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Abstract

We consider the application of an SQP method to an optimal control
problem governed by the heat equation with nonlinear boundary con-
ditions. The objective functional consists of a quadratic terminal part
and a quadratic regularization term. To handle the quadratic optimal
control subproblems with high precision, very large scale mathematical
programming problems have to be treated. The solution of the con-
strained problem is computed by solving a sequence of unconstrained
ones by a method due to Bertsekas. A multigrid approach developed
by Hackbusch is applied to solve the unconstrained problems. Some
numerical examples illustrate the behaviour of the method.
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1 Introduction

The behaviour of Lagrange-Newton—-SQP methods for solving nonlinear op-
timal control problems has been the subject of several recent publications.
For instance, their application to the control of ordinary differential equa-
tions was discussed by Alt [1], [2], [3], Alt and Malanowski [5], Machielsen
[28]. The case of weakly singular integral equations was considered by Alt,
Sontag and Tréltzsch [6]. Control problems for nonlinear partial differential
equations were studied by Heinkenschloss [18], Heinkenschloss and Sachs
[19], Heinkenschloss and Tréltzsch [20], Ito and Kunisch [21], [22], Kelley
and Sachs [23], [24], Kupfer and Sachs [26], Goldberg and Tréltzsch [14],
and Troltzsch [33], [34]. We refer also to a recent paper by Gill and others
[11]. Tt is meanwhile shown in most of the cases mentioned above that the
(continuous) SQP method exhibits the expected local q—quadratic conver-
gence in spaces of type L. We refer to [6], [20], [33], [34] for the proof
under strong second order sufficient optimality conditions. A detailed con-
vergence analysis assuming weaker second order conditions is contained for a
simplified model in [14] and for a general class of control problems governed
by semilinear parabolic equations in [35]. Owing to their quadratic conver-
gence, these methods appear to be promising for a high precision numerical
solution of control problems.

In the applications to function spaces, the method has to be linked with
a discretization. It may appear on a different level. The simplest way is that
of discretizing the optimal control problem as a whole, to obtain a large scale
finite—dimensional optimization problem. Then the SQP method is applied
in finite dimensions. This direct approach was successfully tested for many
control problems governed by ordinary differential equations and for some
parabolic control problems with moderate discretization.

However, the use of direct methods is limited due to the appearing
large dimensions. Even a moderate accuracy for solving the state equa-
tion may lead to a huge number of variables. For instance, discretizing
a parabolic equation in a rectangular 2D-domain with uniform meshes of
100 node points for the time and the two space variables leads to 106 state
variables. Note that this large number is already needed to solve the state
equation with a moderate precision of order 1072. Moreover, the analytic
scheme of the discretization should be available to establish the discretized
problem. Very efficient solvers for partial differential equations may use grid
generators and time-dependent adaptive grids, for instance in domains with
curved boundaries. This is another reason to avoid direct methods in some
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situations.

In this paper, we pursue a different strategy. Considering the SQP
method in an infinite-dimensional setting, a sequence of constrained linear-
quadratic optimal control problems has to be solved. The solution of these
sub-problems is determined iteratively through unconstrained control prob-
lems using a projection method due to Bertsekas. On this level, necessary
and sufficient optimality conditions are expressed by a fixed-point equation,
which can be solved by a multigrid technique owing to Hackbusch [15]. We
refer also to Hackbusch and Will [17]. Similar fixed point techniques were
used by Kelley and Sachs [23], [24], too. In this way, the discretization enters
through the solution of the fixed-point equations. It is one advantage of the
Hackbusch multigrid idea that any good solver for the partial differential
equation is useful for this purpose, independently on how the equation is
discretized.

Our main task is to investigate a method close to the infinite-dimensional
version of the SQP method. Moreover, the technique should be able to
compute optimal controls with a satisfactory precision by using the best
available solvers for the PDE.

We rely on the numerical analysis of [14], where the convergence was
shown for a simplified n-dimensional model under weak second order as-
sumptions. Numerical examples were presented there for the one—dimensio-
nal heat equation with nonlinear boundary condition. Here, we concentrate
on the computational aspects which are worked out in more detail. More-
over, we regard examples in a domain Q C IR? where the dimension of the
discretized problems is already very large.

It is evident that the precision of computed optimal controls cannot
be better than that for solving the state equation. The (continuous) SQP
method will converge quadratically as long as the precision for solving the
linear-quadratic subproblems is compatible with the distance of the current
iterate to the exact one. Hence the discretization level has to be increased
from step to step. This is the point where the dimension becomes soon
astronomical. Due to this reason, we are not able to report on a sequence
of accuracy 1071, 1072, 10~%, 1078, as the reader might expect.

We focus our attention on a satisfactory graphical accuracy of the com-
putated optimal control. In 2D-domains, this moderate precision leads al-
ready to more than 4 .10 state variables. Undoubtedly, such high accuracy
will not be needed in many practical applications. On the other hand, 3D
domains will lead to the same large dimensions for a much lower precision.
In our test examples, the storage capacity of the computer has not yet been
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exhausted. The main reason to avoid a further refinement was the long
running time.

For testing the SQP method we consider the optimal boundary control
problem to minimize

1 A
ely,u) = 5lly(T) - yrll2(0) + §||u||%2(z) (1.1)
subject to
yt(xat) = Axy(l‘,t) in @
y(z,0) = yr(z) in Q (1.2)
dy(et) = bly(z,1)+ule,t) on ¥
and

g < ulz,t) < up a.e. on Y. (1.3)

In this setting, Q C IR™ is a bounded domain with boundary I' of class C'*,
(0 < @ < 1) such that Q is locally at one side of I'. We put @ = Q x (0,7,
Y=0Ux(0,7);7T>0,A>0, u, < uyp are fixed real numbers, and y;, yr €
C(Q) are given functions. By d, the (outward) normal derivative on I is
denoted. We assume that b = b(y) belongs to C*'(IR) and is monotone non—
increasing. The control function uw = u(z,t) is looked upon in L (X), while
the state y = y(z,t) is defined as weak solution of (1.2) in Y = W(0,7) N
C(@), where W(0,7) = {y € 12(0,T; (@) ye € 10, T3 H'(Q))} (cf.
Lions and Magenes [27]).
A weak solution y of (1.2) is defined by y(z,0) = yo and

wlt), )y + [ Vo) Vode = [bu,0)+u(,0)vds (14
Q T

for a.e. t € (0,7) and all v € H'(Q2) (dS: surface measure on I').
Let Uyg = {u € L™(X) : u, < ulz,t) < up a. e. on X} be the admissible
sel.

2 Necessary and Sufficient Optimality Conditions

First of all we should mention the following result on existence and unique-
ness for the state equation (1.2). It is due to Raymond and Zidani [31]:

Theorem 2.1 For each control u € L°°(X) the equation (1.2) has a unique

weak solution y € C(Q)NW(0,7).
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(cf. [31], Theorem 3.1 and Proposition 3.1).

As an immediate conclusion we obtain by standard methods the exis-
tence of at least one optimal control, as u is appearing linearly, ¢ is convex
and continuous and U,y is weakly—star compact. However, we do not focus
our method on (globally) optimal controls only. The SQP method will con-
verge in a neighbourhood of any locally optimal control, provided that some
natural assumptions are satisfied. To make them precise we state at first a
set of standard first and second order optimality conditions.

The first order necessary optimality conditions for a pair (y,u) consists
of the state equation (1.2), the constraint u € Uyq, the adjoint equation

—pe(z,t) = Agp(z,t) in Q@
p(z,T) = y(z,T)—yr(z) in Q (2.5)
Onp(z,t) = V(7)p(z,1) on
and of the variational inequality
/@@@+AMLQNM%Q—mLoywﬁZO. (2.6)
b

The adjoint equation fits in the theory for the state equation by the trans-
formation ' := T —t. Moreover, we shall assume that (y, u) satisfies second
order sufficient optimality conditions. Following Dontchev, Hager, Poore
and Yang [9] we introduce for arbitrarily small (but fixed) o > 0 the set

Ie={(z,t) e x| [Mu(z,1) + p(=,1)| 2 o} (2.7)

of sufficiently strong active inequalities.
To formulate associated second order sufficient optimality conditions, we
introduce the Lagrange function L,

L(y,u,p) = o(y,u) = [olyep+ < Vy, Vp >}dudt
+ Jep (b(y) + u) dSdt.

L is defined on Y x L*>(X) x Y. It is twice continuously differentiable w.r.
to (y,u) in Y X L*(X). Note that this is not true in W(0,7") x L (X).
The product fQ y: pdzdt in the definition of L is defined in the sense of the
pairing between L%(0,7; HY(2)') and L*(0,7; H'(2)). However, this will
not be needed in this paper. The second order derivative of £ w.r. to (y, u)
is

[’”(y? u, p)[(yla ul)a (y2a u2):| = fQ 51 (T)yg (T) dz+
+ [s (Aurug + pb"(y)y1y2) dSdt.
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Second order sufficient optimality conditions for (y,u, p) are formulated as
follows:
(SSC): There exist § > 0 and ¢ > 0 such that

(5,8, D) ), (0, 0)] > Sl (28)
for all (y,u) € W(0,7) x L?(%) such that u =0 on I, and

yr = Agy
y(0) = 0 (2.9)
oy = V(yy+u.

Now we assume once and for all that a reference pair (y, ) is given, which
satisfies together with an associated adjoint state p the optimality system
and the second order sufficient optimality condition.

It can be shown that # is under these assumptions locally optimal in the
sense of L°°(X) (this can be even proved in LP(X) for p > N + 1): For a
weaker version of second order sufficient conditions we refer to the proof in
Goldberg and Troéltzsch [13]. In the case of an elliptic equation of state this
is shown in Casas, Tréltzsch and Unger [8]. Their technique can easily be
transferred to the parabolic case considered here.

3 The SQP Method

In this section we recall the (continuous) SQP method. Let wq = (yo, po, o)
be a starting triplet (we shall assume that wy is close to the reference triplet
w = (y,u,p)). Then the Sequential Quadratic Programming (SQP) method
determines a sequence wy = (Yk, pr, ux) as follows. Let ¢ > 0 be given.
Initiating from wy, the next iterate wyy1 is obtained from solving the linear—

quadratic control problem:
(QP*)  Minimize

1
go,(yka uk) (y — Y, u — uk) + 5»6"(3/1“ ukapk)[(y - Yg, U — Uk)]2 (310)

subject to
Y = Ay in @
dvy = blyx) +0(ye)(y—ye) +u on X, '

u € Uyy.
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In (3.10) the expression [(y — yk, v — ux)]* stands for [(y — yr, v — ug), (y —
Yk, u — ug)]. The solution is (yg41, ug+1), while the next iterate pryq of the
adjoint state is obtained from the adjoint equation

-pr = Ap in Q
p(T) = ypsr(T)—yr in (3.12)
dvp = ' (y)p+prb”(ye) (Yr41 —yk) on X

For convenience we indicate the explicit expressions of ¢’ and L£":

ey ur) (v —yr,u—up) = [Jqu(T)(w(T) — yu(T)) dz+
+ [5 Aug (u — uy) dSdt
L"(yry wry pi) [(y — iy v —up)]* = [o(T) — yn(T))* dz+
+ [ AMu — uk)Q dSdt
+ Js pr b (yx) (y — yi)* dSdt.

Unfortunately, the linear-quadratic optimal control problem above is not
necessarily convex. Qur second order sufficient optimality condition imposed
on w is too weak to guarantee convexity in a neighbourhood of @ (this
is explained below by a simple example adopted from [14]). Therefore,
we cannot expect that the SQP method converges locally to @, unless @
belongs to a unique global minimum. Note that our method determines
global minima of the quadratic sub-problems. This is the reason to restrict
the optimization in (3.10)—(3.11) to a neighbourhood U, of the starting
element u, (containing  in its interior), where

rr=A{u € Usal||lu— uo|lre < r}.

The necessity of this restriction is illustrated by the example

min —z2

z e [=2,1] (3.13)

This nonconvex quadratic problem has stationary solutions at —2, 0, and 1.
The points —2, and 1 are strict local minima at which first order sufficient
conditions are satisfied. Therefore, (SSC) is trivially fulfilled. Choose Z =1
to be our reference solution. The quadratic sub-problems are identical to
(3.13) and will always deliver the global minimum at z,4, = —2, indepen-
dently on how close 2, is taken to Z = 1. Convergence to Z can only be
guaranteed by restriction to a neighbourhood of z = 1. We cannot do better
in our framework.
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The following convergence result can be shown, cf. Goldberg and Tréltzsch
[14] for the simplified problem discussed here and to Tréltzsch [35] for a
detailed analysis in the case of a general class of nonlinear parabolic control
problems. Let B,(w) denote the open ball around @ in the natural norm of

C(Q)% x L>=(%).

Theorem 3.2 Let p > 0 be sufficiently small and r := 2p. If the search in
(3.10)-(3.11) is restricted to U}, then the SQP method generates for any
starting point wo = (Yo, po, o) € B,(®) a unique sequence {(yx, pr, ur)}
such that

H(yk+17pk+17uk+1) - (gvﬁv E)H < Cp”(yk,pk,uk) - (377]37 ‘a)”tzv (314)

(k=0,1,...), holds with a certain positive constant c,, where || - || denotes

the norm of C(Q)* x L*(%).

Remark: In [14], r corresponds to 2/3¢, p to £/3. If the second order suf-
ficient optimality condition is required for all (z,t) € X, then the quadratic
sub-problems are convex and the restriction to U, is not necessary. In our
test examples, we did not use U,. A different method of Newton type,
presented by Kelley and Sachs [25] for the control of ordinary differential
equations, is able to avoid this restriction to a neighbourhood. However, the
authors have to impose some structural assumptions on the active set and
conditions on the slope of the switching function at the junction points.

This convergence result remains true for a very general class of parabolic
control problems. We refer to [35]. However, it is more or less of theoretical
value only. Any implementation has to be linked with some discretiza-
tion. We discretize (QP*) and solve its discretized version. This result
(Yrt1, Pha1, Upg1) is taken to define (QPU¥+Y), which is discretized again.
In this way the accuracy of the SQP method depends on that for solving
the quadratic subproblems. Theoretically, one might increase the level of
discretization from step to step in order to maintain quadratic convergence.
Without aiming to give a rigorous error analysis for an inexact solution of
these problems, we briefly sketch the following estimate:

Let h denote a mesh size parameter describing the discretization of the
quadratic subproblems and let 'w,}; be the current solution obtained from

(Qng_l)), being the discretization of (QP(k‘l)) with mesh size h. Let us
assume that w! belongs to the region of quadratic convergence to @. Then

[wsr = ]| < effwy — @
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holds for the ezact solution w4, of (QP*). However, we solve the discretized
version of (QP*) with another mesh size h*, i.e. we solve (QPF,) (say
exactly). Then

+ + -
iy — @ iy = Wt || + [[wrsr — @]

a(h) + ellwj; — wl]?,

ININ

holds, where a(h') is an error estimate for the distance between exact and
approximate solution of (QP¥). Recent publications on error estimates show
that in many cases a(ht) = O(h) can be expected. Now let us adapt h*
according to the rule
a(h*) < clwf - o]

Then

lwity = @l < 2¢|wk - w]|?
is obtained for all steps of the SQP method with the same constant ¢. This
gives a rule for adapting the precision for the solution of the quadratic
subproblems: The method continues to converge quadratically as long as
the current mesh size AT is compatible with the reached accuracy, i.e. if
a(ht) < cllwh — w||?. Certainly, this successive refinement leads after a
few steps to astronomical dimensions of the discretized problems. We did
not try to do this. In this paper, we solve the quadratic subproblems with
quite high precision, i.e. a fixed mesh-size leading to results which seemed
to us graphically acceptable . In this case, after a few steps the speed of
convergence will mainly be limited by «(h) .

The following direct method works very well for the solution of the
quadratic sub—problems, if the requirement of precision is quite low: Let
h > 0 stand for a certain mesh size characterizing the discretization of the
parabolic PDE and the discretization of the control u. Let the boundary
domain X be subdivided into m parts ¥;, 7 = 1,...,m, where m € IN. We
are looking for the control u as a piecewise constant function

up = Zu]'ej, (3.15)
i=1

where u; € IR and e; is the characteristic function of ¥;. After having solved
the state equation (3.11) for all €;, j = 1, ..., m, the solution y; associated
to uy is given by superposition. Inserting y; in the objective functional, a
quadratic optimization problem with bound constraints u, < u; < up, 1 =
1,...,m, is obtained. If m is not too large (say some hundred), this problem
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can be solved efficiently by standard software packages. For instance, we
made good experiences with EQ4NAF (NAG library) developed by Gill and
Murray [12]. We refer also to Alt and Mackenroth [4] or Mackenroth [29],
who reported on the same positive experience with this technique. For large
m, the storage capacity of the computer may soon be exceeded, as C' is
very large. Moreover, C' has to be computed (e.g. the state equation has
to be solved for all basic functions e;, the occuring basic states y; have to
be inserted into the objective functional and the coefficients corresponding
to the quadratic parts of u are finally the entries of C') and stored in each
SQP-step. For that reason, we have decided to choose another approach to
solve the quadratic subproblems.

4 A Multigrid Approach

The essential difficulty for solving the linear-quadratic subproblems is not
connected with the presence of the control-constraint u € U,4. It appears
also in the unconstrained case, where a large-scale backward-forward system
of two coupled parabolic equations has to be solved. A way to solve uncon-
strained optimal control problems was presented by Hackbusch [15]. Let us
give a brief sketch of this idea. We consider for simplicity the unconstrained
quadratic optimal control problem to minimize

1 A
Sl ) = yrl72() + 5”‘““%2(2) (4.16)
subject to
ye(z,t) = Ay(z,t) in @
y(0,2) = yr(a) in Q (4.17)
duy(z,t) = u(z,t)—y(z,t) on X.

Suppose that # is the optimal solution of problem (4.16)—(4.17). Then the
optimal triplet (%, 7, p) has to fulfill the state equation (4.17) and the first
order necessary optimality conditions including the adjoint equation

—pe(z,t) = Ap(z,t) in @
p(z,T) = y(z,T)—yr(z) in Q (4.18)
Onp(z,t) = —plz,t) on X
and
u(z,t) = _p() on Y. (4.19)
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Introduce now an operator 7" mapping the control space U = L%*(X) into
itself by

(Tu)(z, 1) = ~PE1)

Please note that the chain « +— y — p — T'u defined by (4.17), (4.18), and
(4.19) is behind this construction. The operator T' is well defined because
state and adjoint equations have unique weak solutions. An optimal solution
# has to be a fixed point of T,

u="Tu. (4.20)
It is obvious that T is affine linear
Tu=Ku+ f,

with a compact operator K in L%(X) and a fixed f € L%(¥). K is of
Fredholm type with nonnegative kernel. This can be illustrated most easily

by the Green’s function G = G(z,&,t) for (4.17): Then G > 0 and
yo,t) = /G (€ d5+//G &4t = Su(E, ) dSeds

past) = / Gla, &, T = )(y(&,T) — yr(€) d€

G(2,&,T - )G(&n, T - s)u(n, s) dS,déds

I
O\H[O

Gz — )G (&, m, T)yr(n) dndg

:o\ T

[
{1
- [ Gl T () de
=: —/\QKU + f). (4.21)

This property can be shown also in the framework of weak solutions without
relying on Green’s functions. However, the representation (4.21) shows best
the nature of K as integral operator. It stands behind the multigrid strategy
to determine u(z,t). Although this cannot be expected in real computations
we tacitly assume that G(z, ¢, t) is exactly known. In other words, we assume
to solve the PDEs (4.17)—(4.18) exactly. The multigrid strategy refers to a
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discretization of u and to an associated collocation method applied to the
equation v = Ku + f. This means for a fixed grid that X is subdivided into
Y =¥1UMNU. ..U, up is taken constant u; on 3, and y(z,t), p(z,t) are
evaluated at prescribed points (¢;,z;) € ¥;, j = 1,...,m (for instance, at
certain "midpoints” of 3;) by solving their PDEs exactly (in practice this
means solving the PDE by a sufficiently high precision).

The main steps of such a multigrid algorithm, described here for two
grids, are well known. We refer, for instance, to Hackbusch [16].

Let ¥ = Yhu.. .Ui:l(h) denote the partition of 3 associated to the mesh
size parameter h. Then one multigrid—step (MG) is performed as follows.

1. Let an iterate uﬁ be given on the fine grid associated to parameter A .
Determine the residual ry, = uf — Tuf.

Reduce the residual to the coarse grid associated to [: r; = Rry,.
Compute a correction by solving (I — K)d; = r;, where [ is the identity.
Prolongate the correction to the fine grid, d, = Pd;.

Determine the new iterate ui"’l = uﬁ + dp,.

P A T e

If [|uf — uf*1|| is not small enough, then set uf = uf*! &k =k +1,
go to 2. Otherwise stop the algorithm.

Here, P and R are some prolongation and restriction operators respectively.
|uf — uf*t|| is considered in an appropriate norm, [ denotes the mesh size
of the coarse grid.

Step 2 requires the application of the operator T'. In theory, we get Tu
by (exactly) solving the parabolic equation for y, inserting y into the adjoint
equation, determining p and using finally the representation (4.19). In real
computations, the parabolic equations have to be somehow discretized. Any
sufficiently accurate solver can be used for this purpose. We do not consider
the difficult error analysis connected with the approximate solution of the
partial differential equations. In our further presentation we continue to
regard the mapping u — Tu as given exactly.

The bottleneck of the multigrid method is hidden in establishing the
coarse—grid system

(I — I()dl =1

or its discretized version
(I — Ki)dy =



On a SQP-Multigrid Technique 13

in step 4. The vectors d;, r; representing d;, r; belong to the finite-dimen-
sional space IR™'. We need the associated matrix representation Kj of K.
Let {e1,...,€em,} be a basis for this space. K; can be obtained by m;—times
applying the operator T

Ke;=Te; — f, t=1,...,my

on the coarse grid. This is computationally expensive, as the coarse grid
system has to be solved very often during an SQP method. Therefore, we
applied the conjugate gradient method to the coarse grid system. Here, we
need only Kju; for certain vectors u; occuring in the iteration process. If the
iteration stops after a number of steps less than the dimension of u;, then
the effort occuring in step 4 of the multigrid algorithm decreases.

Another promising approach for handling the optimality system (4.17)-
(4.18) is to solve directly the occuring coupled forward—backward system.
However, this leads to a system of much higher dimension than in the multi-
grid method proposed before. Moreover, an effective numerical technique for
parabolic backward—forward systems has still to be developed. Therefore,
we decided to use the multigrid approach, where the state and adjoint state
equations are decoupled.

Remark: In principle, the multigrid strategy is able to handle any
mesh-size, which is useful to solve the partial differential equations on the
available computer. However, the method is quite slow.

5 Control Constraints

If the pointwise constraints u € U,4 are not imposed on u in (3.11), then
the SQP method is nothing else than the known Newton method for solv-
ing the equations of the optimality system (consisting of (1.2), (2.5), and
% = —A7!'p). One step of the method can be performed by the technique
described in the preceding section.

Let us now take into account the restrictions (1.3) on the control u. Once
again we explain the technique for the simplified linear—quadratic problem
(4.16)—(4.17), now with the additional constraint (1.3). We use an projection
method due to Bertsekas [7] which was already successfully applied by other
authors, for instance by Heinkenschloss and Sachs [19]. Let us first formulate
this algorithm (B) and then discuss its steps.

k

1. Denote by u* = (u¥,...,u%)T be the vector representing the iterate
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u¥ (h fixed), fix positive numbers € and o and let I = {1,...,m} be

the index set associated to ui.

2. Solve (4.17), (4.18) and get p¥ with the same discretization as u¥. Let

Qk = (pf,...,pE)T be the representation of pf.

3. Define the sets of strongly active inequalities by If = {i € I : uf = u,
and Muf +pF > e} and If = {i € I : uF = uy and M + pF < —¢}.

4. Set ii; = u¥ for all i € IZ U I}.

5. Solve the unconstrained problem (4.16)—(4.17) for u¥, i € I\ (12U I§),

while the remaining components of u* are fixed due to 4, denote the

solution by vf with vector representation v*.

6. Set uZ'H = vy, where IT is the projection onto [u,, up]™.

7.0 [|ubt! — wf|| > o then put wf := it k := k41 and go to 2.
Otherwise stop the iteration.

To illustrate the idea of this technique we consider the first order neces-
sary optimality conditions for problem (4.16), (4.17), (1.3). The optimal
triplet (#,7,p) has to satisfy the adjoint equation (4.18) together with the
variational inequality

k/@+A@Ur—@dSﬁ20 Vi € Usg. (5.22)
X

A standard discussion of this inequality shows that

Uy, T+ AGF> 0
up, T+ AP<O (5.23)
. a4 AF=0

=2
I

> =3

(see, for instance, [10]) . These three possible cases for % are reflected by
step 3 and 4 of the algorithm. If |u¥ 4+ Ap¥| > &, then we can expect that
this index ¢ belongs to an active inequality. Therefore, we keep this value
u¥ fixed at the boundary in the next step.
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6 Numerical Tests

6.1 The One-Dimensional Case

We have reported on our 1D-computational experience for @ = (0,1) in the
paper [14]. Let us recall the results for comparison. In our test examples, the
control u = u(t) is acting on the right end of @ = (0,1). ¥ = {0,1} x (0,7
splits into 2 parts and b = 0, u = 0 is kept fixed on the left part 2 = 0.
However, we do not need this formal expression of the setting to make the
problem comparable to the general problem of section 2. We just formulate
the state equation as

yt((‘r7 tg = ymf('? t) in Q

0,z) = x in €

g:/ym(t, 0) = gl on (0,7] (6.24)
be(t,1) = b(y(t, 1)+ u(t) on (0,7]

Let the interval [0,7] be divided by the equidistant grid 0 = to < #; <
... < ty, =T, where n; is a given integer. Thus, the subdomains ¥ are
given here by the intervals (fz—1,%%), ¥ = 1,...,ns The discretization of u
is performed according to (3.15). We considered the following test example
(going back to Schittkowski [32]).

Example 1: This example is a linear—quadratic control problem of the type
discussed in section 5. It is included here to stress that a very fine discretiza-
tion of the control u and the PDE is needed to compute a sufficiently precise
optimal control. ”Sufficiently precise” means in this test example that a fur-
ther refinement of the underlying grid did not change the graphical plot of
the control (graphical precision).

We took T = 1.58, A = 0.001, yr = 0.5(1 — 2%), yy = 0, u, = —1,
up, = 1 and b(y) = —y. The state and adjoint equations are solved on
Q = (0,7) x (0,1) by a Crank—Nicholson type finite difference method.
Denote by n; the discretization parameter of u and by n,,, n,, the pa-
rameters of y (i.e., the discretization with respect to time and space used
in the PDE). Optimal controls were determined for the following triplets
of (n¢,ny,,ny,): (50,100, 100), (200,400,400), (400,800,800). The results
showed that the mesh-size (400,800, 800) was necessary to obtain graphi-
cally exact controls. A further refinement did not change the computer plot
of the optimal control. 5 iterations (B) were needed to get the result for
the finest discretization. These steps required 56, 34, 30, 14 and 1 multigrid
iterations (MGQG), respectively.
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Figure 1: SQP iteration for the nonlinear problem

Example 2: This is a nonlinear problem with almost the same data as
above, but with the nonlinear boundary condition

yx(tv 1) = u(t) - y(tv 1)2

solved by the SQP method. The iteration was started at (yo,uo,po) =
(0,0,0) with mesh size (n,ny,, ny,) = (400,800, 800), still quite moderate
in view of the experience with example 1. We avoid any table of numbers
for the progress of computation. It would pretend a high accuracy, which
cannot be justified by the precision of the discretization. Once the SQP
method is in the region of quadratic convergence, after a few iterations the
reached precision is not compatible with the solution of the PDE. Please
note that the mesh size 400 for the control will at most ensure a precision of
the order 1072 for the linear—quadratic sub—problems. This is just graphical
precision. In Figure 1 some iterates are represented.

6.2 The Two-Dimensional Case

Next, we consider our problem (4.16)—(4.17) in © = (0,1) x (0,1) C R?.
The control is acting on 'y = {(2,22) € Q : 2y = 1}, define 'y = '\ I';.
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Figure 2: Domain of up,

The boundary condition is slightly changed,

Oy = blyy+u on Iy

Ay = -y on Ty (6.25)

As before, the intervals [0, 7] and [0, 1] are split into equidistant subintervals,
O=tg<thi <...<tp, =T, 0=20< 21 <...< 2, =1, where ny; and
ng are positive integers. We split the control domain ¥, = I'; x (0,7) for

the control u into subdomains ¥ = (the1,tr) X (ziz1,2i), k = 0,...,n4,
t=0,...,n;. The partition of 3 is shown in Figure 2.

To solve the underlying parabolic differential equations, the domain €2
was divided into equidistant subdomains Q;; = {(z/_,2}) x (23_;,2%) i =
0,...,m31,7=0,...,n,2}, where n,: is the number of equidistant subinter-

vals of [0, 1] in direction z;, i = 1,2. The time interval [0, 7] is split into n,
equidistant subparts. We put h, = %, hp = ﬁ and h, = ﬁ
Remark: The number of subintervals of [0, 1]zin xrdirectionz was related
to the number of subintervals of [0,1] in z—direction for up: n, = Mn,,
1 = 1,2, where M € IN. Analogously, n, = Mn;. We used M = 2 in
the computations. Owing to the simple geometry of €2, a finite difference
splitting-up method was selected, since it was faster than available finite
element codes.

The examples below are computed with the Bertsekas projection method
and the multigrid method for the unconstrained quadratic subproblems. In
the multigrid algorithm, the coarse—grid systems of linear equations were
solved by a conjugate gradient method.
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Example 3: This is a convex linear—quadratic control problem, used to
compare the precision of our computations for a single linear-quadratic sub-
problem with known results. We take 1" = 1, A = 0.001, y;r = 0, yr =
0.5z122 + 0.25, b(y) = —y, uy = 0, up = 1. This problem was considered by
Mackenroth [29] with A = 0. Therefore, the result was a control of bang—
bang type. Our control is close to that of Mackenroth, but continuous, as
A > 0. Further parameters are ny = 10, n,, = 10, M = 2 and n,2 = n,1,
thus we have

mesh size (n;, n;) for the control on the coarsest grid: (5, 5),
mesh size (ny, n¢) on the finest grid: (10,10),
mesh size (n,1,n,2,n;) for the state: (20, 20, 20),
maximal number of state variables: 8000.

Figure 3: Optimal control of example 3

The result is shown in Figure 3. The approach considered here allows to
solve the problem with a finer discretization.
Example 4: Regard the same problem as above with finer discretization:
n; = 80, n, = 80, M = 2 and n,2 = n,1 = 160. Here we have

mesh size (ng, ny) for the control (coarsest grid): (5, 5),

mesh size (ng, n) (finest grid): (80, 80),
mesh size (n,1,n,2,ns) for the state: (160, 160, 160),
maximal number of state variables: 4.096.000.

7 iterations (B) were needed to get the result for the finest discretization,
requiring 125, 67, 45, 32, 23, 13, and 1 multigrid steps (MQG), respectively.
The result is shown in Figure 4.
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Figure 4: Optimal control of example 4

Finally, we discuss a nonlinear test example solved by the SQP method.

Example 5: Here, the boundary condition is replaced by a non-linear one.
We put 7'=1, A = 0.001, y; = 0, yr = 0.52129 + 0.25, b(y) = —y?, u, = 0,
up, = 0.2, ny = 80, n, = 80, M = 2, and n,2 = n,1 = 160. Initial iterate
of the SQP algorithm was the triplet (0,0,0). The progress of iteration
is shown in Figures 5 — 9. Our initial iterate was outside the convergence
region of the SQP method. This region was hit by chance in the third step
by u3. A usual globalization technique would avoid this behaviour.

w— w—
- -
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02 o3 "
05 og
07 g
09

Figure 5: Example 5, ug and u;  Figure 6: Example 5, u; and us



20 H. Goldberg and F. Tréltzsch

W —

Figure 7: Example 5, ug and ug  Figure 8: Example 5, us and uy
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Figure 9: Example 5, w7y and ug

We observed the same fast convergence for a problem containing a nonlinear
boundary condition of Stefan Boltzmann type

O,y =u—1y*on I'y.

7 Final Comment

The method presented in this paper is not yet effective. SQP method, Bert-
sekas projection method and multigrid technique form a chain of 3 nested
iteration schemes. Although the SQP method itself exhibits the expected
fast convergence, the other inherent iteration procedures are slower and lead
to long running times. Certainly, this long time is mainly connected with
the high precision of the computation. The same effect was mentioned by
Gill and others [11] who applied the software system DASOPT to solving
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a parabolic optimal control problem for a quasilinear heat equation in a
two-dimensional rectangular domain € with a moderate discretization. We
confirmed their estimate (n, - ny,)? for the order of the computational time
in our own tests.

Nevertheless, it is obvious that our procedure is not optimal and can
be improved, for instance by using an appropriate pre-conditioning in the
multigrid steps. This was not our primary intention. We aimed to complete
the theory of the standard (continuous) SQP method for parabolic control
problems by associated numerical test examples. The method presented here
is very close to the one discussed in our convergence analysis. Owing to its
fast convergence, there was a need to solve the quadratic subproblems with
comparably high precision. This paper shows one way leading to acceptable
results.
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