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Abstract. Some aspects of numerical analysis are surveyed for the optimal control of the nonlinear
heat equation. In the analysis, special emphasis is on second order sufficient optimality conditions.
In particular, the case of pointwise state constraints is adressed. Moreover, a numerical technique of
instantaneous control type is presented.
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1 Control problem and Optimality Conditions

The optimal control of heating and cooling processes belongs to the core of opti-
mal control theory of parabolic equations. It covers most of the main difficulties
of this theory but is not yet overlaid by the technicalities, which are typical for
the optimization of other parabolic systems. Therefore, the study of heat control
gives also good insight in the methods for the control of other equations such as
Burgers equation [14], [23], fuel ignition models [16], Navier-Stokes equations [9],
[10], [13], or phase-field models [11], [12].

We report on some applications of control theory to the optimal cooling of
steel profiles, which has already been considered in a sequence of papers [20],
[24], [30], [31]. Related issues were discussed in [5], [8]. We present the results of
our applied research in our second paper in this volume. Here, we give a brief
survey on parts of the theory of optimization in semilinear parabolic equations.
In real applications to cooling steel, the equation is quasilinear and the results of
the semilinear case cannot be applied. However, the study of semilinear problems
provides good information on the effects, which should be expected for quasilinear
equations as well. To remain simple in the presentation, we begin our short course
with the following optimal control problem:

(00)  min J(g,u)=8/2 [ [(y(w.1) = yalw, 1)) *dudt (1)

+ /2 //(y(x,T)—yg(x))de+y/2 /T/u(x,t)ZdSzdt



subject to the heat equation with nonlinear boundary condition

% =A ?n Q,
y(ﬂc,a 0) = yo(z) in £2, (2)
% =b(z,t,y,u) in X,
and subject to the control constraints
U < u(z,t) < up (3)

to be satisfied a.e. on Y. Let us consider the state y as the temperature distribu-
tion in the bounded domain 2 C IR"™ (n = 1,2, 3 in the applications), while u is
the control, acting on X' = I" x (0,7T), where I" denotes the boundary of {2 and
is supposed to be of class C'.

The control may have various meanings. For instance, it can denote the outer
temperature, it may express the intensity of cooling or heating by some sur-
rounding medium, and it might stand for some energy supply. Let us adopt for
a while the first view. Then we search an optimal heating strategy 4 = @(z,t)
such that, starting from the initial temperature yg, the associated temperature in
Q@ = (0,T) x {2 evolves in an optimal way, expressed by the functional J in (1).

Here, y; € L*(Q) denotes a desired trajectory of temperature, which has to
be followed as closely as possible, and yo € L*®°({2) is a desired final temperature
distribution. The constants (3, v are positive weights, and v > 0 can be interpreted
as cost of the control u. Moreover, constant bounds u, < u; are given.

We assume yo € C(£2). The function b = b(z,t,y,u) is assumed to be of
class C? with respect to (y,u) € IR? and measurable w.r. to (z,t) € @Q (the
other variables fixed, respectively). In general, b and its first and second order
derivatives must satisfy certain Lipschitz conditions on bounded sets with respect
to (y, u) and the partial derivative of b with respect to y, denoted by b, is assumed
to be nonpositive. We refer, for instance, to [3], [27]. To shorten the presentation
and to have direct access to the literature we assume for simplicity that

by(z,t,y,u) <0 (4)

holds a.e. on Q@ X R?, b(z,t,y,u), b'(z,t,y,u), b"(x,t,y, u) are uniformly bounded
on @ xIR? and uniformly Lipschitz with respect to (y, u) on @ xIR?. Here, b’ and "
stand for the gradient and the Hessian matrix of the real function b with respect to
(y,u) € R2. Then the parabolic problem (2) ist well-posed. The assumptions on
second order derivatives are not necessary for this. They are needed to establish
second order optimality conditions. In the sequel, we fix constants p > n + 1,
g > n/2+ 1 and introduce the state space

V= {y e WO.T) [y~ Ay € 19(Q), o2 € I7(2), 4(0) € C()}.



For the definition of W(0,T) we refer to [25] and the concrete choice in [27]. ¥’
is known to be continuously embedded in C(Q). Moreover, we define the set of
admissible controls U,q = {u € L*®(X) |u, < u(z,t) <wu, a.e.on X.}

Theorem 1. ([3/,/27]) Let b satisfy the assumptions stated above and let a con-
trol u € Uyg be given. Then the parabolic initial boundary value problem (2)
has a unique solution y = y(u) in Y. There is a positive constant K such that
ly(u)lle@) < K holds uniformly for all u € Usg.

The next question concerns the solvability of the optimal control problem, i.e. the
existence of a globally optimal control % with associated optimal state § = y().
To give a practicable answer, we need an additional property of b.

Theorem 2. Suppose that

b(m,t,y,u) :bl(xat: y)+b2($,t, y)/U'a (5)

i.e., b is affine-linear with respect to u. Then the optimal control problem (OC)
admits at least one (globally) optimal control u.

The well known proof relies on weak compactness of U,y in LP(X), because this
permits to select a minimizing subsequence of elements u,, € U,4 such that u, — u
in L?(X). By uniform boundedness of {y(u,)}32,, we can select a subsequence
of by(z,t) = b(z,t,u,,y(uy,)) converging weakly to some function b in LP(X).
Consequently, we have w.l.o.g. ¥, — 7 in C(Q) . The additional assumption (5)
is needed to guarantee that b(-, -, yn, u,) — b = b(-, -, 7, @) so that finally 7 = y(a)
holds.

In the numerical analysis, the consideration of global solutions is not the only
way to deal with the problem (OC) . Iterates, generated by numerical algorithms,
will in general converge to local solutions only. Hence an alternative way is to
consider a triplet (,u,p) that satisfies the first order necessary conditions and
to ensure local optimality by second order sufficient conditions.

Theorem 3. ([3], [27]) Let u be a locally optimal control of (OC) with associated
state y = y(u). Then a unique adjoint state p = p(x,t) exists in W(0,T) such
that the adjoint equation

—%—Azﬂrﬁ(y Ya),
p(.’l?, T) =7 (y(ﬂ?, T) - y()(x))a (6)
S_Z :by(l‘,t,g,a)p

15 satisfied together with the variational inequality

// Vi + by (5, ) p)(u — @)dSdt > 0 Vu € Uy (7)



This result follows, for instance, from the more general Pontryagin mazimum
principle proved in [27], [3] or directly from [28]. The adjoint state p is shown
to be in C(Q). Let us discuss the particular case, where U,q = L*®(X) (unre-
stricted control) and b satisfies (5). Then (7) implies 4 = —v 'by(-, %)p, and u
can be eliminated in (2), (6) to obtain a forward-backward coupled system of two
parabolic equations for y and p. This system might be solved, for instance, by
the Newton method. It may have multiple solutions.

One of the basic difficulties for the numerical solution is the enormous number
of variables the system has after discretization. To give an intuitive estimate for
this, assume that 2 C IR? is the unit square with each edge discretized by 100
node points. Adopt the same simple discretization for the time interval (0,7).
Then we have to process 2 - 10 variables. For 2 C IR?® this number increases
considerably.

Nevertheless, solving the optimality system (2), (6), (7) for the unconstrained
case Uyg = L®(X) is one of the core procedures to solve the constrained case as
well.

Formally, Theorem 3 can be derived in the following intuitive way. Define the
Lagrange function

L=L(y.up) = Jww)~ [~ Ap)pdedt — [~ b(y, u))pasir.
Q b))

According to well known Lagrange multiplier rules of mathematical programming
in Banach spaces, (7, %) must satisfy, together with p, the relations

Ly(y,a,p)y =0
for all y € Y with y(0) =0 and
L,(g,4,p)(u—1u) >0  VYu € Ug.

After some transformations including integration by parts and Greens formulas,
these relations imply (6) and (7).

Assume next that @ € Uy, § = y(@), and p satisfy the optimality system
(2), (6), (7). What condition can ensure @ to be optimal, at least locally? To
this end, second order sufficient optimality conditions (SSC) can be invoked.
We need for their formulation the second order Fréchet-derivative of L w. r. to
(y,u) € Y x L™(Z),

LG5 p)ly,ul? = B [ yPdedt + [ 42, T)do+ [(wu + by (5.9) py?) dSdt.
Q ” X

Theorem 4. (SSC) ([26]) Suppose that @ € U,q and (g, T, p) satisfy (2),(6),(7).
Assume the existence of & > 0 such that

L"(g, 4, p)ly, ul* > 6 |[ullZa(x), 9)



holds for all uw € L*(X), y € Y satisfying the linearized equation

5 Ay,
y(0,z) =0, (10)

L= by (5, 1)y + bul )
Then there exist constants € > 0, o > 0 such that the quadratic growth condition
I(y,u) > J(y,u) + ollu — ullFes (11)

holds for all u € Uy, y = y(u) such that ||u — EH%m(g) < €. Hence 1u is locally
optimal in the norm of L*>(X).

Remarks: (i) If b admits the form (5), then LP(X) can be substituted here for
L*(X). This is an essential advantage, since ||u — 1||r~(x) < € Tequires more or
less that jumps of @, if there are any, must be reproduced by wu.

(ii) The second order sufficient conditions can be relaxed by considering active
sets, [26]. Then u = 0 can be assumed in (10) on so-called strongly active sets.

The theory of (SSC) for problems of the type (OC) is well understood. This
refers also to the elliptic case, see [4]. The situation is much more complicated, if
state constraints are added. In the case of pointwise state constraints the theory
is widely open. For elliptic problems, satisfactory results were obtained in two-
dimensional domains (2, [4], while for parabolic problems the one-dimensional
case is considered best, [26].

Let us illustrate by a simple example, where the main difficulty appears.
Regard, for instance, (OC) with the additional pointwise state constraint

y(x1,t) — ya(ze,t) <c  Vte[0,T]. (12)

Constraints of this type will occur in our application to cooling steel. They are
well formulated, since the choice of Y guarantees y € C(Q), hence the functions
y(x;,t) are well defined and continuous on [0,7]. In the theory of optimality
conditions, the state constraint (12) is considered by another Lagrange multiplier
i, which is a monotone increasing function of bounded variation on [0,T]. We
have to introduce the extended Lagrange function
T
L(y,u,po ) = Ly, w.p) + [ ((@1,8) = ylao, 1) dp(?).
0

The associated theory of first order necessary conditions is well developed, see
[3], [27]. The main difficulty in proving sufficient conditions is the appearence
of measures like du extending the right hand side of the adjoint equation (6).
This makes the adjoint p state less regular. Therefore, in the general case we
do not have the important property p € L*°(Q), which is helpful to estimate
L"(, 4, p, 1)y, u]* with respect to (y,u) in the appropriate norms.



2 Numerical methods

The numerical solution of optimal control problems for semilinear elliptic and
parabolic equations has made considerable progress. Various methods were dis-
cussed, and the numerical results provide essential contributions to the fast de-
veloping field of large scale optimization. To give the reader an access to further
study, we quote [1,2,6,7,11,12,15,17-19,21,22].

Elliptic problems in two-dimensional domains {2 and parabolic problems in
domains of dimension one can be solved in short time, since the number of vari-
ables after discretization of the problem is still moderate. If the dimension of (2 is
larger than one, then the solution of parabolic problems is still time consuming.
However, they can be treated succesfully. For the solution of parabolic problems
in two-dimensional domains we refer to [6], [11]. One of the favorite techniques is
that of (S)equential (Q)uadratic (P)rogramming. Let us briefly describe the main
idea for the classical SQP method, which reduces the solution of the nonlinear
problem (OC) to a sequence of quadratic optimal control problems with linear
equation.

Suppose that (yy, u,, pn) has already been determined. Then the next iterate
(y, 1) = (Ynt1,Uns1) is found as the solution of the linear-quadratic problem

. 1
(QP) min J'(y, u) [y —Yn, U — un] + §L,(Iy,u) (yna Uns pn)[y —Yn, U — un]2

subject to u € U,q and

% _
at - y’
y(m’ao) = yo(l'),

The new Lagrange multiplier p,.; is obtained from (6), where (yn11,Un+1) 1S
substituted for (7, #). Under natural assumptions, among them second order suf-
ficient conditions are most essential, this method locally converges g-quadratically
to (g, 4, p), if considered in the infinite dimensional setting [6], [7], [29]. For in-
stance, the second order assumptions (2), (6), (7), (9), (10) of Theorem 4 can be
used for this purpose. For semilinear elliptic equations, the convergence analysis
was presented in [32]. Discretizing the problem, various approximation errors in-
fluence the performance of the method. Moreover, modifications of the standard
SQP method can be numerically more effective.

Our computational experience shows that the SQP method converges very
fast, i.e. only a few steps are needed to gain high precision. However, each single
step of the method can be very expensive, in particular for domains of higher
dimension. If the parabolic equation is quasilinear rather than semilinear, then
the situation is even more complicated.



Therefore, in our problem of cooling steel we did not apply the SQP method.
First we applied a method of feasible directions, [20], [24], [30]. Later, a subopti-
mal technique was implemented — a method of instantaneous control type. These
techniques are considerable cheaper than SQP methods and have been sucess-
fully applied to find suboptimal solutions in the control of fluid flows. We only
quote Hinze [13] and refer the reader to the extensive references therein. We also
mention [14] for the case of the Burgers equation.

As a preparation of our report on optimal cooling of steel in this volume, here
we explain the main idea of our technique for the following simplified control
problem with state constraints. Let points x; € {2 be given fixed, i = 1,2, 3, and
assume that I' = U, I}, where {I;}Z is a partition of I" into pairwise disjoint
relatively open subsets. Moreover, consider an equidistant partition of [0, 7] into
subintervals Iy = (tx—1,tk), kK = 1(1)K, 0 =ty < t; < ... < tg_1 <tg =T.
Define X, = I; X I. The partition of I" and [0, 7] into subsets should not be
viewed as a result of discretization. In our application, it reflects the associated
technical construction. In cooling steel, I is the zone influenced by spray nozzle
1, and the time interval I is associated with passing the cooling segment k. The
control function u = u(z,t) is assumed to be constant on Xy, i.e. u(x,t) = ug
on Y. Our simplified control problem ”steel” is

(0CS8) min  y(zo,T)
subject to
dy .
9 _ A
ot~ Y n @, (13)
y(x,a()) = yo(z) in £2,
8_7yz =ug oz, y)lyn —y] in Dy,

y(@n,te) = y(ze, k) <c, k=11K,

0<uy <1, i=11)P, k=1(1)K.

In this setting, o = a(x, y) is the heat exchange coefficient and y; is the temper-
ature of the cooling fluid. We assume that « is sufficiently smooth with respect
to y € IR. The main idea of instantaneous control is as follows: First minimize
y(xo, t1), i-e. find optimal controls @;; on the short time horizon [tg, t1]. Next insert
y(x,t1) as a new initial condition in (13), to optimize next the process on [t1, ts].
In this way, we have to solve K single optimal short horizon control problems
with P control variables uyy, .. ., upg, each. However, the problems are nonlinear,
since the boundary condition is nonlinear (notice that o = «(x,y) depends on
the state y). Even if the boundary condition would be linear with respect to v,
ie. a = a(zr) (or & = a(z,t)), the mapping u +— y is still nonlinear (bilinear),
because the product yu appears in the boundary condition of (13).



We resolve this difficulty by several manipulations. First of all, we introduce
the right hand side of the boundary condition in (13) as a new auxiliary control
v, i.e. on [0, 7] we put

vi(t) = wi()ele, y(, 1) (yn — y(z, 1)), (14)

where u;(t) denotes the step function being equal to u;, on Ij. From now on, we
search controls v;(t) subject to the linear boundary condition

9y
I v;(t) on I3},
i = 1(1) K. The v;(t) are approximated by step functions. To this aim, we consider

partitions of Iy = (tx—1, x| into L smaller subintervals having equidistant length
T = (ty — tx_1)/L and define

Ikzl = (tkfl =+ (l — 1)7’, tkfl + lT) = (tkfl,lfl,tkflyl), k = 1(1)K, l = 1(1)L

Finally, these are the intervals, where we really apply the idea of instantaneous
control. The optimization is started on I;; = (tg, %y + 7) to obtain optimal values
D11, © = 1(1)P. Define yo1(z) = y(z,t + 7) as the new initial temperature for
I5. Next the v;12 are determined, and we put yoo(z) := y(z, to + 27). Proceeding
in this way, linear short-time optimal control problems (OCSy;) are solved for
kE=11)K,1l=1(1)L,

(OCSk) min  y(zo, tk)
subject to
9y :
a Ay in 2 x Iy, (15)
Y(@, te—1,-1) = Yp—1,-1(x) in £2,
3_72/1 =0 on I x Iy,

y(@1,te—1y) — y(z2, te—1y) < c,

Qi <v; <0, 1 =1(1)P.

The optimal controls of (OCSy;) are denoted by #x;. Moreover, we put yx_1 () :=
y(x,tg—1,), if | < L, and yxo(x) = y(x,tk—1,0). It remains to define the values
gixi- We preselect some characteristic points &; € I; (say midpoints of I in some
sense) and regard formula (14) at y = y_1,-1(%;) with maximal control value
u = +1. This should result in the minimum heat flux

Gikt =1 (@i, Yk—1,-1(2:)) (Y1 — Yr—1,-1(Z4))- (16)



After having exhausted the whole interval [0,7] by the optimization process,
we compose the auxiliary controls T, to suboptimal controls @, i = 1(1)P,
k =1(1)K, as follows: Motivated by (14), resolving for u;(t), we define

Upgi = Ukti ) (Y(Zis ti—13-1)) (Y — Y( iy Te—1,-1)),
Uiy = Ui/ (Y (&, te-12)) (Y — y(&i, te—1y))-

Finally, the mean values

_|_ —
_ Uprs + Urps
Upii = kls 5 kls ’
are taken to compose
L —
> L gy
Uy ="=——, i=1(1)P. (17)

>l
I=1

The principle of superposition can be used to efficiently generate the problems
(OCSyy)- On Iy, the solution y of (15) is represented in the form

y(@,t) = yr(z, 1) + Y vin vila, t), (18)

=1

where y; solves the heat equation subject to dyr/on = 0 and yr(z,tg—1,-1) =
Yk—1,-1(x), while the response functions y; solve the heat equation on Ij; with
homogeneous initial condition and boundary condition dy;/0n = x(I3).

We notice that y;(x,t) does not depend on k and [, because y;(z,t) = z;(z,t—
tk—1,—1) holds, where, for i = 1(1)P,

%:Azi in 2 x (0,7),
zi(z,0)=0 on {2, (19)
% = x([3) on I} x (0,7).

After having solved the P parabolic problems (19) at the beginning of the compu-
tations, the functions z; can be taken to define y; on all Iy;. In this way, (OCSy;)
is given by

P
min Z v; 2i (T, T)
i=1

subject to

v; (zi(@1, T) — 2i(x2, 7)) < ¢+ yr(xo, te—1y) — yr(z1, te1y),
Qi <v; <0, 1 =1(1)P.

M

~
Il
—



As the z(z;,t), j=1,2,3, have been determined at the beginning, only the val-
ues yr(za, tk—14), yr(z1,tk—1,), and g must be updated during the optimization
process. This drastically reduces the number of PDE solves.

The application to the concrete example of cooling steel is based on the same

type of ideas. However, we need some essential modifications since the heat equa-
tion will be nonlinear and the constraints are more complex. The suboptimal
method, despite of all its heuristics, delivered surprisingly precise results, [31].
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