to the state equation (1.2) we
introduce the following linear operators:

For 1 <r <oo, A, : L,(Q) D D(A) — L,() is defined by
0

w

D(A,) = {weWQ): o= 0 onT}
n
Aw = —Aw+w, we D(A,).
— A, is the infinitesimal generator of a strongly continuous and analytic semigroup

{S,(t)} of linear continuous operators in L,(Q),t > 0. The Neumann operator N,
is defined by N, : ¢ — w, where

Jw
" On
and g € L.(I'). N, is acting continuously from L,(I') to W?(Q2) for all s < 14 1/r.
Next we fix once and for all p and o by p >n + 1,

Aw—w=0 1in =g onl

z<0<1+1/p (2.1)
p

and put A := A,, S(t) := S,(t), N := N,. Moreover, a Nemytskij operator B is
defined formally by

Bla,u)(1,€) = b{t, &, 2(1,), u(1,€)).

According to the assumptions imposed on b, this operator acts twice continuously
differentiable between X, x Uy and L. ((0,7) x I'), hence also from X., x U, to
L,((0,7)xT) = Ly((0,7),L,(T')) = U,. We shall consider B in this sense. By 7

the trace operator will be denoted.

Definition: A function w € C([0,T], W7 (Q)) satisfying the Bochner integral equa-
lion

w(t) = S(t)w, —|—/AS(t — $)NB(rw, u)(s)ds, (2.2)

t € [0,T], is said to be a mild solution of (1.2).
Note that (2.1) implies the continuity of w = w(t, ), hence Tw € X..

A control u belonging to the set
U = {u € Loo((0,T) x T) s uq(£,6) < u(t, &) < ug(t, &)}

is said to be admissible. By means of arguments from the geometric theory of
parabolic equations the following result can be proved: There is a sufficiently small
T > 0 such that for all admissible controls « a mild solution w = w(u) exists on
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[0,7]. This solution w is unique on its interval of existence (¢f. AMANN [3] and
the extension to control problems in the authors paper [20]). Moreover, there is a
constant R > 0 such that

lw(t, &) < R on[0,T] x Q (2.3)

for all w = w(u) associated to an arbitrary admissible control u. In what follows
T > 0 will remain fixed in this way. The estimate (2.3) allows a simple but important
consequence: The functions ¢, 1, y and b are uniformly Lipschitz and bounded on the
set of all occuring (¢,&,w,u) with w € [—R, R] and v € [minu;(t,§), maxuy(t,&)].
In view of this, we suppose without limitation of generality (possibly after cutting
of and a smooth re—definition outside of [-R, R] X [minu;, maxu,] ) that ¢,¢, x,b
are, in addition to the former assumptions, uniformly Lipschitz and bounded on IR
with respect to (w,u). Thus in particular

b(t, & w,u)| < by (2.4)
|b(t7€7w17u1)_b(t7§7w27u2)| <

Ap max{|u; — ugl, |wr — wo|}. (2.5)

The same estimates hold true for ¢, , and y.
To show existence and uniqueness of w the following estimates of the norm of

AS(t)N are useful: We have

< o4=(1=(o"=0)/2)

| Ar S (L) N2 ||z, ()= e () < (2.6)

forall 0 < o <o’ <1+ 1/r (cf. [3]). Related to this kernel AS(t)N we introduce

the linear control operators

t

(L2)(1) = /AS(t — $)Nz(s) ds

0
(Kz)(t) = (rLz)(1)
T
Az = (Lz)(T) = /AS(T — $)Nz(s) ds.

0
On account of p > n + 1 these operators act continuously between the following
spaces: ) )
K:U,— X, L:U,—C([0,T],C(®)), A: U, — C().
The functional F admits the form

F(w,u) = fl(w(T)) + fZ(w) + fs(Tw,u),

where the meaning of f; : C(Q) — R, fo: C([0,T],C(Q)) — Rand f3: X, x Uy, —

IR becomes clear after a comparison with (1.1).



After introducing z(t) = Tw(t) as a new state, setting d(¢) = S(t)w,, and inser-
ting (2.2) in (1.1-4) we arrive at the following form of the optimal control problem
(1.1-4):

(P)  f(x,u) = min!
r=71d+ KB(z,u)
(@i, d+ LB(z,u)(1))a < ¢(t), ¢
we U™,

I
[—

where
f(z,u) = f1(d(T)+ AB(z,u)) + f*(d + LB(z,u)) + f°(z,u).

This compact form (P) enables to apply more or less directly known results of the
mathematical programming theory in Banach spaces. This is necessary to handle
the state—constraints by a reasonable effort.

The constraints will be expressed through

g'(z,u)(t) = (@, (d+ LB(z,u))(t))a — c(t)
g(z,u) = (gl(x,u),...,gk(x,u)).

For o € IR the inequality g(z,u) < a means ¢g'(z,u)(t) < o on [0,T] for all i =
1,..., k. We shall use this convention freely in the paper.

3 Known results on necessary and sufficient op-
timality conditions

Let M be the set of all (z,u) € X, x U satisfying the constraints of (P). The

(
elements (z,u) of M are said to be feasible , M is the feasible set. If (z°,u®) € M
and

f(z®,u®) < flz,u)
for all (z,u) € M, then (2° u®) is said to be an optimal pair and u® an optimal
control. A pair (z°,u°) or the control u® is called locally optimal in case this holds
for all (z,u) € M N {(z,u): |Ju—u°||e < €},e> 0.
An optimal pair (z° u®) exists under the following assumptions: M # 0, b is
linear with respect to u, i.e.

b(t, &, w u) = bi(t, € w) + by(t, § w)u (3.1)

and f? is strongly-weakly lower semicontinuous in the sense that (z,,u,) € M,
t, — x in Xy, u, — u in U, implies

lim inf f2(z,, un) > f2(x,u).

In all what follows we shall assume (2°,u°®) to be locally optimal.
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The partial Fréchet derivatives of B at (2°,u®) are denoted by B, and B, hence
B'(2°,u’)(z,u) = Byz + Byu.

Definition: The set M(z°, u°) consisting of all elements (z — 2°, z) such that z =
Mu —u®), w e U X >0, and

r—1° = K(By(z — 2°) + Byz)
g(z%u®) + ¢' (2% u®)(z — 2°,2) <0,
is said to be the linearizing cone at (z°,u®).

Definition: (z°,u°) is called regular, if there are 7 and @ € U such that (z —
z°,u — u°) belongs to M(2°,u°) and

g(z%u®) + ¢' (2% u®) (T — 2% 0 — u’) < —7, (3.2)
where v is a certain positive constant.

Remark 1 Introducing w = d + L(B(z°,u°) + B(Z — z°) + B,(u — u°)) the Slater
condition (3.2) may be formulated as

/<I> B(4,E)dE < —vy, i=1,....k (3.3)

The Lagrange function £ is defined by

Ly ) = flayu)+ [(a(t) = () = (KB, u)(t), y()r de
+ 2 [ g u ),

I(t) = (li(t),...,lk(2)).

Theorem 1 ( [11]) Suppose that (z°,u®) is locally optimal and regular for (P).
Then there exist y € Loo((0,T) x I') and monotone non-decreasing functions l;(t)
. k(1) of bounded variation such that

Lo(z%u’y,l) = 0 (3.4)
Lo(z°uy,D(u—u’) > 0 Yue U™ (3.5)
> [ w0 i) = o (3.6)



Remark 2 L., L, denote first order partial F-derivatives of L in the sense of U,
and X, respectively. Although they are, by definition, elements of UX , X%, they
can be identified with integrable abstract functions. We are able to derive the boun-
dedness of y by a careful discussion of the adjoint equation (3.4), which employs the
smoothness of w,, and ®,,...,®.

Theorem 2 ( [11]) Let the feasible and regular pair (z°,u®) satisfy the first order
necessary conditions (3.4-6), where y € Lo ((0,T)xT'). Suppose further that (z°,u®)
fulfils the following second order sufficient optimality condition:

There is a 6 > 0 such thal

L'z uy, 1) > 68||(x — 2% u —u®)[; (3.7)
Jor all (x,u) € M(x°,u’). Then there exist € > 0 and 6; > 0 such thal
fla,u) = f(2%,u”) = &|(z — 2% u — )3, (3.8)

Jor all (z,u) € M with ||ju — u®||« < €, . Consequently, (x° u®) is locally optimal
in the sense of Xo X Us. If b satisfies additionally (3.1), then (z°,u°) is locally
oplimal with respect to the topology of Xoo x U, too.

4 The Ritz — Galerkin approximation

Let Vi, C H'(Q) be a family of finite-dimensional subspaces depending on a discre-
tization parameter h > 0 and enjoying the following properties: There is a constant
¢, independent of A and s, such that

lw = Pucllog +h llw — Prwllia < chllwllog (4.1)

for all 1 < s <2 and for all w € H*(Q). Here P, : H'(Q) — Vj, denotes the Ly-

projector onto V. Moreover, the inverse estimate
ol < eh ™ fwllos (12)

is assumed to hold for all w € Vj,, h > 0, where ¢ > 0 is independent from h.
The spaces Vj, of piecewise linear splines on sufficiently regular meshes on © comply

with these requirements, see CIARLET [7].

In order to define the approximate control problem we introduce a number p as
follows: We take p := oo in the general case and put p := p, if b satisfies (3.1).
Moreover, we make use of a bounded set U#¢ of "discretized” controls being close
to U in a certain sense to be specified later. Finally, let ¢ > 0 be given fixed.



The approzimate control problem is
F(wy,u) = min! (4.3)
subject to wy, : [0,T] — V4,

d

S (wr(t), v)a + (Vwn(t), To)a+ (wa(t), vla = (B(rwn,u)(t), v)r

(wp(0), v)g = (W’ v)q, (4.4)

for all v € V, and almost all ¢ € [0,T]. Additionally, we have to include the
constraints

/@i(ﬁ)wh(t,g)dﬁ < Glt), i=1,....k (4.5)

u € U (4.6)
Hu—uoﬂﬁ < e (4.7)

The parameter ¢ > 0 looks artificial, but turns out to be quite natural:
The optimal control problem is nonconvex, hence u® is only locally optimal in ge-
neral. Many other locally optimal controls may exist. The number ¢ just indicates
the diameter of the neighbourhood, where u° is optimal. Clearly, we can only ex-
pect convergence of numerical approximations when restricting the search to the
neighbourhood around the "reference control” u°.

The role of € can be illustrated by means of the following simple example from
[21] :
Regard the problem

(P) Flu) = — /OT cos(u(t))dt = min!, 0 < u(t) < 2n,

having the solution u°() = 0. All measurable u admitting only the two values 0
and 27 are optimal, too. The approximate problem

(Py) Fy(u) = _/OT cos(u(t) + h)dt = min!, 0 <u(t) < 2,

(h > 0) has the unique solution wuy(t) = 2x — h. This solution does not converge
to u(t) = 0 as h | 0. We cannot expect convergence to u® unless we restrict the
feasible set of (Py) to |u(t) — u°(t)| < ¢, where ¢ < 2x. Then the only solution is
up(t) = 0. For other interesting properties of this example we refer to [21] .

In real computations the restriction (4.7) should be substituted by a trust region,
where we are sure to have a unique locally optimal control.

The system (4.4) is uniquely solvable for all u € Up?) as b = b(l,z,w,u) is
uniformly bounded and Lipschitz (according to (2.4), (2.5) ).
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Now let g € Ly((0,T), Ly(T')) = U; be given and suppose for a while w, = 0.
Then the linear system (4.4) with the right hand side (g(t), v)r substituted for
(B(Twp,u),v)p possesses a unique solution wy, too. Completely analogous to L, K,

and A we define

Ly: Uy — C([0,T], H'(Q), Ln: g+ wy

Ky Uy — C([0,T], La(T)), Ki: g Twy

Ap: Uy — Ly(Q), Ap: g — wp(T).
Let w denote for a while the mild solution of (2.2) for w, = 0 and g substituted for

B. Thus the function wy introduced above is the Ritz-Galerkin approximation of w

solving the linear version of (4.4). Owing to LASIECKA [16] the estimate

max 0(t) — wn(t) o < b (vrai ma lg(t) 100 (4.8)

takes place, where ¢ is a constant independent from A > 0 but depending in general
on g. The value of g can be arbitrarily small. Moreover, we introduce dj, = d,(1) as

the solution of (4.4) with B =0 and w, # 0. Then

max [d(0) = di(0)loa < k¥ w,llyza (4.9

follows from BRAMBLE et al [6] .

An estimate for |[w(t) —wp(t)||1,0 and ||d(t) —dn(t)||1,0 is obtained completely analo-
gous to (4.8), (4.9) with the order of approximation h'/?=#_ This follows immediately
from (4.1-2). Thus the error for the traces 7w and 7d on I' has at least the same
order. Actually even the order A'=# can be proved for the traces.

We have been concerned so far only with the linear version of equation (4.4). The
nonlinear equation will be discussed in section 6.

After setting x5 (1) := Twy(t) the approximate control problem admits the form
(Pg)  fa(z,u) = min!
z=7dy,+ KpB(z,u)
gn(z,u) <0
u € U

=l < c.

where

| fulz,u) = [Y(du(T) + AnB(x,u)) + f2(dy + Ly B(z,u)) + f7(x,u) (4.10)
g (zyu)(t) = (¥, (dn + LpB(z,u))(t))g —alt), i=1,... k. (4.11)

In view of the properties of ¢,v , and x, the f* are defined on Ly(Q), C([0, T], Lo(2)),
and X¢ o x Uy, too. Therefore, f, is well defined.
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5 Strong convergence of approximating controls

In this section we shall prove strong convergence of optimal controls of (Pf) as & | 0
under natural assumptions specified below.
We shall make use of the following notations: The distance of A; C U; to Ay C Uj
is

d5(Ar, Az) = sup (inf [[v — z||).

UEAl ZEA2

By ay(h),as(h),a,(h), and ax(h) positive functions are denoted, tending to zero as
h | 0. Moreover, 7"34 is the j-th order remainder term of a Taylor expansion of a
mapping A at the point (2° u®). The Ag, Ag, A, are positive constants.

Assumptions:
(i) dp(Upt,U) < ap(h) (5.1)
(i) dp(u®, Uty < ap(h) (5.2)

dy(u, Uty < ap(h)
(iii) B is twice continuously Fréchet differentiable from X, x Uz to Uz and
I3’ ()l2/[oll2 — 0, (5.3)

lr (0)l2/ 1wz = 0. (5:4)

as [|0][oo5 — 0.

(iv) Let u,us, be arbitrary elements of U?? U Ug?. Then the equations z = 7d +
KB(z,u), x;, = 7dy + Ky B(xp, up) possess exactly one solution z,z, € Xo
and X¢ 2, respectively. Further,

2 = aallce < ar(h) + Axllu — w5 (5.5)

(v) |fr(wr,un) = flza,ua)| < ap(h) + Apmaz{||er — zallog, [un — uall5}
lgn(z1,un) (1) = g(az,uz)(t)] < ag(h) + Agmaz{||zy — zallca, |lur — uallz}
on [0, 77,

(vi) |£"(2°, u®y, D1, va]| < Agllvr]]2:||v2][2
for all vi,vy € Xoo X Uy

We shall prove in section 6 that our problem meets these assumptions. It should
be underlined that the theorems remain true for any pair of problems (P), (FPf)
satisfying these requirements.

In a first step we derive the rather simple fact that the optimal value of the
approximate problems is at least smaller than f(z°,u®) + O(h). To this aim, we
show that (2° u°) can be approximated arbitrarily close by "discretized” elements.
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Lemma 1 Let (v°,u®) be regular and (ii), (iv) be fulfilled. Then there is for all
h > 0 a feasible pair (zy,uy) for (Pf) such thal

maz{||z” — Znllca llu” — @nllz} < cjag(h) + ciax(h) + cpav(h), (5.6)
with certain c;, ¢t ¢ty not depending on h.
Proof: We take (v, u) according to the regularity condition (3.2), A € (0,1), and
uwt = u o+ Aa— ),
= 7d+ [X’B(:E/\,u/\).
Then it is not difficult to show
o a)(0) < 2 (57)
on [0,T],s=1,...,k forall 0 < X < A,.

Next we approximate u* € U¢? according to (ii). Using both of the two relations
(ii) we find d(u*, Up?) < ap(h) independently from A, hence for a suitable uy € Up?

lu® = uplly < au(h).
Let x7 be the corresponding state, i.e.

z) = 7dy+ K,B(x},u})
2 = Td—I—KB(x)‘,u/\).

In view of assumption (iv), (5.5),

l2* = 23llen < ar(h) + Axllu® — uplly; < ax(h) + Axar(h). (5.8)
Therefore,
) = gl )+ gn(ed ) — o, )
< =M/2 4 ag(h) + Agmaz{||zy — 2*lc, Jui — w5}
S =M /24 ag(h) + Ag(ar(h) + (14 Ak )au(h))

by (5.5) and (5.8). We put
A= 2(ay(h) + Ay (ar(h) + (1 + Ax)av(h))) /vy =: A(h).

Then gi(z},upr) <0 and A € (0,1), for all sufficiently small h. The pair (&4, ) :=

(27, u}) fulfils the statement of the lemma. O

In view of this result the feasible set of (Pf) is non-empty for all sufficiently small
h. In all what follows let (x5, u) be a globally optimal solution of (Pf). We assume
that (25, u) exists. This is true under the same assumptions which are sufficient for
the existence of an optimal control u® for (P): If b = b(t, &, w, u) satisfies (3.1) and
f? is strongly-weakly l.s.c. then (Pf) admits at least one optimal solution (xp, uy).
This can be shown by standard techniques. Note that these assumptions remain

satisfied for (Pf) provided they are fulfilled for (P).
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Lemma 2 Let (ii), (iv), (v) be fulfilled. If (z°,u®) is a regular optimal solution of
(P), then
Jul@n,un) — f(2°,u”) < aa(h)
for all sufficiently small h, where
(1) = ag(h) + ay(h) + eaxc(h) + cav(h)
and ¢, ¢k, cfy do not depend on h.

Proof: We choose (i, @y) according to Lemma 1. Then
||in, — u®||5 < e for all sufficiently small 2. On account of this,

Tn(znyun) < fu(@n,an) = f(2°,u®) + fu(@n, an) — f(2%u®)
< f(=° )+af(h)+>\f maX{Hxh—iﬂ o2 llin — w5}
< Sl u”) Fag(h) + A(cyag(h) + car(h) + cpav(h))
= f(a°,u®) 4 ag(h) + chay(h) + car(h) + cav(h)
by (v) and (5.6). O

The most difficult part in the proof of strong convergence of optimal controls is
to establish a useful lower estimate for f(xp, up) — f(2°,u®). This estimate relies
heavily on the second order condition, which is formulated for the linearized cone
M(z°,u®). Therefore, we next analyse the approximation of certain feasible points

of (Pf) by elements of M(z°, u®).

Lemma 3 Let @), € U be an approzimation of uy € U}fd such that ||a, — upllz <
av(h) according to (5.1). Define Ty € Xo by Ty = 7d + KB(Zh,ur), 0n = (T, up),
v° = (2% u®). Then there is a v, such that v, —v° € M(z°,u°) and

1o = Bll2 < e (a(h) + |7 (Tn — v°)]l2),
where a(h) = cjay(h) + cjax(h) + clrav(h) and ¢}, ci, ¢y are independent from h.

Proof: We have g; (x5, ur) < 0 hence

g(zp,un) = gulzn,un) + g(Tn, un) — gn(zn, up)
< g(Zn,un) — gn(zn, un) < a(h), (5.9)

where a(h) = ay,(h)+Ajar(h)+Aap(h) by (5.5) and (v). Thus (Z, @) can "slightly”
violate the state constraints.

On the other hand,
a(h) = g(Zn, @n) = g(v°) + ¢'(07)(0r — v°) + r{(On — v°)
by (5.9) and the differentiability of g in X. x Uy . This implies
9(0°) + ¢'(v*) (O — v°) < alh) — r{(On — 0°). (5.10)
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Moreover, defining z} by
zy —2° = K(By(z}, — 2°) + B,(u, —u°))
we obtain
), = Zall2 < ellry (9n — 0%)]|2. (5.11)
(By means of a Taylor expansion,
zp—a° = (I — KB,) Y KBy,(un —u) + K rP(z, — 2°, up — u°))
= x5 — 2+ (I — KB,)7'K rP(vy, — v°).
The result follows from the continuity of (I — KB,) 'K in X,.)

Let v, = (z},un). The operator ¢'(v°) acts continuously from X, x Us to C[0, T7.
This is a conclusion of ¢; € W7(12), see GOLDBERG and TROLTZSCH [11]. In
view of this, (5.10) and (5.11) yield

9(w*) +¢' (%) (v —v°) = g(v°) + ¢'(v") (O — v°) + ¢'(v°)(vy — Tn)
a(h) + cl|r{(Br = v7)l2 + e}y’ (B = 0%)ll2
a(h) + ¢ H'I'B('Eh —0%)||2, (5.12)

where ¢ > 0. Here we employed ||r{||z < ¢|[r?||2 being a consequence of the transfor-

<
<

mation property of ¢'(v?) mentioned above. Now take v = (z, @) from the regularity
condition (3.2) and put

A= (a(h) +ellr?(@n — o) o) (a(h) + 7 + ¢ [Ir?[l) 7!
oh = (1=, + Ao

v} and v satisfy linearized equations with controls u;, and w, respectively, hence so
does v;,. Moreover,

9(v°) + 4 (V) (0n —0%) = (1—A)( (0°) +9'(v") (v}, = %))
+A(9(v%) 4 ¢'(v%) (v — v7))
< (1= A)(a(h) +clri’ (5n = v7)]|2) = Ay =0

by (5.12) and (3.2). Altogether we have 05 — v® € M(2°,u°) and
19n—=Bnll2 < Nos=Balla+ MF—vill2 < el (Br—v°)ll24Ae < e (a(h)+]|ry (Fr—2%)]l2)
by (5.11) (note that v} is contained in a bounded set). a

Lemma 4 Let ¢ > 0 be sufficiently small. Suppose that (z°,u°) is regular and
feasible for (P) and fulfils the first order necessary conditions (3.4-6) together with
the second order sufficient conditions (3.7). Then there is a 6 > 0 such that

I, un) = f(2%u%) Z 6 l(xn — 2°,un — u) |3 — az(h),

for all sufficiently small h > 0. Here ag(h) = ciag(h)+cja,(h)+caw(h)+chau(h),

where c?,c;,c‘}(,cé are independent from h.
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Proof: let oz(h) denote a generic function of the form oz(h) = claf(h) + Cgag(h) +
csag(h) 4+ cqap(h) with constants ¢; being generic as well. We choose an approxi-
mation 4, € U of uy, such that |lan — unllz < a(h). Moreover, we introduce an
auxiliary state 7, by z, = 7d + K B(Zp,u;). Then

lan = wollp < [lun — unlly + [lun — wollp < 2¢
for all sufficiently small h. In the sequel we shall write for short £(z,u) = L(z,u;y,1)
as y and [ remain fixed. Further, we put v, = (2, us),v° = (2°,u®), vy = (T4, up).

As (zp,uy) is feasible for (Pf) we have < gj(xp,uz), [ >< 0 and

Su(@n,un) = fulzn,un) + (2n — 7dy — Kp B(xn,un), y)r + < gn(zn,un), 1>
> f('ffwﬂh) + ('fh —7d — I"B(‘ihvﬁh) ) y)r-i- < g(.fh,ﬂh) ’ [ > —Oé(h).

This is a conclusion of (5.5) and (v). Note that the part (, )r remains zero, hence
Julxn,un) = L(Tn,un) — afh)
= L(v°) 4+ L'(v°)(or — v°) + %E”(vo)[@h — v, 0 — 0]
+7§(@n — v°) = a(h).
In view of the first order conditions (3.4)-(3.6) it holds £(v°) = f(v°) and
L'(v%)(vp —v°) = Lo (v")(Th — 2°) + Lo, (v°) (U, — u®) >0
. thus

1
Ju(zp,up) — f(2%,u®) > §£"(7;°)[17h — 0%, 0, —v°] + T‘ZE(T_)}L —v?) — a(h).

Now select 0, from the linearized set M(z°,u°) according to Lemma 3, then

I~ oalla < e (a(h) + PP (2n = v°) o), (5.13)
Julop) = f(v°) > %,C"(vo)[f;h — 0%, 0, — v + %E”(vo)[vh — Upy U — U
+ L"(0)[on —v°, 0n — O] + 15 — a(h)
ZgWrWM—MM—%MHW—%Mm—%M
+ry —o(h),
where r5 = r5 (v, — v°).

Here we employed the second order condition (3.7) and the estimate (vi), which
relies on the important property y € L.
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Re-substituting vy, for 05, we arrive by means of (5.12) after some formal calculations
at

6 r 1|2 Y
Ao =109 2 o=y g o (LA e )

1o = v°ll2

cllrPllz = 2ca()lr? llz — ca(h)? = clon —v°l3 - a(h) — a(h),

where r¥ = r5(v, — v°). The term after the curled brackets is of the type a(h).

Thus |[up — u®||; — 0 as € | 0, hence |z — 2°||.c — 0 and ||vp — v°||o0,s — 0, too.
In view of this, the term in the brackets tends to 6/2 by (5.3-4). Finally, we obtain

o
Fulvn) = (7)) = ZlIon = 0°ll3 = a(h)

§ L
> llow = vl - a(h),

for all sufficiently small ¢, as

[on —0°ll3 = |l(vn —v°) + (0n — va) |5
> low — 0|3 = 2||6n — valla]lvn — vo2
> |on —0°||3 — ca(h).

This is equivalent to the statement of the Lemma. a
Combining Lemma 2 and Lemma 4 we reach the central result of this paper:

Theorem 3 Suppose that (z°,u®) is a locally optimal and regular pair for the opti-
mal control problem (P) satisfying the sufficient second order conditions (3.7). Let
a sequence of (globally) optimal solutions (xp,uy) to (Pf) be given.

If € > 0 is fired sufficiently small, then for all sufficiently small h > 0 the
estimate

|(zn — 2° up — U,O>H§ < ca(h) (5.14)

takes place, where
a(h) = ar(h) + az(h) = covav(h) + cyap(h) + cgay(h) + crax(h)
and cy, cs, ¢y, cx are positive constants not depending on h.
Remark 3 In case ay(h) has the same order of approximation as ag(h),
a(h) ~ ch' />R

> 0 arbitrarily small). Under this assumption we would achieve in the Ly- norm
> 0 arbitrarily ). Under thi pti ld achi m the L
the rate of approximation

H(:vh — 2% up — UO)H2 < ch/4—H,
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Corollary 1 If b is linear with respect to u in addition to the assumptions of Theo-

rem 3, then for a certain constant c,

max{|[eh — 2% ey, lun — u?]l,} < ca(h)F + ag(h).

Proof: By means of u; < u(t,z) < uy we have

T
Jull;, = //|u(t,:E))|2|u(t,x)|p‘2d5$dt
oTr

< unlul,

where up = (max{|uq], |us|})P~2. Therefore, (5.14) yields

up — U < (uprllup — u <ca %
0 , 0 ; 1/p h

In view of assumption (iv), (5.5), for p:=p

6
(i)

(i)

Iz — zhllce < ax(h) + Axcalh)r.

Discussion of the assumptions (i) - (vi)

This assumption means that U7? is not "too far” from U, Tt can be fulfilled
for any 1 < p < oo by a suitable discretization of U, For instance, step
functions on a uniform grid on [0,7] x T' with sufficiently small mesh size

would do.

(5.2) constitutes the most restrictive assumption. In case u° is known to be
Lipschitz it can be satisfied in the supremum norm for an approximation of
U by step functions. Here we are able to take p = co. In general, however,
u® may even exhibit jumps. Then (5.2) can only be expected for p < oo, say
p := p. Therefore, in this general case b(, &, w, u) must be linear with respect
to u in order to meet the requirements of differentiability in the L., x L; —

1OrIIn.

Remark 4 (i),(ii) are trivially true for the theoretically important choice U =

U,

(iti) For p = oo this assumption is always satisfied, as b € C?*. If we need p = p,

then (5.3) holds for b linear with respect to u (condition (3.1)). (5.4) holds
true, provided that additionally

x(t, & wyu) = e(t, €, w) + e(t, € w)u + (w,u)D(t, &) (w,u)T, (6.1)

Whe.l."e D is an 2 X 2 matrix with L. — entries. We refer to GOLDBERG and
TROLTZSCH [11], Remark 3 and Lemma 3.
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(iv) Lemma 5 Let u € Uy, be given, w be the corresponding mild solution defined
by (2.2), and wy, denote ils Rilz—Galerkin approzimation obtained from (4.4).
Then there is a ¢ > 0 depending on p,w,, bpr, Ay and T, bult not on h and
u € U, such thal

max [len(1) = w(t) 10 < e/ (6.2)

(1> 0).
Proof: We shall only briefly sketch the proof, which may be found in [20].
Define w by

w(t) = d(t)+ LB(Twp,u)(t).

The equations for w and wj, are
w(t) = d(t)+ LB(rw,u)(t)
wh(t) = dh(t) + LhB(Twh,u)(t).

Applying the linear estimate (4.8) for g(¢) := B(rwp,u)(t) and (4.9), (4.1),
(4.2) we arrive by standard arguments at

@ (1) — wi(t)|[1,0 < ¢ llwollaps,n h'/>7" + cbarh' /> = c 1P,
In view of this,

() = wn()llg < fw(t) = w()lfag + ek~

IN

t
J142Sa(t = )N, 1y~ 0)
0

N B(rw, u)(s) = B(rws, u)(s)||nyry ds + ch'/*7
t
< /(f —5)7|Tw(s) — TTUh(S)HL2(F) ds + ch'/?~#

0
t

< e e (1= 5 uls) — wils)lla ds,
0
where a = 3/4 4+ 6 (6 > 0 arbitrarily small; apply (2.6) for r = 2,0 = 1,0' =
3/2 — 26).
This is an integral inequality for ||w(t) — wy(t)||1,o. Therefore, we are able
to conclude ||w(t) — wy(t)|1,0 < 2(t) by means of known results on integral
inequalities, where
t
z(t) = ch'\?=r 4 c/(t —$)7%z(s) ds.

0

Estimating the solution z of this Volterra integral equation we arrive at (6.2).
O
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Lemma 6 Let x1,x4 be the solutions of
1 =1d+ KB(x1,u1), w3 =71d+ KB(x3,u3).

Then it holds
|71 — 22][00 < c|lur — uglp, (6.3)

where ¢ is independent from the u;.

Proof: We have

11
(@) = oy < [ IrAS(E= )Ny, (6.4
0
M{l[za(s) = za(s)llz,ry + [[ua(s) — wals)|lz, )} ds,

hence

21 (@) = 22 (D)llz,my < e [ (0= )" [21(s) = 22(8)l1,ryds

+ o [ (=) |lun(s) = ua(s)|r,yryds

IN

C

(t—s)"|[z1(s) — z2(5)| £, () ds

O, O, O~

+c|[ur — uz|p- (6.5)

Arguing as in the proof of Lemma 5, this integral inequality for ||z — z4|| leads
to

ma l21(1) = a0, < el = wall.

K is continuous from U, toX. Inserting (6.5) into a version of (6.4),

|1 (2) — @2(2)

i
oty < ¢ [ITAS(= )Nl cm)
0

Mtllza(s) = a(s) |,y + lurs) = wa(s)ll )} ds,

C Hul — U’ZHP'

IN

(6.3) is shown. O
Now (5.5) is easy to derive: We recall

r=1d+ KB(z,u), ), = 7dy, + KpB(xp, up)
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and put z = 7d + K B(Z,up). Then

< e =Zllog + 117 — znllc,
< cllu—unlly + R

by (6.4) (take #1 = z,u; = u,x3 = T,uy = up) and (6.3).
Therefore, (iv) is satisfied for

ar(h) = ch /3w
(¢ > 0 arbitrarily small).

(V) These estimates are conclusions of (iv) and (4.8—9). In view of (4.8—9) we are

able to show

maz{||(L — Li)B(x, u)||c(or),La@): | (A = An)B(z,u)|[pye)} < ch®"
(K — Kp)B(z,u)|cz2 < ch'/?*n,

Consequently, the relations
ag(h) < chl/z_“, ays(h) < e h3I2m,
with certain constants ¢. For instance, the estimation

(gh(.w) — g’ (o)D) = (@i (d = dy + (L = L) Blar,w))(1)]
e masx(|l(d = d)()lo + I(E = L) Bla,w)()lo)

ch3?n,

IA

IN

leads to the estimate for a,. Similarly, the order of a; can be derived by means

of the Lipschitz constants for f', f2, f3.

(vi) This assumption is fulfilled, as y € Loo((0,T) x I'). We refer to GOLDBERG
and TROLTZSCH [11].

It should be emphasized that this is the point where we failed to derive suffi-
cient second order conditions for constraints of the pointwise form

w(t,&) S Ci(t), Z = 1, . .,k.

For this type of constraints we were not able to show y € L.
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