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1 Introduction

The selective intermediate cooling of profiles between the passes of a rolling
train results in a temperature equalization between the regions of the cross
section with simultaneous reduction of the total heat content. This is a
presupposition for the realization of modern technologies, like the normal-
izing and the thermomechanical rolling, and for the stabilization of the mi-
crostructure after the rolling process. Moreover, an accelerated cooling of
the profiles from rolling to straightening temperature can replace expensive
cooling beds behind the rolling train, so that the investment and working
costs are reduced.

Motivated by this background, we considered some basic models for the
optimal cooling of steel profiles in cooling sections. A great number of ques-
tions concerning modelling, mathematical analysis and numerical methods
arose from these investigations. In this paper, we briefly sketch some of
them.

2 Mathematical model

In a cooling section, the hot steel profile passes a number of cooling segments,
where water is sprayed on its surface. The cooling segments are followed by
zones of air cooling, where an equalizing process takes place.
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The scheme of a cooling section is shown in Fig. 1. Let us regard one
fixed cross section Q C IR? of the steel profile during its passage through
the section. According to the rolling speed, Q enters and leaves the particular
cooling sections at certain times 0 = ¢, <t < ... < ig =T (K =2k - 1)
(cf. Fig. 1). Since the heat exchange in axial directlon is dominated by that
inside €2, we may adopt the following 2-D model.

to ty to g =T

cooling moving
segment profile

Fig.1: Scheme of a cooling section

In an air segment the initial-boundary value problem

(0t 2))p(0(t, 2)) 2L 2) i (01, 2)) grad 8(t, ),z € 0
(t22 1, % ) ( 2i—11% ) » T € Q (2'1)
( > ) ,x €T

models the heat flow, while in a cooling segment the system

c(8(t,2))p(6(t, z)) a—e(ft’rx) = div (A(0(t,z)) grad0(t,z)) ,z € Q
0(1a(i-1), ) = Oty ) reQ  (22)

)
O(t,2)) 98 (1, 2) = a(x,0(t,2))[0p — 0(1,2)] €T

is regarded (¢ = 1, ..., k). Inhomogeneous boundary data in (2.1) can be
regarded as well. Then the system (2.1) admits the same form and is handled
analogously to the system (2.2).
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We assume that 2 is a bounded domain with sufficiently smooth bound-
ary I'. In this setting, 8 = 6(¢,z), t € [0,T],z € Q, is the temperature,
0(t5;_1,), 0(t2_(i—1)7 ) are entrance temperatures obtained from former seg-
ments. The functions ¢, p, A stand for heat capacity , specific gravity, and
heat conductivity, respectively. In (2.2), a = a(z,0) denotes the heat ex-
change coeflicient, which is strongly dependent on 6, while 8¢, denotes the
mean temperature of the cooling water.

¢, p, A, and « depend on @ and the constituents of the alloy. Some more
or less reliable formulas for ¢, p, A are known, while expressions for a have
still to be found. This gives rise to inverse problems, where « is determined
numerically from certain measurements. We refer to the contribution by A.
Résch (these Proceedings). The heat capacity ¢ models in particular certain
phase changes in the steel.

The system (2.1)-(2.2) belongs to the class of quasilinear parabolic equa-
tions. Assuming some smoothness properties of ¢, p, A, and «a, results on
existence and uniqueness of 6 determined by this system can be found in
Ladyzhenskaya and others [3]. We shall not discuss this difficult subject,
since the precise behaviour of ¢ is still rather unclear. In the case, where
¢, p, A are sufficiently smooth positive functions depending only on z, the
theory of analytic semigroups applies. Then existence and uniqueness fol-
lows from recent results on semilinear equations. We refer to the general
exposition in Amann [1] and to Résch and Tréltzsch [5], where the special
semilinear system (2.2) is discussed.

3 Numerical treatment of the heat system

3.1 Rectangular boundaries - splitting up methods

Aiming to control the process optimally, we have to solve the system (2.1)-
(2.2) several times, so that a fast solver is needed. For domains consisting
of rectangles, like L-shaped domains or double-T beams, we use a local one-
dimensional splitting up method. This method is derived from the balance
of energy over each time step. For smooth coefficients this scheme is of the
order O(hy * hy + 7), where h, and h, are the discretisation parameters in
direction x and y, respectively, and 7 is the time step.
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3.2 Curved boundaries - Finite Element Multigrid Method

For domains with curved boundaries the heat equation (2.1)-(2.2) is solved
by means of a finite element multigrid method. The discretisation with re-
spect to space was done with help of the programm PREMESH, where the
grids are the same for each time step. We use triangular elements and lin-
ear test functions. As refinement algorithm the division of each triangle of
the corser grid into 4 parts was selected. In the test example (see 4.3) we
used 5 grids. Figure 2 shows the second grid. In view of the symmetry of
Q we solved the heat equation only in one half of the domain, prescribing
homogeneous Neumann boundary conditions on the symmetry axis. In this
reduced domain the finest grid had 22857 nodes and 44800 elements.

Fig. 2: The second grid

For the time discretisation each interval (¢;—1,%;),¢ = 1,..., K, is divided
into I equal subintervals. For the approximation of the time derivative we
used the Crank—Nicholson—scheme with one fully implicite step on the first
subinterval, where a jump in the boundary conditions may accure.
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4 Optimal control of the cooling process

4.1 Partition of the boundary

We assume that a finite number of spray nozzles is located around the steel
profile in each cooling segment. Associated to the location of the nozzles,
the boundary T' is divided into finitely many subdomains I';,¢=1,...,7. On
I;, a(z,0) = a;(0) is assumed to be independent of & (cf. Fig. 3).

I'y
T's T's
™ /T,
Ty Te
r, Ts/) X TIs T,
I's I's
T, T, T

Fig. 3: Partition of T in the test example

4.2 The nonlinear optimal control problem

Meaningful optimal control problems can be established in various ways.
Very different aspects may be considered for the notion of optimality. This
depends on the particular aims of the cooling process. Moreover, the model
of the heat system can be simplified for some purposes.

Let us assume that some optimal heat distribution 6(¢,z) is prescribed
as a reference trajectory, which should be followed as close as possible by
the cooling regime. The process is controlled by the water flow through the
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nozzles directed on the different regions of I'. On I'; we look for the optimal
intensity of the flow, expressed through a control function u;(t). The control
may take values in [0, 1] (for u; = 0 no water is sprayed on I';, while u; =1
stands for maximal intensity). The time ¢ corresponds to the position of the
cross section Q in the cooling section (cf. section 2). In this way, we are led
to the following optimal control problem:

(P) Minimize the quadratic functional

JT"gjz" (0(t,2) — 6(t,2))* dedt + v JT"%" u(t,z)? dSdt

subject to
cp %(t,x) = div(Agradf(t,z)) ,x €Q
N0 (1, 0) = u(t,) a(x,0)[87 — 6(t,2)] ,x €T,

where u(-) has to be taken from a set U,q C Lo((0,7) x T'), which is
defined as follows: Uyg = {u(t,z)|u(t,z) = 0,12,21 < t < g, u(t,z) =
uj(t),tyim1)y <t < tggq, € Ty, and wy(t) € [0,1];i =1, k55 = 1,...,1}.
The heat exchange function « is defined by a(z,0) = «;(6),2 € I';. We
have defined the controls u;(¢) as functions of ¢. A discretization of u; with
respect to the time arises from the numerical treatment as well as from
the limited number of spray nozzles. We shall not discuss this aspect. The
parameter v > 0 regularizes (P) and may be interpreted as the cost for the
control v.

(P) is a fully nonlinear optimal control problem. So far, we did not discuss
the problem in this generality. In particular, the concrete form of ¢ and a has
still to be determined. The following simplifications may be helpful to get
a better understanding of the cooling process. For instance, the boundary
condition of (4.3) could be substituted by the simpler one

00
A a—n(t,w) =u(t,z)[05—0(t,z)], v €. (4.4)

Then the control system is still nonlinear (bilinear), but independent from
the identification of a. Moreover, let us assume that ¢, p, A depend only on z.
Then the optimal control problem belongs to a class of problems governed by
semilinear equations, which were discussed in detail during the past years.
We refer for instance to Troltzsch [6] and the references therein.
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4.3 A linear control problem

In order to obtain a first idea on the effects of cooling we investigated a very
simplified linear version of the problem.

After freezing ¢, p, A we regarded the problem to

minimize
ar (T, z1) + ..c.anps 0(T, za1)
subject to the linear heat equation (4.3) with linear boundary condition

00
- a—n(t,ﬁ) = q]'(t), x € Fj, i€ [O,T]

and to the constraints on control ¢ and state 6

0< Qj(t) < Qmax .] = 17 71
q;(t) =0, 1€ (ta1,12]
|0(t72m) — o(taxn)l

<emn(t) m=1,.., M, n=1,...,N, t€]0,T].

|Zm—xn|

0(t -0t m

| (’Tl) (72 )l Scm(t) m=2.,M, 1€ [O’T]
21— Zm

Here, z,,, x, are certain points fixed in (2, the controls ¢; are taken from
L+(0,T), and the state constraints are defined by functions ¢,,, € C[0,T].
These constraints are included to approximate a bound for V@ in order to
prevent high stresses in the profile. It should be more realistic to impose
bounds on certain components of the stress tensor in 2.

As an example we regarded a problem with free geometry. That means, no
cooling segments and air cooling zones were prescribed (k=1). The following
parameters were chosen :

- T =50 s, [0,T] was divided in 20 subintervals,
- Qmazr = 108 W/II12,
- For the state constraints we chose 3 points z,, in the middle of the head,

the base and the web of the profile and 9 points @, on the boundary (M=3,
N=9),

1=09,
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- Cmn(t) = e (t) = ¢(1), where ¢(t) is a step function with ¢(0) = 8000°C/m,
decreasing linearly to ¢(25s) = 6000°C/m and staying then constant,

- ¢;(t) constant on each subinterval of [0,T].

That means, that the functions were chosen as

I
() = a4 @i(t),
=1
with some basis functions (step functions) ¢;(¢). Setting one of the coeffi-
cients ¢;; to 1 and the others to 0, we obtain functions 6;;(¢, z) as solutions
of the heat system. Finally there is to solve a linear programming problem
for ¢;;, 1 =1,...,1, 7 = 1,...,l. In our test example we had 180 unknowns
(I=20, 1=9), 180 upper bounds and 580 inequality constraints. Because of
the linearity of our problem the solution 8 is given as

l

I
0(t,2) = > > qij 0ii(t,z)

=1 7=1

For these parameters we found the optimal controls ¢;(¢), shown in fig. 4.

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Fig. 4: The optimal controls
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