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Abstract. In this paper we are concerned with some optimal control problems governed by
semilinear elliptic equations. The case of a boundary control is studied. We consider pointwise
constraints on the control and a finite number of equality and inequality constraints on the state.
The goal is to derive first and second order optimality conditions satisfied by locally optimal solutions
of the problem.
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1. Introduction. In this paper we discuss first and second order necessary op-
timality conditions for a class of optimal boundary control problems governed by a
linear elliptic partial differential equation with nonlinear boundary condition. Hereby,
pointwise constraints on the control and finitely many state-constraints of equality and
inequality type are given.

First order necessary optimality conditions are already well known for this type
of problems (c¢f. Bonnans and Casas [3]), and we derive them only for convenience.
In contrast to this, it seems to the authors that up to now only the paper [8] deals
with second order conditions for elliptic control problems. In that work, sufficient
optimality conditions were derived for the case without state constraints, which are
in some sense arbitrarily close to the corresponding necessary ones. We aim to extend
these conditions to problems with state-constraints. To do so, we have to deal first
with necessary conditions. This gives the information we need to know how far the
established sufficient conditions are from the necessary ones. We found out that the
discussion of second order sufficient optimality conditions is surprisingly difficult for
state-constrained problems and requires a very extensive analysis. Therefore, we have
to report on this issue in a separate paper to be published elsewhere. On the other
hand, the technique to derive necessary conditions differs essentially from that used
in the case of sufficiency. This is another reason to confine ourselves here to necessary
conditions.

For parabolic control problems we refer the reader to Goldberg and Tréltzsch [10],
[11], who consider sufficient conditions, too.

It should be mentioned that second order optimality conditions have already
been studied extensively for mathematical programming problems in general spaces,
we refer only to Toffe [12], Maurer and Zowe [14], Maurer [13] and to the survey given
in Ben-Tal and Zowe [2]. Moreover, there are numerous applications in the control
theory of ordinary differential equations.
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Although the general way to derive such results is more or less known (see, for
instance, [2]), these results cannot be transferred directly to our problem. It is the
question of regularity of different primal and adjoint partial differential equations and
the adequate choice of function spaces making this problem interesting and delicate.
Even the specification of a reasonable constraint qualification is not an easy task.

The paper is organized as follows: In section 2 we discuss the problem of existence,
uniqueness and regularity of solutions to the nonlinear equation of state. We should
underline that the well known standard Hilbert space approach for elliptic equations
is not sufficient for our aims. The optimal control problem is set up in section 3,
while the next section deals with first order necessary conditions. The main result on
second order conditions is established in section 5.

Before finishing this section, let us remark that the elliptic operator Ay = —Ay+y
is considered along this paper, but there is not difficulty to extend the results to more
general semilinear monotone elliptic operators. The only reason of our particular
choice is to avoid a heavy notation, making easier to the reader the understanding of
the main ideas and results presented in this paper.

2. State Equation. Let Q be a bounded open subset of R" with a Lipschitz
boundary T'. Given a function u € L*°(T"), we consider the following boundary value
problem

_Ay(z) + y(2) =0 in Q@
(2.1 { dyy(z) = b(z,y(z),u(z)) onT,

where 0,y denotes the normal derivative of y and b : ' x R x R — R is a function
measurable w.r.t. the first variable and of class C? w.r.t. the others and satisfying

b
g—y(m,y, u) <0 ae z€T, Y(yu) € R

VM >0 3y € LP(T) (p > n—1) and Cpr > 0 such that

[b(2,0,u)| < Ym(z) ae z €l and |ul < M;

>

1<i+j<2

b

W(m,y,u) <Cuy ae zeTl, |y <M and |u| < M.

Under the previous assumptions we can prove the existence and uniqueness of a
solution of (2.1). To do this, we first formulate a lemma that will be used several
times along this paper; see,for instance, Troianiello [18] for the proof.

LEmMA 2.1. Let fy € L=(T), fi(x) <0 on T, and B € LP(T), p>n—1. Then
the problem

—Ay+y=0 mnQ
(2.3) { Oy=Py+ P2 onl,

has a unigue solution y € H'(Q) N C*(Q) for some o € (0,1), and there exists a
constant Cp o > 0 independent on 31 and B9 such that

(2.4) Yl @) + lYllcoqy £ CpallBallzery-
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Turorem 2.2. Let u € L*°(T), then there exists a unique weak solution of (2.1),
ye H(Q)NC*Q), for some a € (0,1). Moreover

(2.5) Nyl ) + llca@ < 0 (lullnem)

where 1 : [0,400) — [0, +00) is a non decreasing function.

Proof. First let us assume that b is a bounded function. Then an application of
Schauder’s fixed point theorem leads easily to the existence of a solution y € H(Q).
The uniqueness is an immediate consequence of the monotonicity of b w.r.t. y. In the
case where b is not bounded we define for every k& € N

b,y u(e)) i b(e,y, u(@))] <+,
bp(w,y,u(z)) = +k if b(z, y, u(z)) > —i—k’
—k if b(z, y, u(z)) <

From the previous argumentation we know the existence of an element y;, € H'(Q)
satisfying

Ay +yr, =0 inQ
(26) { al/yk = bk('aykau) on T

For each j > 0 we set zj(z) = max{yr(z) — j,0}. Then z; € H'(Q) and from the
previous equation and (2.1) we deduce

Jivsittde + [ 12Pds = [ b o). @)z )dS() =

[ et 0. @)z (@)@ + [ e, gele),u(@) - bue, 0. u(a)) s (2)dS(0) <

168, 0, wC Dz rey 1231 2oy < MIBC, 05 wCDlzocry 125 [wre @)

with p’ = p/(p—1) and s = np/(np — n + 1) < n/(n — 1); see Necas [15, Theorem
4.2; pag. 84]. Then we can argue as in Stampacchia [17, Theorem 4.1] to deduce that
zj(x) = 0if j > jy for some jy depending only on [|b(-, 0, u(:))||rxT) or equivalently
yr(z) < jy. Analogously, the inequality y;(x) > j_ is shown by taking z;(z) =
max{0, —yx(z) — j} in the previous argumentation. Therefore {y;}$2, is bounded
in L*(Q). Moreover, from (2.6) and assumptions (2.2) it is easy to deduce the
boundedness of {y}52, in H'(Q). By taking a subsequence, we obtain an element
y € H'(Q)N L>®(Q) such that y, — y weakly in H'(Q) and weakly* in L>°(Q). Since
the trace mapping from H'(Q) to L?(T) is compact, Neéas [15], then y, — y strongly
in L2(T'). This fact, along with the boundedness of {y;, }52, in L°°(T) and (2.2) lead to
be(z, yr(2), u(z)) — b(z, y(x), u(z)) in LP(T'). Therefore Lemma 2.1 implies y;, — y in
C(€). Now we are able to pass to the limit in (2.6) and to deduce that y is a solution
of (2.1) in HY(Q)NC(Q). The uniqueness is again a consequence of the monotonicity
of b wr.t. y.

We have proved that the estimate of y in L°°(Q) depends on [[b(:, 0, u)||L»(r)- Then
it is enough to take f1 = 0 and s = b(-,y,u) in (2.3), and to use (2.2) to deduce the
Holder regularity and the estimate (2.5) from Lemma 2.1. O
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In our opinion, Theorem 2.2 is well known by people working in partial differential
equations, but we do not know a precise reference where the proof is done. However
the methods used in the proof are classical, so that we have avoided all the details
and we only have provided a sketch of the proof.

Let us denote by G : L®(T') — H'(Q) N C(Q) the mapping associating to
every function u the solution of (2.1). In what follows, we denote the first and
second order Fréchet-derivative of G at a point u in the directions v or vy, vy by
G'(u)v and G"(u)[v1, va], respectively. Moreover, we write for convenience G (u)v? :=
G" (u)[v, v].

The next theorem establishes the differentiability properties of G.

THEOREM 2.3. G is of class C?, i.c. twice continuously Fréchet differentiable. If
u,v € L=(T), y = G(u) and z, = G'(u)v, then z, is the solution of

—Az4+2z=0 nQ

(2.7) ob ob
Oyz = %(-,y, u)z + 8—u(~,y, u)v on .

If vi,v9 € L®(T) and zy,v, = G''(u)[v1, v2], then zy,4, is the solution of

—Az4+2=0 nQ

9b 9%b
(28) Oz = @(a y;u)z + 8—y2(';y;u)zvlzv2+

% b
83/011(.’ Y u)(20,v2 + 20, 01) + W(a y,u)vivy on T.

Proof. Let us take
V(Q)={ye H(QNC(Q) : —Ay +y = 0}
endowed with the norm
lyllvie) = 1¥llar @) + [[¥lle@)-

Then V() is obviously a Banach space and the mapping 9, : V(Q) — H_l/z(F)
is linear and continuous; see, for instance, Casas and Ferndndez [7]. Let us take
X = Imd, with the norm

10v9llx = [[yllv (e

It is easy to check that X is a Banach space and LP(I') C X for every p > n — 1, the
inclusion being continuous; see Lemma 2.1. Now we define L : V(Q) x L=®(T) — X
by L(y,u) = dyy — b(-,y,u). It is an elementary exercise to prove that the mapping

(y,u) € C(1) x L=(T) = b(-, y,u) € LF(T)
is of class C%, moreover (OL/0y)(y,u)z = g if and only if
—Az4+2=0 nQ

b
Oyz = g—y(-,y, u)z+g onT.
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It is clear that (OL/0y) : V() — X is linear and injective and we have

ab

lgllx < ; Ha—y<"% u):

ob ob
\@c, yu):tg = lellvi + H@ you)z

X X X

< Hzllva) + e2llzllem) < esllzllva),
Lr(I)
which proves the continuity of (0L/0y)(y,u).
Let us see that (0L/0y)(y,u) is surjective. Given g € X we put y, € V(Q2) such
that §,y, = g. Note that we do not necessarily have g € LP(T'). Then we have

b
<|lzllva) + e %(; Yy, u)z

—Ay,+y,=0 in Q

(2.9) b

Ovyy = @(';y, u)yg+§ onT,

where § = g — (0b/dy)(-,y, u)y,. Let us consider now the problem
—Ay+9=0 inQ

(2.10)

. 0b . Ob
0yy - @(.JyJ u)y_ @(.JyJ u)yg onT.

Then Lemma 2.1 implies that § € V(Q), consequently z = y, — § € V(Q) and it
satisfies
—Az4+2z=0 inQ
ob
Oyz = %(’ y,u)z+g on T,

which means that (0L/0y)(y,u)z = g, and so (0L/0y)(y, u) is surjective.
Now we can apply the implicit function theorem (cf. Cartan [4]) to deduce that
G is of class C? and satisfies:
(2.11) L(G(u),u) = 0,G(u) —b(-,G(u),u) =0 Yu € L=(T).
Taking y = G(u), z = G'(u)v and differentiating (2.11) we find
b b
Oyz = g—y(, y,u)z + g—u(, Y, u)v,

which together with the fact that z € V(Q) implies (2.7).
On the other hand, if we take z,, = G'(u)v;, ¢ = 1,2, and zy,0, = G"(u)[v1,v2],
we get by differentiating (2.11) twice

9, (G (u)vy) = g—Z(, G(u),u)G'(u)vy + %(, G(u),u)vy
and (9, (G'(u)v1)) va = 0,(G"(u)[v1,v2]) = Oy 2y, us,

b )
81/21)11)2 - g_y('ayau)zvlvz + 37(; Y, U)zv12v2+

5%b 8%b
m(-, Y, u)(2y, 02 + Zy,v1) + W(’ Y, u)v1va,

which leads to (2.8). D
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3. The Control Problem. Let J : L®(T') — R be defined by

I(u) = /n £, a2 + / 0, (), u(2))dS(2),

where y, = G(u) is the solution of (2.1) corresponding to u, f : @ xR — R is
measurable w.r.t. the first variable and of class C? with respect to the second and
g : ' x R x R — R is also measurable in the first variable and of class C? w.r.t. the
other two. Moreover we assume that

F(,0) € LY(9);

(3.1) VM > 0 3y}, € L1(Q) such that

of o*f 1
- — < <M .€. ;
‘ay(z‘,y)‘+‘ay2 (z,y)‘ < py(x) for |ly| < M and ae. € Q;

g(') 0, 0) € [’](F);

VM > 0 33, € L'(T) such that

2

1<itj<2

(3.2)
oiti

W(m,y, u)| < i (x) for |y| < M,|u| < M and a.e. z €T.

Let us consider some functionals Fj : C(Q) — R of class C%, 1 < j < m, and
functions ug,up € L(T), with ug(z) < up(x) a.e. @ € T. The control problem is
formulated as follows

Minimize J(u)

(P) ug(z) <u(z) <up(z) ae z€T
Fi(yu) =0, 1<j<m
F]'(yit) <0, m4+1<j<m.

Let us show some examples of state constraints that fall into the previous abstract
framework.

ExampLE 1. Forevery 1 < j <mlet f; : @ x R — R be a measurable function
of class C? with respect to the second variable such that for each M > 0 there exists
a function 5}, € L'(Q) satisfying

af; 0* f; j
501+ (2| + 5w < @) aez e Vo< m

Then the equality and inequality constraints defined by the functions

Fiw) = [ £ oa)ds

are included in the formulation of (P).

ExamMPLE 2. Forevery 1 < j<mlet f; : ' x R — R be a measurable function
of class C? with respect to the second variable such that for each M > 0 there exists
a function 7}, € L'(I') satisfying

af; 0% f; j
|f]($a0)| + w(l’ay) + ayz (.r,y) < 77M(17) ae xel, V|y| <M.
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Then the functionals
Fyw) = [ (e (e)ds(a)

define some integral constraints included in the formulation of (P).
_ Examprre 3. Given m functions f; : R — IR of class C?, aset of points {z; }12, C
Q, and some integer mq, 1 < my < m, the constraints

filgu(®:)) =0, 1<i<my and fi(yu(z:)) S0, my+1<i<m

can be written in the above framework by putting F;(y) = fi(y(2;)).

The rest of this section will be devoted to the study of differentiability of the
functions involved in the control problem. Regarding this question, let us start by
making some observations about the Neumann problem with measures as boundary
data. The reader is referred to Alibert and Raymond [1] and Casas [5] for the details;
see also Casas [6] for the parabolic case.

Given two real Borel measures jig and pp in Q and T respectively, and g € L= (T),
B(z) <0 a.e. z €T, we consider the boundary value problem

—Ap+ ¢ =puq inQ
(33) { 01/@ = ﬁgp =+ M On T.

This problem has a unique solution ¢ € W1#(Q), for every s < n/(n — 1). Moreover
it satisfies the integration by parts formula

(3.4) /[—Az + z]pdz + /(8,,,2 — Bz)pdS(x) = / zdpo + / zdur Yz € Yy p,
Q r Q r
where
Yop = {z € Hl(Q) —=Az+4+2z€ LYQ) and 0,z — fz € Lp(F)} ,

with ¢ > n/2 and p > n — 1. The partial differential equation equation of (3.3) is
intended in the distribution sense and the Neumann condition in a trace sense, such
as defined in [5]. We are using the fact that the differential operator is —A. For more
general elliptic operators with non continuous coefficients the uniqueness of a solution
is only true in the class of functions of W' *(Q) that satisfies (3.4); see Serrin [16]
for an example of non uniqueness. It is important to remark here that the solutions
satisfying (3.4) are the unique ones interesting in control theory, because (3.4) allows
to make the integration by parts necessary to take advantage of the adjoint state.

We now study the differentiability of .J.

TureorREM 3.1. The functional J is of class C? and for every u,v € L*=(I') we
have

(35) r@o= [ {egeton + 2o} ase)

and

e 52 _ 0%, 52 o
J (U)U2 :./Qw(’y)zgdx_*_ﬁ I:SDOW(.’%U)—{_#(.’%U)] Z3d5($)+
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zy,vdS(z)+

. ‘_ 9%b o %y o
(3.6 2 [ [fagg (0.0 + )

[loZhcnm+ 280.0.m]vase)
- Qoﬂaufg 'Y, Ou2 Y, )

where § = G(i), z, € H'(Q) N C(Q) is the solution of (2.7) corresponding to (i, i),
i.e. zy = G'(u)v, and o € WHH(Q) for every s < n/(n — 1) is the solution of
0
—Ago + g0 = 6—f( ,§) in Q
(3.7) y
Oy —%( J, u)@ +6_g( y,u) onT
vPo = ay Y, U)o 3y v Ys .

Proof. Let us consider the functional Fy : C(Q) x L®(T') — R defined by

u):/ﬂf(l‘,l(z*))dw-|-/Fg(.1‘,y(.1'),u(1'))d5(1').

By the assumptions of f and g it is easy to prove that Fy is of class C%. Applying
now the chain rule to J(u) = Fo(G(u),u) and using Theorem 2.3 we get that J is of
class C% and

TG (a), 06 @) + G (G(@). 0o =

DA § T T
/ﬂ 8y( ) zpda + g {8;;/( U, )zy + 8u( .Y, u)v} dS(x),

where z, = G'(#)v. Taking @g as solution of (3.7), we deduce (3.5) from the previous

identity and (3.4). Indeed assumptions (3.1) and (3.2) imply (8f/9y)(-,¥) € L'(Q)

and (9g/0y)(-,y,u) € L'(T), therefore the formula of integration by parts (3.4) can

be used, replacing equation (3.3) by (3.7) (let us remind that L'(Q) (vespect. L'(T))

can be considered as a subspace of the space of Borel measures on Q (respect. T')).
On the other hand, setting z,, = G”(ﬁ)1)2 we have

J'(u)v =

7 = S0 6@, 06 (0

O*Fo, v g e SOFo ?Fo, i\ o
gz (G0, WG (@))” + 25 5 {(G(@), (G (@v)v + 5 (G(), Bv” =

of 9 o
3y (- )zwdx-l-/ay W) 2y dS(z) + QW(-,y)zvdm-l-

9%y d%g H2 o
/F{ 2( y,u)z] +2W( U)Zuv—f-a—g(-,y,u)vz}dS(a:).

Taking into account that z,, satisfies (2.8) and using again (3.4) and (3.7), we
deduce (3.6). O
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In the sequel we will denote by G, 1 < j < m, the composite functionals G :
L(T') — R defined by G;(u) = Fj(G(u)). The next theorem provides formulas for
the derivatives of these functionals.

THEOREM 3.2. The functionals Gj, 1 < j < m, are of class C* and for every
u,v € L=(T) we have

. _0b,
(38) Gj(u)v = / Soja_('a Y, u)vdS(l’),
r U
where § = G(u) and {g;}72, C W*(Q) for every s < n/(n— 1) salisfy

—Ag; +8€j = Fj(y)la in Q

(3.9) (25, 0@ + Fl@Ir on T,

Moreover

G;’(ﬂ)yQ = F]f’(g)zf+

(8%, 9%b o 8%
610) [ e {Satams 42 n st S g0 fasie)

where z, = G'(@)v.

Let us remark that Fj(j) : C(Q) — R is a linear and continuous functional,
thus it can be identified with a real Borel measure in Q. Therefore we can decompose
Fi(y) = Fj(@)la + Fj(y)Ir, where Fj(y)|la (vesp. Fj(y)|r) denotes the restriction of
Fi(g) to Q (resp. to I').

Proof. Once again Theorem 2.3 along with the chain rule implies that G; is of
class C? and thanks to (3.4) and (3.9) we get

G;- (2)v = FJ-'(G(T_L))G'(H)U = Fl{(§)zy =

_ _ _ob, _ _
(Fi(la, z) + (F(@)Ir, ) Z/FSOJ'a—u(';y;“)vdS(m)-
On the other hand,

GY(@1* = F(G@)(G)(@)0)* + F(G(@)G" (@0 =

J

Fi'(0)z + Fj(9)zow = F{'(9)z0 + (F}(Fla, 2o0) + (F] (FIr, 200).

Now it is enough to use the equations satisfied by @; and z,, = G”(ii)v? to obtain
the desired result. O

4. First Order Necessary Optimality Conditions. In this section we will
assume that @ is a local solution for problem (P). A function @ € U,q is said to be
a local solution or locally optimal control, if a & > 0 exists such that J(u) > J(u)
holds for all u € U,q satisfying with their associated state y = G(u) the state-
constraints and |[u — i||pe(ry < 6. We introduce by In = {j < m|Fj(y) = 0}
and I_ = {j < m| F;(y) < 0} the sets of indices of active and inactive inequality
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constraints, respectively, where § = G(@) is the associated state to @. It is obvious
that {1,...,m1} C Iy. We also follow the notation

Te={zeT :us(z)+e<a(z) <up(z)—e}, fore>0.
We rely on the following regularity assumption

Jdeg > 0 and {h;};¢r, C L°(T), with supp h; C T, such that
(4.1) fng oo S
Gi(u)h.] - 62Ja 1,] € IO~

Obviously, our assumption is equivalent to the independence of the gradients
{Gi(u)}jer, in L(L'¢,). Using Theorem 3.2 we can write the previous assumption
in the following way

_ob, .
(4.2) /Sﬁia—u(',y, uhjdS(x) = bij, i,j € lo.
N

For finite dimensional constrained optimization problems, the usual regularity
assumptions made to derive the optimality conditions involve the optimal solution,
and it is not easy to check wether the assumption is satisfied or not. We can not
do better in infinite dimension than in finite dimension. We cannot either avoid to
include the the set of active constraints, which is related here to the choice of T.
These conditions are crucial in the proofs.

Now we establish the first order necessary conditions for optimality satisfied by .

THEOREM 4.1. Let us assume that (4.1) holds. Then there exist real numbers
{j\j};”:l C R™ and functions y € HY(Q) N C*(Q), for some o € (0,1), and ¢ €
WLs(Q) for all s < n/(n— 1) such that

(4.3) 220, mi<j<m, \j=04jel;
—Ag+y=0 = Q
(4.4) { 0,5 =0b(-,5,@) onT,
roto= DS R @) i
- ¢+¢—@(',y)+z iFj(®)la in
(4.5) =t m
Ovp = %( y ﬂ)‘7+a—g(~ g, ) + Y NF(P onT
VSO—ay Y, u)p ay Y, = J ]y I8 .

4o [ legetam+ 00| (- 0ds@) 20 orall vy <u s,

Moreover, if o is the solution of (3.7) and @; is the solution of (3.8), 1 < j < m,
then

(4.7) =G0+ Y X
ji=1
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Proof. The control problem (P) can be written in the following way

Minimize J(u)

u € Ugd,

Gj(u)=0, 1<j<my,
Gj(u) <0, m+1<j<m,

where
Upa = {u € L([) : ua(2) < u(z) < up(z) ae. z€Tl},

Then thanks to the regularity assumption on the constraints, we deduce (see, for
instance, Bonnans and Casas [3] or Clarke [9]) the existence of Lagrange multipliers
{Aj 174, satisfying (4.3) and

(4.8) (J'(@) 4+ > X Gi(a),u— i) >0 Yu € Uaa

i=1
Now defining @ by the expression (4.7), (4.5) follows from (3.7) and (3.9). Finally
(4.6) follows from (3.5), (3.8), (4.7) and (4.8). O

5. Second Order Necessary Optimality Conditions. Asin §4, 7 will denote
a local solution of (P) and § the associated state. The goal of this section is to derive
second order conditions for optimality satisfied by u. As a first step we need the
following Lemma.

Limma 5.1. Let us assume that (4.1) holds and let h € L°°(T) such that G)(u)h =

0 for every j € I, with I C Iy. Then there exist a number ¢, > 0 and C?-functions
vj : (—€n, +en) — R, j € I, such that

{ Gj(u))=0j€l, and Gj(u) <0 j & In, Y|t| < en;

(5-1) 70 =7(0)=0, jET,

with
w=a+th+y 7(t)h,
jer
{hj}jer given by (4.1).
Proof. Let k be the cardinal number of I and let us define w : R x RY — R* by
w(t,p) = (Gj(@+th+ > pihi))jer.
el
Then w is of class C'? and

Ow o Ow o .
E(O’O) = (Gi(u)h)jer =0 and 8—p(0,0) = (G (u)hi); jer = Identity.

Therefore we can apply the implicit function theorem and deduce the existence of
¢ > 0 and functions 7; : (—¢, +€¢) — R of class C?, j € I, such that

w(t,y(t)) =w(0,0) =0 Vt € (—e, +¢) and ~(0) =0,
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where y(t) = (v; (t))jef‘ Furthermore, by differentiation in the previous identity we
get
Ow Ow
—(0,0)+ =——(0,0)9'(0) = 0 = 7'(0) = 0.
10,0+ 520,070 = 0= 7/(0)
Taking into account the continuity of v and G; and that 4(0) = 0, we deduce the
existence of €; < € such that (5.1) holds for every ¢ € (—¢p, +€3). O
Now we can prove the second order necessary optimality conditions. B
TueoreM 5.2. Let @ be a local solution of (P) and §, ¢, {@;}]=, and {X;}7L,
given by Theorems 3.1, 3.2 and 4.1. Let us assume that the regularity hypothesis (4.1)
holds. Suppose that h € L°(T) is any direction satisfying

0b o : _ 3
A@ja—u(~,gj,ﬂ)hd5(a:) =0 (j<mi)or(j>mi, Fj(y)=0and A; >0);

b

0 if u(z) = uqa(2) or u(z) = up(2) and d(z) # 0;
hz) =< >0 ifu(z) =uq(z) and d(z) = 0;
<0 ifu(z) =up(z) and d(z) = 0;

with

Then the following inequality is satisfied

o:f 9%, . 8%, _
s [ [egzenn gieon] e

0%, g, _

/ *8%(- Y *)+02—g(- g, )| h?dS(x) + 3 X F'(g)zE >0
- SanQ Y, U aug Y, u T e 7+ Y)zp 2 Yy

where zp € C’(Q) N Hl(Q) is the solution of

—Azp+ 2z, =0 inQ

(5.4) o b

O, zp = a—y(~,y,ﬂ)zh + %(-,g, u)h onT.

The conditions imposed on h can are motivated as follows: To show the theorem,
we shall compare @ with vy = u 4+ th + ZjEI 7j(t)h;. First of all, u; has to satisfy
the pointwise control constraints. If @(xz) is on the boundary {uq(z),us(x)}, then
h(z) > 0 or h(z) < 0 and hj(x) = 0,j € Iy, ensure feasibility. In the other cases,
h should be arbitrary. However, second order conditions have to be imposed only at
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points, where the gradient of the Lagrange function with respect to u is vanishing,
i.e., where d(z) = 0. This explains the pointwise conditions on h. The associated
state has to satisfy also the state-constraints. Therefore, we require

o _ob, _
Gj(u)h:/F@ja—u(-,y,u)hdS(m):0

for the equality constraints and Gj(#)h < 0 for the inequality constraints. The
additional requirement G (ii)h = 0 for the strongly active inequality constraints

(Aj > 0) is connected with our estimation in the proof.
Proof. Let us take h € L*(T') satisfying (5.2) and the additional condition

(5.5)  h(z)=0 ifug(z) <u(z) <ug(z)+e or up(e)—e<u(z) < up(e)

for some € € (0,¢z], although h should allowed to be arbitrary in these points z.
However, @(z) can be arbitrarily close to the boundary there. To overcome this
problem, (5.5) is imposed in a first step. We introduce

(5.6) IT=A{l,....m}U{j:mi+1<j<m, Gj(a)=0and Gj(a)h =0}

I includes all equality constraints, all strongly active inequality constraints and, de-
pending on h, possibly some of the weakly active inequality constraints. From Theo-
rem 3.2 and relations (5.2) we get

b
G (a)h = / @6_(., §,@)hdS(z) =0 Vj € 1.
T 8U

Then we are under the assumptions of Lemma 5.1. Let us set

u =u+th+ Z’yj(t)hj, t e (—Gh,eh).
jer

Now we define the function ¢ : [0,+¢,) — R by
8(t) = T(u) + 30 NG ().
ji=1

From Lemma 5.1 we know that ¢ is of class C?, Gj(u;) = 0if j € I and Gj(u;) < 0
if j ¢ Iy, provided that ¢ € (—ey,+€p). From (5.2) we deduce that Gj(a) = 0 and
Gi(a)h < 0 for j € Io \ I. Therefore we have that Gj(u;) < 0 for every j & T
and ¢t € (0,¢g), for some ¢g > 0 small. On the other hand, the assumptions on h
along with the additional condition (5.5) and the fact that supp h; C T'c, imply that
ua(z) < ug(x) < up(x) for t > 0 small enough. Consequently, by taking e¢g > 0
sufficiently small, we get that u, is a feasible control for (P) for every ¢ € [0, ¢p). Now
we know Gj(us) = 0 for j € I and A; = 0 for j & Iy (cf. (4.3)). According to (5.2) we
require G;» (2)h = 0 for active inequalities with A; > 0, hence these indices belong to
I and j\j =0 for j € Iy \ I. This leads to

> XiGilur) =0Vt € [0, co).
j=1
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This is the point, where we need G;-(ﬂ)h = 0 for the strongly active inequality
constraints. Thus we have that ¢ has a local minimum at (0. Moreover

¢'(0) = (J'(u) + Z N G(@)(h+ 7 (0)hy) = (J'(3) + Z A G5 ()h =

Jjer

/F[sag—z(.,g,awr Z—Z(.,g, a)] hds(x) =/Fd(r)h(z)d5(m) _

Indeed (4.6) implies that d(z) = 0 for a.e. & with us(z) < @(x) < up(x). On the other
hand, if uq(z) = u(x) or uy(x) = u(x), then either h(z) = 0 or d(z) = 0; see (5.2).

Since the first derivative of ¢ is zero we have the following second order necessary
optimality condition

0< qﬁ”( J” i

m

() ii; 1O 71 (0)hs) = [J7(7) + Z ;G (@)]h*+

i€l j=1

> (0 / hi(z)dS(z) = [J"(a Z:X Gy (u)]h

i€l

The last integrals being zero because supp h; C I'c, and d(z) = 0 on I'c,. To check
the previous identities it is enough to apply Theorems 3.1 and 3.2, as well as (4.7)
and the definition of d. Finally, (5.3) is an immediate consequence of the inequality
obtained above, (3.6) and (3.10).

Now let us consider h € L*(T') satisfying (5.2), but not (5.5). Then for every
€ > 0, we define

he = hxr, +Z</F\F o ‘,a)hdS(z)) h

i€l

where xp, is the characteristic function of I', and I is given by (5.6). Thus for every
J € I, using (4.2) and taking 0 < € < ¢z, we have

Cab _0b, _ _
v/l;saja_u(’y’u)hed‘g(r) = -/FE pja_u(;y; “)hdS(T)+

2 (./r\r @3_2("?’ “)hd5(~)> /rwg—i(-,y, whidS(z) =

i€l

_0b ., _ B
/Fgoja—u(-,y, u)hdS(z) = 0.
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In case of j € Iy \ I, the following inequality holds

_ob, _ _
/;wja—u(-,y, u)hdS(z) < 0.

Then it is enough to take € sufficiently small to get

_ob,
‘/Fsoja('aya u)hEdS(l') <0.

Thus, reminding that supp h; C T'c,, we have that h. satisfies the conditions (5.2)
and (5.5), therefore (5.3) holds for each h,, € > 0 small enough.

Finally, it is clear that A, — h in LP(T) for every p < 400, as € — 0. Then (5.4)

and Lemma 2.1 imply that z,_ — 2, in C(Q). Therefore, with the help of (2.2), (3.1)
and (3.2), it is easy to pass to the limit in the second order optimality conditions
satisfied for every h. and to conclude (5.3) O
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