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Abstract. Second-order sufficient optimality conditions are established for the optimal control of
semilinear elliptic and parabolic equations with pointwise constraints on the control and the state. In
contrast to former publications on this subject, the cone of critical directions is the smallest possible
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spatial domains of dimension two and one, respectively.
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1. Introduction. In this paper, we essentially improve the theory of second-
order sufficient optimality conditions for state-constrained optimal control problems
of elliptic and parabolic type. We derive second-order sufficient conditions that are
as close as possible to the associated necessary ones. In this way, we are able to
complete the theory of second-order sufficient conditions for this class of problems, if
the dimension of the spatial domain is sufficiently small.

For the theory of nonconvex differentiable mathematical programming in finite-
dimensional spaces, second-order sufficient optimality conditions are indispensible
both in the numerical analysis and for reliable numerical methods. If second-order
information is not available, then local minima will not in general be stable and nu-
merical methods will most likely not converge. For instance, the convergence analysis
of SQP methods relies heavily on second-order conditions.

In the numerical analysis of nonlinear optimal control problems, second-order
sufficient optimality conditions are even more important. If they are not satisfied,
then the (strong) convergence of optimal controls or states and/or error estimates for
numerical discretizations of the problems can hardly be shown. Also other types of
perturbations are difficult to handle without second-order conditions.

As it is well known from the calculus of variations and the control theory for
nonlinear ordinary differential equations, the theory of second-order conditions is more
delicate and rich in function spaces. We mention, for instance, the work by Maurer [20]
or Maurer and Zowe [21]. In particular, the well-known two-norm discrepancy occurs
that essentially complicates the analysis, cf. the expositions in Ioffe [16] or Malanowski
[18]. For the important but more difficult case of pointwise state constraints in the
control of ordinary differential equations, we refer to Malanowski [19] and to the
references therein.
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At present, the control of distributed parameter systems with pointwise state
constraints is a very active field of research. Although the majority of papers is still
devoted to convex problems with linear equations, the important case of nonlinear
state equations is attracting more interest. Here, second-order conditions are needed.
However, when pointwise state constraints are imposed, the situation is more compli-
cated, since the Lagrange multipliers associated with them are measures. In contrast
to the theory for ordinary differential equations, this causes severe restrictions on the
dimension of the spatial domains of the equations and reduces the regularity of the
adjoint state.

To our best knowledge, there exist only two contributions to the theory of second-
order sufficient conditions for distributed problems with pointwise state constraints.
The elliptic case was discussed in [12], while parabolic problems were investigated in
[22]. The method of these papers was inspired by the splitting technique used in [11].
Applied to pointwise state constraints, the cones of critical directions established by
this technique are too large so that the second-order sufficient conditions are based
on slightly too strong assumptions. Moreover, the method was fairly complicated.

For other contributions to second-order optimality conditions for distributed pa-
rameter systems we mention, for instance, the work by Bonnans [3] and the exposition
in the monography by Bonnans and Shapiro [4] on elliptic problems with control con-
straints. We also refer to [9], where second-order necessary optimality conditions were
first treated for elliptic problems and to Casas and Mateos [7], who considered elliptic
problems with control constraints and state constraints of integral type. Moreover,
we refer to the references therein.

In our new paper, the sufficiency of second-order conditions is proven by a method
that is close to the theory of nonlinear optimization in finite-dimensional spaces. We
establish a cone of critical directions that is sharp, i.e. it is the one, closest to the
cone for establishing second-order necessary conditions.

We present a detailed proof for the case of distributed elliptic problems in domains
of spatial dimension n ≤ 3. Moreover, we briefly sketch the extension of this result
to elliptic boundary control problems for n ≤ 2 and to the parabolic distributed case
for n = 1.

2. Problem statement. Let Ω be an open and bounded domain in Rn, n ≤ 3,
with a Lipschitz boundary Γ. In this domain we consider the following state equation{

Ay + f(x, y) = u in Ω,
y = 0 on Γ, (2.1)

where f : Ω × R −→ R is a Carathéodory function and A denotes a second-order
elliptic operator of the form

Ay(x) = −
n∑

i,j=1

∂xj
(aij(x)∂xi

y(x))

and the coefficients aij ∈ L∞(Ω) satisfy

λA‖ξ‖2 ≤
n∑

i,j=1

aij(x)ξiξj ∀ξ ∈ Rn, for a.e. x ∈ Ω,

for some λA > 0. In (2.1), the function u denotes the control and yu is the solution
associated to the control u. We will state later the conditions leading to the existence
and uniqueness of a solution of (2.1) in C(Ω̄) ∩H1(Ω).
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In this paper, we study the following optimal control problem

(P)



minJ(u) =
∫

Ω

L(x, yu(x), u(x)) dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω))× L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

g(x, yu(x)) ≤ 0 ∀x ∈ K,

where α(x) < β(x) for almost all x ∈ Ω, α, β ∈ L∞(Ω), and K ⊂ Ω̄ is a compact set.
Let us state the assumptions on the functions L, f and g.
(A1) f is of class C2 with respect to the second variable,

f(·, 0) ∈ L2(Ω),
∂f

∂y
(x, y) ≥ 0 for a.e. x ∈ Ω

and for all M > 0 there exists a constant Cf,M > 0 such that∣∣∣∣∂f∂y (x, y)
∣∣∣∣ +

∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ Cf,M for a.e. x ∈ Ω and |y| ≤M.

|∂
2f

∂y2
(x, y2)−

∂2f

∂y2
(x, y1)| ≤ Cf,M |y2 − y1| for |y1|, |y2| ≤M and for a.e. x ∈ Ω.

(A2) L : Ω×(R×R) −→ R is a Carathéodory function of class C2 with respect to the
second and third variables, L(·, 0, 0) ∈ L1(Ω), and for all M > 0 there is a constant
CL,M > 0 and a function ψM ∈ L2(Ω) such that∣∣∣∣∂L∂u (x, y, u)

∣∣∣∣ +
∣∣∣∣∂L∂y (x, y, u)

∣∣∣∣ ≤ ψM (x), ‖D2
(y,u)L(x, y, u)‖ ≤ CL,M ,

‖D2
(y,u)L(x, y2, u2)−D2

(y,u)L(x, y1, u1)‖ ≤ CL,M (|y2 − y1|+ |u2 − u1|),

for a.e. x ∈ Ω and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)L denotes the second

derivative of L with respect to (y, u).

(A3) The function g : K × R −→ R is continuous, of class C2 with respect to the
second variable and ∂yg, and ∂2

yg are also continuous functions in K × R. Moreover
we will assume that g(x, 0) < 0 is satisfied for every x ∈ K ∩ Γ.

The following result on the existence of a solution holds true for (2.1) as well as
for problem (P):

Theorem 2.1. Suppose that (A1) holds. Then, for every u ∈ L2(Ω), the state
equation (2.1) has a unique solution yu ∈ C(Ω̄) ∩ H1

0 (Ω). Furthermore, if uk ⇀ u
weakly in L2(Ω), then yuk

→ yu strongly in C(Ω̄) ∩H1
0 (Ω).

The existence of a unique solution of (2.1) in H1(Ω) ∩ L∞(Ω) is classical. It is
a consequence of the monotonicity of f with respect to the second component. The
continuity of yu is also a well known result; see for instance [15]. The continuity
property is a consequence of the compactness of the inclusion L2(Ω) ⊂W−1,p(Ω) for
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any p < 6 and the fact that data u ∈ W−1,p(Ω), with 6/5 < p < 6, provide solutions
in C(Ω̄) ∩H1

0 (Ω), the mapping u→ yu being continuous between these spaces.
Theorem 2.2. Let the function L be convex with respect to the third component

and the set of feasible controls be nonempty. Then, under assumptions (A1)-(A3),
the control problem (P) has at least one solution.

The proof of this theorem can be obtained by standard arguments. We refer, for
instance, to [25], Thm. 5.8.

Remark 2.3. We should remark that the differentiability of the functions f , L
and g is not necessary to prove the previous theorems. In fact, the only properties we
need are the continuity of g and f with respect to the second variable, the continuity
of L with respect to the second and third variables, the monotonicity of f with respect
to y, the convexity of L with respect to u and, for every M > 0, the existence of two
functions φf,M ∈ L2(Ω) and φL,M ∈ L1(Ω) such that

|f(x, y)| ≤ φf,M (x) and |L(x, y, u)| ≤ φL,M (x) for a.e. x ∈ Ω and |y|, |u| ≤M.

These properties are an immediate consequence of the assumptions (A1)-(A3).
We finish this section by recalling some results about the differentiability of the

non linear mappings involved in the control problem. For the detailed proofs, the
reader is referred to Casas and Mateos [7].

Theorem 2.4. If (A1) holds, then the mapping G : L2(Ω) −→ C(Ω̄) ∩H1
0 (Ω),

defined by G(u) = yu is of class C2. Moreover, for all v, u ∈ L2(Ω), zv = G′(u)v is
defined as the solution of  Azv +

∂f

∂y
(x, yu)zv = v in Ω

zv = 0 on Γ.
(2.2)

Finally, for every v1, v2 ∈ L2(Ω), zv1v2 = G′′(u)v1v2 is the solution of Azv1v2 +
∂f

∂y
(x, yu)zv1v2 +

∂2f

∂y2
(x, yu)zv1zv2 = 0 in Ω

zv1v2 = 0 on Γ,
(2.3)

where zvi = G′(u)vi, i = 1, 2.
Remark 2.5. This theorem shows why we assume n ≤ 3: To prove Theorem

4.1 on second-order sufficient conditions, we need that the operator G is differentiable
from L2(Ω) to C(Ω̄). This result holds only true for n ≤ 3.

The proof can be obtained by the implicit function theorem; see, for instance, [7,
Theorem 2.5] for the proof in the case of a Neumann problem, which can be translated
straightforward to the Dirichlet case.

Theorem 2.6. Suppose that (A1) and (A2) hold. Then J : L∞(Ω) → R is a
functional of class C2. Moreover, for every u, v, v1, v2 ∈ L∞(Ω)

J ′(u)v =
∫

Ω

(
∂L

∂u
(x, yu, u) + ϕ0u

)
v dx (2.4)

and

J ′′(u)v1v2 =
∫

Ω

[
∂2L

∂y2
(x, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕ0u

∂2f

∂y2
(x, yu)zv1zv2

]
dx,

(2.5)
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where yu = G(u) and ϕ0u ∈W 2,p(Ω) is the unique solution of the problem A∗ϕ+
∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) in Ω

ϕ = 0 on Γ,
(2.6)

A∗ being the adjoint operator of A and zvi = G′(u)vi, i = 1, 2.
Let us remark that the linear and quadratic functionals J ′(u) and J ′′(u) can be

extended from L∞(Ω) to L2(Ω) by the formulas (2.4) and (2.5). To check this point
it is enough to use the assumptions (A1) and (A2). This extension will be used in
the rest of the paper.

The previous theorem and the next one follow easily from Theorem 2.4 and the
chain rule.

Theorem 2.7. Suppose that (A1) and (A3) hold. Then the mapping F :
L2(Ω) → C(K), defined by F (u) = g(·, yu(·)), is of class C2. Moreover, for every
u, v, v1, v2 ∈ L2(Ω)

F ′(u)v =
∂g

∂y
(·, yu(·))zv(·) (2.7)

and

F ′′(u)v1v2 =
∂2g

∂y2
(·, yu(·))zv1(·)zv2(·) +

∂g

∂y
(·, yu(·))zv1v2(·) (2.8)

where zvi = G′(u)vi, i = 1, 2, and zv1v2 = G′′(u)v1v2.
Remark 2.8. A functional L that is very frequently appearing in the applications

is given by

L(x, y, u) = L0(x, y) +
N

2
u2.

In this case, the functional J is twice differentiable not only in L∞(Ω), but also in
L2(Ω). Indeed, J : L2(Ω) −→ R is of class C2 and the derivatives are given by the
expressions

J ′(u)v =
∫

Ω

(Nu(x) + ϕ0u) v dx (2.9)

and

J ′′(u)v1v2 =
∫

Ω

[
∂2L0

∂y2
(x, yu)zv1zv2 +Nv1v2 − ϕ0u

∂2f

∂y2
(x, yu)zv1zv2

]
dx. (2.10)

Remark 2.9. The adjoint state ϕ0u allows us to get a simple expression of J ′(u)
but it is not the complete adjoint state of the control problem because the adjoint
state equation (2.6) does not include the Lagrange multiplier associated to the state
constraint; see equation (3.2) below for the full definition.

3. First order optimality conditions. We define the Hamiltonian associated
with the problem (P), Hλ : Ω× R3 −→ R, by

Hλ(x, y, u, ϕ) = λ · L(x, y, u) + ϕ [u− f(x, y)].



6 EDUARDO CASAS AND JUAN CARLOS DE LOS REYES AND FREDI TRÖLTZSCH

We denote by M(K) the Banach space of all real and regular Borel measures in
K, which is identified with the dual space of C(K).

In the rest of the paper, a local minimum of (P) is assumed to be a local solution
in the sense of the topology of L∞(Ω). More precisely, we will say that ū is a local
minimum or a local solution of (P) in the sense of Lq(Ω), 1 ≤ q ≤ ∞, if it is an
admissible control of (P) and there exists εū > 0 such that the minimum of J in the
admissible set of (P) intersected with the ball B̄εū(ū) ⊂ Lq(Ω) is achieved at ū.

The following result concerning the Pontryagin’s principle for problem (P) is well
known; look into [8] and [17] as well as in the references therein for the proof.

Theorem 3.1. Let ū be a local solution of (P) and suppose that the assumptions
(A1)–(A3) hold. Then there exist a real number λ̄ ≥ 0, a measure µ̄ ∈M(K) and a
function ϕ̄ ∈W 1,s

0 (Ω), for all 1 ≤ s < n/(n− 1), such that

λ̄+ ‖µ̄‖ > 0 (3.1)

 A∗ϕ̄+
∂f

∂y
(x, ȳ(x))ϕ̄ = λ̄

∂L

∂y
(x, ȳ, ū) +

∂g

∂y
(x, ȳ(x))µ̄ in Ω,

ϕ̄ = 0 on Γ,
(3.2)

∫
K

(z(x)− g(x, ȳ(x))dµ̄(x) ≤ 0 ∀z ∈ C(K) such that z(x) ≤ 0 ∀x ∈ K, (3.3)

H λ̄(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[αεū (x),βεū (x)]

H λ̄(x, ȳ(x), t, ϕ̄(x)) for a.e. x ∈ Ω, (3.4)

where

αεū(x) = max{α(x), ū(x)− εū} and βεū(x) = min{β(x), ū(x) + εū},

assumed that ū is a minimum of (P) in the ball B̄εū(ū) ⊂ L∞(Ω). Moreover, if the
following linearized Slater condition holds

∃u0 ∈ L∞(Ω),with α(x) ≤ u0(x) ≤ β(x) for a.e. x ∈ Ω, such that

g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))zu0−ū(x) < 0 ∀x ∈ K, (3.5)

where ȳ is the state associated to ū and zu0−ū = G′(ū)(u0− ū), then the choice λ̄ = 1
can be made.

¿From now on, we take λ̄ = 1 and denote the Hamilton function for short by
H := H1.

Remark 3.2. Together with the inequality g(x, ȳ(x)) ≤ 0, relation (3.3) is equiv-
alent to the well-known complementarity conditions

g(x, ȳ(x)) ≤ 0 ∀x ∈ K, µ̄ ≥ 0 in M(K), and
∫

K

g(x, ȳ(x)) dµ̄(x) = 0.

It is also well known that (3.3) implies that µ̄ is a positive measure concentrated on
the set of points

K0 = {x ∈ K : g(x, ȳ(x)) = 0};
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see, for instance, the references given before the statement of the previous theorem.
From this property and Assumption (A3), we deduce that µ̄(K ∩ Γ) = 0.

Remark 3.3. By using elementary calculus, we obtain from (3.4) that

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x))(k − ū(x)) ≥ 0 ∀k ∈ [α(x), β(x)], (3.6)

and

∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ 0 if

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = 0, (3.7)

for a.e. x ∈ Ω. On the other hand, notice that

∂2L

∂u2
(x, y, u) =

∂2H

∂u2
(x, y, u, ϕ). (3.8)

The inequality (3.6) implies that

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) ≥ 0 if ū(x) = α(x),

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) ≤ 0 if ū(x) = β(x),

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = 0 if α(x) < ū(x) < β(x).

(3.9)

Reciprocally we also deduce from (3.6)
ū(x) = α(x) if

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) > 0,

ū(x) = β(x) if
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) < 0.

(3.10)

The properties given by (3.8) and (3.9) are satisfied almost everywhere in Ω.
Remark 3.4. If we consider ū in Theorem 3.1 to be a local minimum of (P) in

the sense of Lq(Ω), 1 ≤ q < +∞, then (3.4) can be written in the form, see [8],

H λ̄(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[α(x),β(x)]

H λ̄(x, ȳ(x), t, ϕ̄(x)) for a.e. x ∈ Ω.

Let us formulate the Lagrangian version of the optimality conditions (3.2)-(3.4).
The Lagrange function L : L∞(Ω) ×M(K) −→ R associated to the problem (P) is
defined by

L(u, µ) = J(u)+
∫

K

g(x, yu(x)) dµ(x) =
∫

Ω

L(x, yu(x), u(x)) dx+
∫

K

g(x, yu(x)) dµ(x).

Using (2.4) we find that

∂L
∂u

(u, µ)v =
∫

Ω

(
∂L

∂u
(x, yu(x), u(x)) + ϕu(x)

)
v(x) dx =

∫
Ω

Hu(x)v(x) dx, (3.11)

where

Hu(x) =
∂H

∂u
(x, yu(x), u(x), ϕ(x)) (3.12)



8 EDUARDO CASAS AND JUAN CARLOS DE LOS REYES AND FREDI TRÖLTZSCH

and ϕu ∈W 1,s
0 (Ω), for all 1 ≤ s < n/(n− 1), is the solution of the Dirichlet problem A∗ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) +

∂g

∂y
(x, yu(x))µ in Ω

ϕ = 0 on Γ.
(3.13)

Notice that the subscript u in yu and Hu has a different meaning. While yu is used
to indicate that y is the state associated with u, Hu denotes the partial derivative of
H with respect to u. This short notation for partial derivatives is frequently used in
the following and will not cause confusion. Later, we also write Huu, Hyu, or Hyu for
∂2H/∂u2, ∂2H/∂y∂u etc.

If we insert (ȳ(x), ū(x), ϕ̄(x)) in the expression (3.12), then we denote Hu(x) by
H̄u(x).

Now the inequality (3.6) along with (3.11) leads to

∂L
∂u

(ū, µ̄)(u− ū) ≥ 0 if α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω, (3.14)

for any local solution ū, where ȳ is the associated state and ϕ̄ is the adjoint state
given by (3.2), provided that (3.5) holds.

Before finishing this section we provide the expression of the second derivative of
the Lagrangian with respect to the control, which will be used in the next section.
From (2.8) we get

∂2L
∂u2

(u, µ)v1v2 = J ′′(u)v1v2

+
∫

K

[
∂2g

∂y2
(x, yu(x))zv1(x)zv2(x) +

∂g

∂y
(x, yu(x))zv1v2(x)

]
dµ(x).

By (2.5), this is equivalent to

∂2L
∂u2

(u, µ)v1v2 =
∫

Ω

[
∂2L

∂y2
(x, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕu

∂2f

∂y2
(x, yu)zv1zv2

]
dx

+
∫

K

∂2g

∂y2
(x, yu(x))zv1(x)zv2(x) dµ(x), (3.15)

where ϕu is the solution of (3.13).

4. Second-order optimality conditions. Let ū be a feasible control of prob-
lem (P) and ȳ be the associated state. We assume that there exist µ̄ ∈ M(K) and
ϕ̄ ∈W 1,s

0 (Ω), 1 ≤ s < n/(n−1), such that (3.2)-(3.4) are satisfied. As in the previous
section, we use the notation

H̄u(x) :=
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)).

The partial derivative of H with respect to y at (x, ȳ(x), ū(x), ϕ̄(x) is denoted analo-
gously by H̄y(x).
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Associated with ū, we define the cone of critical directions by

Cū = {h ∈ L2(Ω) : h satisfies (4.1), (4.2) and (4.3)},

h(x) =

 ≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if H̄u(x) 6= 0,

(4.1)

∂g

∂y
(x, ȳ(x))zh(x) ≤ 0 if g(x, ȳ(x)) = 0, (4.2)∫

K

∂g

∂y
(x, ȳ(x))zh(x) dµ̄(x) = 0. (4.3)

If we think in terms of the finite dimensional-case, the inequality (4.2) says that
the derivative of the state constraint in the direction h is non positive if the constraint
is active and (4.3) states that this derivative is zero whenever the corresponding
Lagrange multiplier is strictly positive. The relations (4.2)-(4.3) provide a convenient
extension of the usual conditions in the finite-dimensional case.

We should mention that (4.3) is new in the context of infinite-dimensional opti-
mization problems. In earlier papers on this subject, other extensions to the infinite-
dimensional case were suggested. For instance, Maurer and Zowe [21] used first-order
sufficient conditions to consider strict positivity of Lagrange multipliers. Inspired by
their approach, in [12] an application to state-constrained elliptic boundary control
was suggested. In terms of our problem, the equation (4.3) was relaxed by∫

K

∂g

∂y
(x, ȳ(x))zh(x) dµ̄(x) ≥ −ε

∫
Ω\Ωτ

|h(x)| dx

for some ε > 0, cf. [12], (5.15). Here, Ωτ ⊂ Ω is the set of points, where |H̄u(x)| ≥ τ
holds true. We will prove that this relaxation is not necessary, which leads to a smaller
cone of critical directions that seems to be optimal.

The sufficient second-order optimality conditions are given by the expressions
(4.4) and (4.5) in the next theorem.

Theorem 4.1. Let ū a feasible control of problem (P), ȳ the associated state and
(ϕ̄, µ̄) ∈ W 1,s

0 (Ω) ×M(K), for all 1 ≤ s < n/(n − 1), satisfying (3.2)-(3.4). Assume
further that there exist two constants ω > 0 and τ > 0 such that

∂2L

∂u2
(x, ȳ(x), ū(x)) ≥ ω if |H̄u(x)| ≤ τ, for a.e. x ∈ Ω, (4.4)

∂2L
∂u2

(ū, µ̄)h2 > 0 ∀h ∈ Cū \ {0}. (4.5)

Then there exist ε > 0 and δ > 0 such that for every admissible control u of problem
(P) the following inequality holds

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) if ‖u− ū‖L∞(Ω) < ε. (4.6)

Remark 4.2. Thanks to (3.8), we can compare the second-order necessary con-
dition (3.7) with the sufficient one given by (4.4). We do not only require the strict
positivity on the second derivative of the Hamiltonian with respect to the control at
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the points where the first derivative vanishes, as in the finite dimensional case. We
also impose the second derivative to be strictly positive whenever the first derivative
is “small”. This is the usual case when we pass from finite to infinite dimension. For
an instructive example the reader is referred to [14].

Inequality (4.4) is satisfied if the second derivative of L with respect to u is strictly
positive for any (y, u, ϕ) ∈ R3 and almost all x ∈ Ω. This assumption implies that
L is strictly convex with respect to u. We recall that the convexity of L with respect
to u was necessary to prove the existence of an optimal control. Under this strict
convexity assumption, the sufficient second-order optimality conditions are reduced to
(4.5). This is the case when L(x, y, u) = L0(x, y) +Nu2/2 if N > 0.

The condition (4.5) seems to be natural. In fact, under some regularity assump-
tion, we can expect the inequality

∂2L
∂u2

(ū, µ̄)h2 ≥ 0 ∀h ∈ Cū

to be a necessary condition for local optimality. At least this is the case when the state
constraints are of integral type, see [7], or when K is a finite set of points, see [6].

Proof of Theorem 4.1. We argue by contradiction. Suppose that ū does not satisfy
the quadratic growth condition (4.6). Then there exists a sequence {uk}∞k=1 ⊂ L2(Ω)
of feasible controls of (P) such that uk → ū in L∞(Ω) and

J(ū) +
1
k
‖uk − ū‖2L2(Ω) > J(uk) ∀k. (4.7)

Let us take

ρk = ‖uk − ū‖L2(Ω) and hk =
1
ρk

(uk − ū).

Since ‖hk‖L2(Ω) = 1, we can extract a subsequence, denoted in the same way, such
that hk ⇀ h weakly in L2(Ω). Now we split the proof in several steps.

Step 1: ∂L
∂u (ū, µ̄)h = 0. In the following, we write yk = yuk

.. Since uk is feasible, it
holds that g(x, yk(x)) ≤ 0 for every x ∈ K. By using (3.3) and (4.7) we obtain

J(ū) +
1
k
‖uk − ū‖2L2(Ω) = L(ū, µ̄) +

1
k
‖uk − ū‖2L2(Ω) > J(uk) ≥ L(uk, µ̄). (4.8)

¿From the mean value theorem we know that

L(uk, µ̄) = L(ū, µ̄) + ρk
∂L
∂u

(vk, µ̄)hk,

with vk a point between ū and uk. This identity and (4.8) imply

∂L
∂u

(vk, µ̄)hk <
1
kρk

‖uk − ū‖2L2(Ω) =
1
k
‖uk − ū‖L2(Ω).

Since hk ⇀ h weakly in L2(Ω), vk → ū in L∞(Ω), yvk
→ ȳ in C(Ω̄) ∩ H1

0 (Ω) and
ϕvk

→ ϕ̄ in W 1,s
0 (Ω) ⊂ L2(Ω) for s close to n/(n − 1), we deduce from the above

inequality and the expression of the derivative of the Lagrangian given by (3.11) that

∂L
∂u

(ū, µ̄)h = lim
k→∞

∂L
∂u

(vk, µ̄)hk ≤ 0. (4.9)
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On the other hand, since α(x) ≤ uk(x) ≤ β(x) holds for almost all x ∈ Ω, we deduce
from the variational inequality (3.14)

∂L
∂u

(ū, µ̄)hk = ρk
∂L
∂u

(ū, µ̄)(uk − ū) ≥ 0,

which implies

∂L
∂u

(ū, µ̄)h = lim
k→∞

∂L
∂u

(vk, µ̄)hk ≥ 0.

This inequality, along with (4.9), leads to

∂L
∂u

(ū, µ̄)h = 0. (4.10)

Step 2: h ∈ Cū. We have to confirm (4.1)–(4.3). The set of functions of L2(Ω) that
are nonnegative if ū(x) = α(x) and nonpositive if ū(x) = β(x), almost everywhere, is
convex and closed. Therefore, it is weakly closed. Moreover uk − ū obviously belongs
to this set, thus every hk also does. Consequently, h belongs to the same set. Then
(3.10), together with (3.12), implies∫

Ω

|H̄u(x)h(x)| dx =
∫

Ω

H̄u(x)h(x) dx =
∂L
∂u

(ū, µ̄)h = 0,

hence h(x) = 0 if H̄u(x) 6= 0, which concludes the proof of (4.1).
Let us prove (4.2). From Theorem 2.4 we have

zh = G′(ū)h = lim
k→∞

(yū+ρkhk
− ȳ)

ρk
in C(Ω̄) ∩H1

0 (Ω),

which implies for every x ∈ K such that g(x, ȳ(x)) = 0

∂g

∂y
(x, ȳ(x))zh(x) = lim

k→∞

[g(x, yū+ρkhk
(x))− g(x, ȳ(x))]
ρk

≤ 0. (4.11)

The last inequality follows from the fact that uk is feasible, ū + ρkhk = uk, and
consequently g(x, yū+ρkhk

(x)) = g(x, yuk
(x)) ≤ 0 for every x ∈ K.

Finally, we prove (4.3). Taking z = g(·, yuk
(·)) in (3.3), we get∫

K

∂g

∂y
(x, ȳ(x))zh(x) dµ̄(x) = lim

k→∞

1
ρk

∫
K

[g(x, yū+ρkhk
(x)− g(x, ȳ(x))] dµ̄(x) =

lim
k→∞

1
ρk

∫
K

[g(x, yuk
(x))− g(x, ȳ(x))] dµ̄(x) ≤ 0. (4.12)

On the other hand, from (4.7) we find

J ′(ū)h = lim
k→∞

J(ū+ ρkhk)− J(ū)
ρk

= lim
k→∞

J(uk)− J(ū)
ρk

≤ lim
k→∞

ρk

k
= 0. (4.13)

Then (4.10), (4.12), (4.13) and the fact that

∂L
∂u

(ū, µ̄)h = J ′(ū)h+
∫

K

∂g

∂y
(x, ȳ(x))zh(x) dµ̄(x),
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imply that

J ′(ū)h =
∫

K

∂g

∂y
(x, ȳ(x))zh(x) dµ̄(x) = 0.

Thus (4.3) holds and we know h ∈ Cū.

Step 3: h = 0. Taking into account (4.5), it is enough to prove that

∂2L
∂u2

(ū, µ̄)h ≤ 0. (4.14)

For this purpose, we evaluate the Lagrangian. By a second-order Taylor expansion,
we derive

L(uk, µ̄) = L(ū, µ̄) + ρk
∂L
∂u

(ū, µ̄)hk +
ρ2

k

2
∂2L
∂u2

(wk, µ̄)h2
k, (4.15)

wk being an intermediate point between ū and uk. From here we get

ρk
∂L
∂u

(ū, µ̄)hk +
ρ2

k

2
∂2L
∂u2

(ū, µ̄)h2
k

= L(uk, µ̄)− L(ū, µ̄) +
ρ2

k

2

[
∂2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(wk, µ̄)
]
h2

k. (4.16)

Now (4.8) can be written

L(uk, µ̄)− L(ū, µ̄) ≤ ρ2
k

k
. (4.17)

On the other hand, taking into account the expression (3.15) of the second derivative
of the Lagrangian, the assumptions (A1)-(A3) and theorems 2.1 and 2.4, and the
fact that uk → ū in L∞(Ω) and ‖hk‖L2(Ω) = 1, we obtain∣∣∣∣[∂2L

∂u2
(ū, µ̄)− ∂2L

∂u2
(wk, µ̄)

]
h2

k

∣∣∣∣ ≤ ‖∂
2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(wk, µ̄)‖B(L2(Ω))‖hk‖2L2(Ω)

= ‖∂
2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(wk, µ̄)‖B(L2(Ω)) → 0 when k →∞, (4.18)

where B(L2(Ω)) is the space of quadratic forms in L2(Ω).
Let us define

Ωτ = {x ∈ Ω : |H̄u(x)| > τ}.

¿From (3.10) and the definition of hk we know that H̄u(x)hk(x) ≥ 0 in Ω, therefore

∂L
∂u

(ū, µ̄)hk =
∫

Ω

H̄u(x)hk(x) dx ≥
∫

Ωτ

|H̄u(x)||hk(x)| dx ≥ τ

∫
Ωτ

|hk(x)| dx. (4.19)

For any ε > 0 we can take kε such that

‖ρkhk‖L∞(Ω) = ‖ū− uk‖L∞(Ω) < ε ∀k ≥ kε, for a.e. x ∈ Ω,
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therefore

ρ2
kh

2
k(x)
ε

≤ ρk|hk(x)| ∀k ≥ kε, for a.e. x ∈ Ω.

¿From this inequality and (4.19) it follows that

ρk
∂L
∂u

(ū, µ̄)hk ≥ ρkτ

∫
Ωτ

|hk(x)| dx ≥ ρ2
kτ

ε

∫
Ωτ

h2
k(x) dx. (4.20)

Collecting (4.16)-(4.18) and (4.20) and dividing by ρ2
k/2 we obtain for any k ≥ kε

2τ
ε

∫
Ωτ

h2
k(x) dx+

∂2L
∂u2

(ū, µ̄)h2
k ≤

2
k

+ ‖∂
2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(wk, µ̄)‖B(L2(Ω)). (4.21)

Next, we study the left hand side of this inequality. First of all let us notice that from
(3.15) we obtain for any v ∈ L2(Ω)

∂2L
∂u2

(ū, µ̄)v2 =
∫

Ω

[
H̄uu(x)v2(x) + 2H̄uy(x)zv(x)v(x) + H̄yy(x)z2

v(x)
]
dx

+
∫

K

∂2g

∂y2
(x, ȳ(x))z2

v(x) dµ̄(x),

where

H̄uu(x) =
∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x))

and H̄uy and H̄yy are defined analogously. We also remind that

H̄uu(x) =
∂2L

∂u2
(x, ȳ(x), ū(x)). (4.22)

Then we have

2τ
ε

∫
Ωτ

h2
k(x) dx+

∂2L
∂u2

(ū, µ̄)h2
k

=
∫

Ωτ

(
2τ
ε

+ H̄uu(x)
)
h2

k(x) dx+
∫

Ω\Ωτ

H̄uu(x)h2
k(x) dx

+
∫

Ω

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
dx

+
∫

K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dµ̄(x). (4.23)

From assumptions (A1)-(A3) we deduce the existence of C > 0 such that
|H̄uu(x)| ≤ C for a.e. x ∈ Ω. Therefore we can take ε > 0 small enough so that
the following inequality holds

2τ
ε

+ H̄uu(x) ≥ 2τ
ε
− C > 0 for a.e. x ∈ Ωτ .

Thus

lim inf
k→∞

∫
Ωτ

(
2τ
ε

+ H̄uu(x)
)
h2

k(x) dx ≥
∫

Ωτ

(
2τ
ε

+ H̄uu(x)
)
h2(x) dx. (4.24)
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Moreover from (4.4) we have that H̄uu(x) ≥ ω > 0 in Ω \ Ωτ , therefore we also get

lim inf
k→∞

∫
Ω\Ωτ

H̄uu(x)h2
k(x) dx ≥

∫
Ω\Ωτ

H̄uu(x)h2(x) dx. (4.25)

Finally, taking into account that zhk
→ zh strongly in C(Ω̄) ∩H1

0 (Ω), we deduce
from (4.21)-(4.24) and (4.18)∫

Ωτ

(
2τ
ε

+ H̄uu(x)
)
h2(x) dx+

∫
Ω\Ωτ

H̄uu(x)h2(x) dx

+
∫

Ω

[2H̄uy(x)h(x)zh(x) + H̄yy(x)z2
h(x)]dx+

∫
K

∂2g

∂y2
(x, ȳ(x))z2

h(x) dµ̄(x) ≤ 0. (4.26)

This expression can be written as follows

2τ
ε

∫
Ωτ

h2(x) dx+
∂2L
∂u2

(ū, µ̄)h2 ≤ 0,

which along with (4.5) and the fact that h ∈ Cū implies that h = 0.

Step 4: hk → 0 strongly in L2(Ω). We have already proved that hk ⇀ 0 weakly in
L2(Ω), therefore zhk

→ 0 strongly in C(Ω̄) ∩H1
0 (Ω). By using (4.21) and (4.23) and

the fact that ‖hk‖L2(Ω) = 1 we conclude

0 < min{ω, 2τ
ε
− C} = min{ω, 2τ

ε
− C} lim sup

k→∞

∫
Ω

h2
k(x) dx

≤ lim sup
k→∞

{∫
Ωτ

(
2τ
ε

+ H̄uu(x)
)
h2

k(x) dx+
∫

Ω\Ωτ

H̄uu(x)h2
k(x) dx

}

≤ lim sup
k→∞

{
2
k

+ ‖∂
2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(wk, µ̄)‖B(L2(Ω))

−
∫

K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dµ̄(x)−

∫
Ω

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
dx

}
= 0.

Thus we have got the contradiction.
There is a very interesting particular case of (P) where Theorem 4.1 has a stronger

formulation.
Theorem 4.3. Assume that L(x, y, u) = L0(x, y) +Nu2/2, with N > 0. If ū is

a feasible control of problem (P), ȳ is the associated state, (ϕ̄, µ̄) ∈W 1,s
0 (Ω)×M(K),

for all 1 ≤ s < n/(n − 1), and (ȳ, ū, ϕ̄, µ̄) satisfies (3.2)-(3.4) and (4.5), then there
exist ε > 0 and δ > 0 such that for every admissible control u of problem (P) the
following inequality holds

J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u) if ‖u− ū‖L2(Ω) < ε. (4.27)
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We have already mentioned in Remark 4.2 that the first-order optimality condi-
tions along with (4.5) are sufficient for optimality when L(x, y, u) = L0(x, y)+Nu2/2,
with N > 0. But the above theorem includes another very important information.
Relation (4.27) says that ū is a strict local minimum of (P) in L2(Ω). The fact that
the control appears linearly in the state equation and quadratically in the cost func-
tional allows us to get sufficient optimality conditions for a local minimum not only in
L∞(Ω) but also in L2(Ω). This fact is very important in the analysis of stability and
convergence of numerical algorithms to solve (P). The proof of Theorem 4.3 follows
the same arguments and steps than those given in the proof of Theorem 4.1. The
essential fact is that the functional J is of class C2 in L2(Ω); see Remark 2.8.

5. Bilateral state constraints. In this section we will consider the extension
of the control problem to the case of bilateral state constraints. More precisely we
formulate the control problem as follows

(P)



minJ(u) =
∫

Ω

L(x, yu(x), u(x)) dx

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω))× L∞(Ω),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

ga(x) ≤ g(x, yu(x)) ≤ gb(x) ∀x ∈ K,

where ga, gb : K 7→ R are continuous functions and ga(x) < gb(x) for every x ∈ K. We
assume the same hypotheses as in the previous sections. All the previous theorems
remain valid with some obvious modifications that we are going to mention. The
Slater assumption required in Theorem 3.5 is now formulated as follows

∃u0 ∈ L∞(Ω),with α(x) ≤ u0(x) ≤ β(x) for a.e. x ∈ Ω, such that

ga(x) < g(x, ȳ(x)) +
∂g

∂y
(x, ȳ(x))zu0−ū(x) < gb(x) ∀x ∈ K. (5.1)

Under this assumption, Theorem 3.1 remains valid except for (3.3) which is writ-
ten now in the following way∫

K

(z(x)− g(x, ȳ(x))dµ̄(x) ≤ 0 ∀z ∈ C(K) with ga(x) ≤ z(x) ≤ gb(x) ∀x ∈ K. (5.2)

From (5.2) we deduce that µ̄ is concentrated at the set of points K0 where the
state constraint is active

K0 = K− ∪K+ = {x ∈ K : g(x, ȳ(x)) = ga(x)} ∪ {x ∈ K : g(x, ȳ(x)) = gb(x)}.

Now the Lagrange multiplier µ̄ is not necessarily a positive measure. However, its
Jordan decomposition into nonnegative measures µ̄+, µ̄− is as follows

µ̄ = µ̄+ − µ̄−, with supp(µ̄+) ⊂ K+ and supp(µ̄−) ⊂ K−.

The cone of critical directions Cū is formed by the functions h ∈ L2(Ω) satisfying
(4.1) and
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∂g

∂y
(x, ȳ(x))zh(x) ≤ 0 if g(x, ȳ(x)) = gb(x), (5.3)

∂g

∂y
(x, ȳ(x))zh(x) ≥ 0 if g(x, ȳ(x)) = ga(x), (5.4)∫

K

|∂g
∂y

(x, ȳ(x))zh(x)| d|µ̄|(x) = 0, (5.5)

where |µ̄| = µ̄+ + µ̄−. Then Theorem 4.1 is still true and the only changes of the
proof appear in the steps 1 and 2. In particular, (4.8) can be rewritten with the help
of (3.3) in the following way

L(ū, µ̄) +
1
k
‖uk − ū‖2L2(Ω) −

∫
K

g(x, ȳ(x)) dµ̄(x) = J(ū) +
1
k
‖uk − ū‖2L2(Ω)

> J(uk) ≥ L(uk, µ̄)−
∫

K

g(x, ȳ(x)) dµ̄(x) ≥ L(uk, µ̄)

and the proof can continue as in Theorem 4.1.
On the other hand, relation (4.11) in step 2 must be replaced by

∂g

∂y
(x, ȳ(x))zh(x) =

{
≤ 0 ∀x ∈ K+,
≥ 0 ∀x ∈ K−.

(5.6)

Relations (4.12) and (4.13) remain valid. Finally, using (4.10) and (5.6) we deduce
the identity (5.5) as follows∫

K

|∂g
∂y

(x, ȳ(x))zh(x)| d|µ̄|(x) = −
∫

K

∂g

∂y
(x, ȳ(x))zh(x) dµ̄(x) = J ′(ū)h = 0.

6. Elliptic boundary control.

6.1. Problem statement. The method of the preceding sections can be ex-
tended to other types of equations in a straightforward way. Here, we discuss the case
of boundary control, while the next section is devoted to a one-dimensional distributed
parabolic control problem. Instead of the equation (2.1), we consider now{

Ay + f(x, y) = 0 in Ω,
∂νy + γ y = u on Γ, (6.1)

where ∂ν denotes the conormal-derivative associated with A and γ ∈ L∞(Γ) is non-
negative with γ 6≡ 0. In contrast to Section 1, we assume here that n = 2. We need
this stronger assumption, since now the control-to-state mapping G must be twice
continuously differentiable from L2(Γ) to C(Ω̄), cf. Remark 2.5. The differential
operator A is defined as in Section 1.

We consider the optimal boundary control problem

(PB)



minJ(u) =
∫

Ω

L(x, yu(x)) dx+
∫

Γ

`(x, yu(x), u(x)) ds(x)

subject to (yu, u) ∈ (C(Ω̄) ∩H1(Ω))× L∞(Γ),

α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Γ,

g(x, yu(x)) ≤ 0 ∀x ∈ K.

(6.2)
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Here, α, β are now functions from L∞(Γ) with α(x) ≤ β(x) for a.a. x ∈ Γ, ds denotes
the surface measure on Γ, yu is the solution of (6.1) associated with u ∈ L2(Γ), and
K ⊂ Ω̄ is again a compact set.

The following assumptions are imposed on the data: We assume (A1)–(A3) on
f, L, and g (where, of course, the dependence of L on u in (A2) is redundant).
Moreover, we require:
(A4) The function ` : Γ× (R×R) −→ R satisfies Assumption (A2) with ` substituted
for L and Γ substituted for Ω.

Remark 6.1. We confine ourselves to a linear boundary condition. An extension
to a nonlinear condition of the type ∂νy + b(x, y) = u is possible under associated
assumptions on b. On the other hand, the assumption γ 6≡ 0, that allows to deduce
the existence of a unique solution of (6.1), can be replaced by

∂f

∂y
(x, t) > 0 for all x ∈ E and t ∈ R,

where E is a measurable subset of Ω with a strictly positive measure.
The proof of the next theorems is completely analogous to that of Theorem 2.2

and Theorem 2.4; see Alibert and Raymond [1].
Theorem 6.2. Suppose that (A1) holds. Then, for every u ∈ L2(Γ), the state

equation (6.1) has a unique solution yu ∈ C(Ω̄) ∩ H1(Ω). Furthermore, if uk ⇀ u
weakly in L2(Γ), then yuk

→ yu strongly in C(Ω̄) ∩H1(Ω).
Notice that controls of L2(Γ) are transformed continuously to states in the Hölder

space C0,κ(Ω) with some 0 < κ < 0, cf. Stampacchia [23], Thm. 14.2. The second
part of the statement is an immediate conclusion.

Theorem 6.3. Assume that (A1)-(A4) are fulfilled, the function ` is convex
with respect to the third component and the set of feasible controls is nonempty. Then
the control problem (PB) has at least one solution.

The proof can be performed by standard methods.

6.2. Necessary optimality conditions. We first state results on the first- and
second-order derivatives of the control-to-state mapping G(u) = yu and of the reduced
objective functional J . The results are analogous to the theorems 2.6–2.7 so that we
only collect them without proof, since the associated modifications are obvious. Under
the assumptions (A1)-(A4), all mappings listed below are of class C2 from L∞(Γ) to
their respective image spaces. The associated derivatives can be obtained as follows:

We define, for v ∈ L2(Γ), the function zv as the unique solution to Azv +
∂f

∂y
(x, yu)zv = 0 in Ω

∂νzv + γzv = v on Γ.
(6.3)

Then G′ is given by G′(u)v = zv. Moreover, for v1, v2 ∈ L2(Γ), we introduce zvi =
G′(u)vi, i = 1, 2, and obtain G′′(u)v1v2 = zv1v2 where zv1v2 is the solution to Azv1v2 +

∂f

∂y
(x, yu)zv1v2 +

∂2f

∂y2
(x, yu)zv1zv2 = 0 in Ω

∂νzv1v2 + γ zv1v2 = 0 on Γ.
(6.4)

The adjoint state ϕ0u ∈ H1
0 (Ω) associated with u and J is introduced as the unique
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solution to 
A∗ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω

∂νϕ+ γ ϕ =
∂`

∂y
(x, yu, u) on Γ.

(6.5)

It holds that

J ′(u)v =
∫

Γ

(
∂`

∂u
(x, yu, u) + ϕ0u

)
v ds, (6.6)

J ′′(u)v1v2 =
∫

Ω

[
∂2L

∂y2
(x, yu, u)zv1zv2 − ϕ0u

∂2f

∂y2
(x, yu)zv1zv2

]
dx

+
∫

Γ

[
∂2`

∂y2
(x, yu, u)zv1zv2 +

∂2`

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2`

∂u2
(x, yu, u)v1v2

]
ds.

(6.7)

Under (A1) and (A3), the mapping F : L2(Γ) → C(K), defined by F (u) =
g(·, yu(·)), is of class C2. For every u, v, v1, v2 ∈ L2(Γ), its first- and second-order
derivatives are given again by (2.7) and (2.8), respectively.

Now we introduce the Hamiltonian H by

H(x, y, u, ϕ) = `(x, y, u) + ϕ [u− γ y].

The first-order necessary conditions admit the following form:
Theorem 6.4. Let ū be a local solution of (PB). Suppose that the assumptions

(A1)–(A4) hold and assume the linearized Slater condition (3.5) with some u0 ∈
L∞(Γ), α(x) ≤ u0(x) ≤ β(x) for a.e. x ∈ Γ. Then there exists a measure µ̄ ∈M(K)
and a function ϕ̄ ∈W 1,s(Ω) for all 1 ≤ s < n/(n− 1) such that

A∗ϕ̄+
∂f

∂y
(x, ȳ(x))ϕ̄ =

∂L

∂y
(x, ȳ, ū) +

∂g

∂y
(x, ȳ(x))µ̄|Ω in Ω,

∂νϕ̄+ γ ϕ̄ =
∂g

∂y
(x, ȳ(x))µ̄|Γ on Γ,

(6.8)

∫
K

(z(x)− g(x, ȳ(x))dµ̄(x) ≤ 0 ∀z ∈ C(K) such that z(x) ≤ 0 ∀x ∈ K, (6.9)

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
t∈[αεū (x),βεū (x)]

H(x, ȳ(x), t, ϕ̄(x)) for a.e. x ∈ Γ, (6.10)

where αεū and βεū are defined similarly as in Theorem 3.1 and µ̄|Ω and µ̄|Γ denote
the restrictions of µ to Ω and Γ, respectively,

At the optimal point, the derivatives of H fulfil the relations (3.6) – (3.10) with
obvious modification: We have to substitute x ∈ Γ for x ∈ Ω. Moreover, we have to
replace (3.8) by

∂2`

∂u2
(x, y, u) =

∂2H

∂u2
(x, y, u, ϕ). (6.11)
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The Lagrangian function L : L∞(Γ) ×M(K) −→ R associated to the problem (PB)
is defined by

L(u, µ) =
∫

Ω

L(x, yu(x)) dx+
∫

Γ

`(x, yu(x), u(x)) ds+
∫

K

g(x, yu(x)) dµ(x).

Using (6.6) we deduce that

∂L
∂u

(u, µ)v =
∫

Γ

Hu(x)v(x) ds, (6.12)

where

Hu(x) =
∂H

∂u
(x, y(x), u(x), ϕu(x)) (6.13)

and ϕu is obtained from the adjoint equation (6.8), where yu is substituted for ȳ, u for
ū, and µ for µ̄, respectively. We finally indicate the expression for the second-order
derivative of L,

∂2L
∂u2

(u, µ)v1v2 =
∫

Ω

[
∂2L

∂y2
(x, yu)zv1zv2 − ϕu

∂2f

∂y2
(x, yu)zv1zv2

]
dx

+
∫

Γ

[
∂2`

∂y2
(x, yu, u)zv1zv2 +

∂2`

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2`

∂u2
(x, yu, u)v1v2

]
ds

+
∫

K

∂2g

∂y2
(x, yu(x))zv1(x)zv2(x) dµ(x), (6.14)

where ϕu is defined as after (6.13).

6.3. Second-order sufficient optimality conditions. Let ū be a feasible con-
trol of problem (PB) and ȳ be the associated state. We assume that there exist
µ̄ ∈ M(K) and ϕ̄ ∈ W 1,s

0 (Ω), 1 ≤ s < n/(n − 1), such that the first-order necessary
conditions (6.8)-(6.10) are satisfied. Associated with ū, we introduce the function

H̄u(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x))

and define the cone of critical directions by

Cū = {h ∈ L2(Γ) : h satisfies (4.1)– (4.3) with x ∈ Γ}. (6.15)

Notice that this cone is only formally the same as in (4.1)– (4.3), since x varies here
through Γ. The second-order sufficient condition admits now the following form:

Theorem 6.5. Assume that n = 2 and let ū be a feasible control of problem
(PB), ȳ the associated state and (ϕ̄, µ̄) ∈W 1,s(Ω)×M(K), for all 1 ≤ s < n/(n− 1),
satisfying (6.8)-(6.10). Let there exist two constants ω > 0 and τ > 0 such that

∂2`

∂u2
(x, ȳ(x), ū(x)) ≥ ω if |H̄u(x)| ≤ τ, for a.e. x ∈ Γ, (6.16)

∂2L
∂u2

(ū, µ̄)h2 > 0 ∀h ∈ Cū \ {0}, (6.17)
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where Cū is defined in (6.15) and ∂2L/∂u2 is taken from (6.14) with u := ū and
µ := µ̄.

Then there exist ε > 0 and δ > 0 such that, for every admissible control u of
problem (PB), the following inequality holds:

J(ū) +
δ

2
‖u− ū‖2L2(Γ) ≤ J(u) if ‖u− ū‖L∞(Γ) < ε. (6.18)

Proof. The proof is almost identical with the one of Theorem 4.1. Therefore, we
only mention, where essential changes occur.

Throughout the proof, we have to perform the obvious modification that L2(Γ),
L∞(Γ) and H1(Ω) must be substituted for L2(Ω), L∞(Ω), and H1

0 (Ω), respectively.
Moreover, in some integrals, Ω must obviously be replaced by Γ. Then the steps 1
and 2 can be adopted without further changes.

Step 3: The arguments up to (4.18) do not need changes. Next, we modify Ωτ by

Γτ = {x ∈ Γ : |H̄u(x)| > τ}.

Hereafter, Ω and Ωτ are replaced by Γ and Γτ , respectively. In (4.22), ` must be
substituted for L, and in equation (4.23) we add the integral over ∂2L/∂u2 to arrive
at

2τ
ε

∫
Γτ

h2
k(x) ds+

∂2L
∂u2

(ū, µ̄)h2
k

=
∫

Γτ

(
2τ
ε

+ H̄uu(x)
)
h2

k(x) ds+
∫

Γ\Γτ

H̄uu(x)h2
k(x) ds

+
∫

Γ

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
ds

+
∫

K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dµ̄(x) +

∫
Ω

∂2L

∂y2
(x, ȳ(x))z2

hk
(x) dx. (6.19)

Analogously, this term must be added to the left-hand side of (4.26)..
Step 4: First, we conclude from hk ⇀ 0 in L2(Γ) that zhk

→ 0 strongly in C(Ω̄).
Proceeding as in the former Step 4, we finally conclude with

0 < lim sup
k→∞

{
2
k

+ ‖∂
2L
∂u2

(ū, µ̄)− ∂2L
∂u2

(wk, µ̄)‖B(L2(Γ))

−
∫

K

∂2g

∂y2
(x, ȳ(x))z2

hk
(x) dµ̄(x)−

∫
Ω

∂2L

∂y2
(x, ȳ(x))z2

hk
(x) dx

−
∫

Ω

[
2H̄uy(x)zhk

(x)hk(x) + H̄yy(x)z2
hk

(x)
]
dx

}
= 0.

7. The parabolic case.

7.1. Problem statement. Finally we prove that our method can also be ex-
tended to one-dimensional parabolic problems with distributed control. This ex-
tension is addressed here. To define the parabolic problem, we consider the one-
dimensional domain Ω = (a, b) and the time interval [0,T] for given T > 0. We fix
an initial value y0 ∈ C[a, b] and introduce the set Q = (a, b) × (0, T ). Moreover, we
introduce the space W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) : dy

dt ∈ L
2(0, T ;H1(Ω)′)}.
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Remark 7.1. Again, the restriction on the dimension of Ω comes from the
requirement that the control-to-state mapping is of class C2 from L2(Q) to C(Q̄).
This holds only true for n = 1. We should mention here that boundary controls
cannot be handled by our approach. Neumann boundary data from L2(0, T ) are not
in general transformed into continuous states.

The parabolic equation is defined by
dy

dt
+Ay + f(x, t, y) = u in (a, b)× (0, T ),

−∂xy(a, t) = 0 in (0, T ),
∂xy(b, t) = 0 in (0, T ),
y(·, 0) = y0 in (a, b),

(7.1)

where ∂x denotes the partial derivative with respect to x. The associated optimal
control problem is

(PP)



minJ(u) =
∫ T

0

∫ b

a

L(x, t, yu(x, t), u(x, t)) dxdt+
∫ b

a

r(x, y(x, T )) dx

+
∫ T

0

`a(t, yu(a, t)) dt+
∫ T

0

`b(t, yu(b, t)) dt

subject to (yu, u) ∈ (C(Q̄) ∩W (0, T ))× L∞(Q),

α(x, t) ≤ u(x, t) ≤ β(x, t) for a.e. (x, t) ∈ Q,

g(x, t, yu(x, t)) ≤ 0 ∀(x, t) ∈ K.

(7.2)

Here, α, β are functions from L∞(Q) with α(x, t) ≤ β(x, t) for a.a. (x, t) ∈ Q, yu is
the solution of (7.1) associated with u ∈ L2(Q), and K ⊂ Q̄ is a compact set.

The following assumptions are required:
(A5) The function f : Q × R −→ R satisfies the modification of Assumption (A1)
that is obtained by substituting Q for Ω, and (x, t) for x, respectively.

(A6) The function L : Q × (R × R) −→ R satisfies the modified assumption (A2)
obtained by substituting Q for Ω, and (x, t) for x, respectively.

(A7) The function g : K × R −→ R is continuous, is of class C2 with respect to the
second variable and ∂yg, and ∂2

yg are also continuous functions in K × R. Moreover,
the strict inequality

g(x, 0, y0(x)) < 0 (7.3)

holds for every x ∈ K ∩ Ω̄.

(A8) The functions `k : [0, T ] × R −→ R, k ∈ {a, b}, are Carathéodory functions of
class C2 with respect to the second variable with `k(·, 0) ∈ L1(0, T ). For all M > 0,
there exist a constant CM > 0 and a function ψM ∈ L2(0, T ) such that∣∣∣∣∂`k∂u (t, y)

∣∣∣∣ ≤ ψM (x),
∣∣∣∣∂2`k
∂y2

(t, y)
∣∣∣∣ ≤ CM ,∣∣∣∣∂2`k

∂y2
(t, y2)−

∂2`k
∂y2

(t, y1)
∣∣∣∣ ≤ CM |y2 − y1|,
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holds for k ∈ {a, b}, for a.e. t ∈ [0, T ] and |y|, |yi| ≤M , i = 1, 2.
Analogously, r : [a, b] × R −→ R is a Carathéodory function of class C2 with

respect to the second variable with r(·, 0) ∈ L1(a, b). It satisfies the assumptions on
`k above with `k replaced by r, (a, b) substituted for (0, T ) and x substituted for t.

For the parabolic equation, the following result on existence and regularity holds
true:

Theorem 7.2. Suppose that (A5) is satisfied. Then, for every u ∈ L2(Q), the
state equation (7.1) has a unique solution yu ∈ C(Q̄) ∩W (0, T ). If uk ⇀ u weakly in
L2(Q), then yuk

→ yu strongly in C(Q̄).
The proof of the theorem is postponed to Section 7.4.
Theorem 7.3. Assume that (A5)-(A8) are fulfilled, the function L is convex

with respect to the third component and the set of feasible controls is nonempty. Then
the control problem (PP) has at least one solution.

This theorem is a standard consequence of Theorem 7.2.

7.2. Necessary optimality conditions. Also here, the control-to-state map-
ping G(u) = yu, G : L2(Q) → C(Q̄) ∩W (0, T ), and the reduced objective functional
J are of class C2 from L∞(Q) to their image spaces, provided that the assumptions
(A5)-(A8) are satisfied. Since this is known, see [5], we state the associated deriva-
tives for convenience below.

We define, for v ∈ L2(Q), the function zv as the unique solution to

dzv

dt
+Azv +

∂f

∂y
(x, t, yu)zv = v in Q,

−∂xzv(a, t) = 0 in (0, T ),

∂xzv(b, t) = 0 in (0, T ),

y(x, 0) = 0 in (a, b).

(7.4)

Then G′(u), G : L2(Q) → C(Q̄) ∩W (0, T ) is given by G′(u)v = zv. Moreover, for
v1, v2 ∈ L2(Q), we introduce zvi

= G′(u)vi, i = 1, 2, and obtain G′′(u)v1v2 = zv1v2 ,
where zv1v2 is the solution to

dzv1v2

dt
+Azv1v2 +

∂f

∂y
(x, t, yu)zv1v2 +

∂2f

∂y2
(x, t, yu)zv1zv2 = 0 in Q,

−∂xzv1v2(a, t) = 0 in (0, T ),
∂xzv1v2(b, t) = 0 in (0, T ),
zv1v2(x, 0) = 0 in (a, b).

(7.5)
The adjoint state ϕ0u ∈W (0, T ) associated with u and J is introduced as the unique
solution to

−dϕ
dt

+A∗ϕ+
∂f

∂y
(x, t, yu)ϕ =

∂L

∂y
(x, t, yu, u) in Q,

−∂xϕ(a, t) =
∂`a
∂y

(t, yu(a, t)) in (0, T ),

∂xϕ(b, t) =
∂`b
∂y

(t, yu(b, t)) in (0, T ),

ϕ(x, T ) =
∂r

∂y
(x, yu(x, T )) in (a, b).

(7.6)
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We have that

J ′(u)v =
∫

Q

(
∂L

∂u
(x, t, yu, u) + ϕ0u

)
v dxdt, (7.7)

J ′′(u)v1v2 =
∫

Q

[
∂2L

∂y2
(x, t, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, t, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, t, yu, u)v1v2 − ϕ0u

∂2f

∂y2
(x, t, yu)zv1zv2

]
dxdt,

+
∫ T

0

∂2`a
∂y2

(t, yu(a, t))zv1(a, t)zv2(a, t) dt

+
∫ T

0

∂2`b
∂y2

(t, yu(b, t))zv1(b, t)zv2(b, t) dt

+
∫

Ω

∂2r

∂y2
(x, yu(x, T ))zv1(x, T )zv2(x, T ) dx.

(7.8)
We require the following linearized Slater condition: There exists u0 ∈ L∞(Q)

with α(x, t) ≤ u0(x, t) ≤ β(x, t) for a.e. (x, t) ∈ Q such that

g(x, t, ȳ(x, t)) +
∂g

∂y
(x, t, ȳ(x, t))zu0−ū(x, t) < 0 ∀(x, t) ∈ K. (7.9)

Notice that we have assumed (7.3), since this is needed to satisfy (7.9). The Hamil-
tonian H is defined by

H(x, t, y, u, ϕ) = L(x, t, y, u) + ϕ [u− f(x, t, y)],

and the first-order necessary conditions admit the following form (see Casas [5]).
Theorem 7.4. Let ū be a local solution of (PP). Suppose that the assump-

tions (A5)–(A8) hold and assume the Slater condition (7.9) with some u0 ∈ L∞(Q),
α(x, t) ≤ u0(x, t) ≤ β(x, t) for a.e. (x, t) ∈ Q. Then there exists a measure µ̄ ∈M(K)
and a function ϕ̄ ∈ Lτ (0, T ;W 1,σ(Ω)), for all τ, σ ∈ [1, 2) with 1

τ + 1
σ > 3

2 such that

−dϕ̄
dt

+A∗ϕ+
∂f

∂y
(x, t, ȳ) ϕ̄ =

∂L

∂y
(x, t, ȳ, ū) +

∂g

∂y
(x, t, ȳ)µ̄|Q ,

−∂xϕ̄(a, t) =
∂`a
∂y

(t, yu(a, t)) +
∂g

∂y
(a, t, ȳ(a, t))µ̄|{a}×(0,T )

,

∂xϕ̄(b, t) =
∂`b
∂y

(t, ȳ(b, t)) +
∂g

∂y
(b, t, ȳ(b, t))µ̄|{b}×(0,T )

,

ϕ̄(x, T ) =
∂r

∂y
(x, ȳ(x, T )) +

∂g

∂y
(x, T, ȳ(x, T ))µ̄|Ω×{T}

(7.10)
for a.a. x ∈ (a, b), t ∈ (0, T ), where µ̄|Q , µ̄|{a}×(0,T )

, µ̄|{b}×(0,T )
, and µ̄|Ω×{T} denote

the restrictions of µ to Q, {a} × (0, T ), {b} × (0, T ), and Ω× {T}, respectively,∫
K

(z(x, t)−g(x, t, ȳ(x, t))dµ̄(x, t) ≤ 0 ∀z ∈ C(K) with z(x, t) ≤ 0 ∀(x, t) ∈ K, (7.11)

and, for almost all (x, t) ∈ Q,

H(x, t, ȳ(x, t), ū(x, t), ϕ̄(x, t)) = min
s∈[αεū (x,t),βεū (x,t)]

H(x, t, ȳ(x, t), s, ϕ̄(x, t)), (7.12)
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where αεū and βεū are defined along these lines of Theorem 3.1.
The Lagrange function is defined in a standard way by

L(u, µ) =
∫

Q

L(x, t, yu(x, t), u(x, t)) dxdt+
∫ T

0

`a(t, yu(a, t)) dt

+
∫ T

0

`b(t, yu(b, t)) dt+
∫

K

g(x, t, yu(x, t)) dµ(x, t).

For convenience, we only establish the second-order derivative of L:

∂2L
∂u2

(u, µ)v1v2 =∫
Q

[
∂2L

∂y2
(x, t, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, t, yu, u)(zv1v2 + zv2v1) +

∂2L

∂u2
(x, t, yu, u)v1v2

−ϕu
∂2f

∂y2
(x, t, yu)zv1zv2

]
dxdt+

∫
Ω

∂2r

∂y2
(x, yu(x, T ))zv1(x, T )zv2(x, T ) dx

+
∫ T

0

[
∂2`a
∂y2

(t, yu(a, t))zv1(a, t)zv2(a, t) +
∂2`b
∂y2

(t, yu(b, t))zv1(b, t)zv2(b, t)
]
dt

+
∫

K

∂2g

∂y2
(x, t, yu(x, t))zv1(x)zv2(x) dµ̄(x, t),

(7.13)
where ϕu is the solution of (7.10), where u is taken for ū, yu instead of ȳ, and µ for
µ̄.

7.3. Second-order sufficient optimality conditions. The prerequisites of
the preceding section at hand, the extension of the second-order sufficient optimality
conditions to the parabolic case is straightforward. We define the cone of critical
directions associated with ū by

Cū = {h ∈ L2(Q) : h satisfies (7.14), (7.15) and (7.16) below},

h(x, t) =

 ≥ 0 if ū(x, t) = α(x, t),
≤ 0 if ū(x, t) = β(x, t),
= 0 if H̄u(x, t) 6= 0,

(7.14)

∂g

∂y
(x, t, ȳ(x, t))zh(x, t) ≤ 0 if g(x, t, ȳ(x, t)) = 0, (7.15)∫

K

∂g

∂y
(x, t, ȳ(x, t))zh(x, t) dµ̄(x, t) = 0. (7.16)

The sufficient second-order optimality conditions for ū are stated in the following
result:

Theorem 7.5. Let ū be a feasible control of problem (PP) that satisfies, together
with the associated state ȳ and (ϕ̄, µ̄) ∈ Lτ (0, T ;W 1,σ(Ω))×M(K) for all τ, σ ∈ [1, 2)
with 1

τ + 1
σ > 3

2 , the first-order conditions (7.10)-(7.12). Assume in addition that there
exist two constants ω > 0 and τ > 0 such that

∂2L

∂u2
(x, t, ȳ(x, t), ū(x, t)) ≥ ω if |H̄u(x, t)| ≤ τ, for a.e. (x, t) ∈ Q, (7.17)

∂2L
∂u2

(ū, µ̄)h2 > 0 ∀h ∈ Cū \ {0}. (7.18)
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Then there exist ε > 0 and δ > 0 such that, for every admissible control u of problem
(PP), the following inequality holds

J(ū) +
δ

2
‖u− ū‖2L2(Q) ≤ J(u) if ‖u− ū‖L∞(Q) < ε. (7.19)

The proof is analogous to the one of Theorem 4.1. We have to perform obvious mod-
ifications that are along the ones explained in the proof of Theorem 6.5. Therefore,
we skip these details.

7.4. Proof of Theorem 7.2. To prepare the proof of Theorem 7.2, we first
state some results on maximal parabolic regularity of the elliptic differential operator
A. In the one-dimensional case we study here, A admits the form

A =
∂

∂x
[a11(·)

∂

∂x
].

Let us consider A on its natural domain

D := D(A) =
{
w ∈ H2(Ω) :

∂w

∂x
(a) =

∂w

∂x
(b) = 0

}
(7.20)

that is dense in L2(Ω). It is known that, for all τ ∈ (0, 1),

D(Aτ ) =

 H2τ (Ω) ∩
{
w :

∂w

∂x
(a) =

∂w

∂x
(b) = 0

}
, if τ > 3

4

H2τ (Ω), if τ < 3
4 ,

cf. [24]. In particular, we have D(A
1
2 ) = H1(Ω). To shorten the notation, we write

below S := (0, T ) with closure S̄. Moreover, for a Banach space X ⊂ L1(Ω) and
1 < p <∞, we introduce the space

W 1,p(S,X) =
{
y ∈ Lp(S,X) :

∂y

∂t
∈ Lp(S,X)

}
.

It is known that, for all 1 < p < ∞, A exhibits maximal parabolic Lp(S,Lp(Ω))-
regularity. This means that, for all f ∈ Lp(S,Lp(Ω)), there is a unique solution
y ∈W 1,p(S,Lp(Ω)) ∩ Lp(S,D(A)) of

∂y

∂t
+Ay = f in S, y(0) = 0, (7.21)

where the differential equation is to be understood in the distributional sense, cf.
[13]. Here, the definition of D(A) must be adapted by replacing W 2,p(Ω) for H2(Ω)
in (7.20). In all what follows, we apply this result with p = 2 for X = H := L2(Ω).
Therefore, for all f ∈ L2(S,H) ∼= L2(Q), there is a unique solution y ∈W 1,2(S,H) ∩
L2(S,D) of (7.21). The mapping f 7→ y is surjective, hence continuous.

Our proof relies on the following result:
Lemma 7.6. For all 0 < τ < η < 1 and κ = η−τ

2η , there holds the continuous
injection W 1,2(S,H) ∩ L2(S,D) ↪→ Cκ(S,Hτ (Ω)).
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Proof. We show first that W 1,2(S,H) ↪→ C
1
2 (S,H). To this aim, let y ∈

W 1,2(S,H) and t, s ∈ S̄ be given. Then

‖y(t)− y(s)‖H =
∥∥∥ t∫

s

y′(ρ) dρ
∥∥∥

H
≤

t∫
s

‖y′(ρ)‖H dρ

≤
( t∫

s

‖y′(ρ)‖2H dρ
) 1

2
( t∫

s

dρ
) 1

2 ≤ ‖y‖W 1,2(S,H) |t− s| 12

verifies the injection claimed above. Next, we prove the statement of the Lemma. We
denote by [·, ·]θ the complex interpolation functor, see Triebel [24]. It follows from [2],
Chpt. III, Thm. 4.10.2 and [24], Chpt. 1.8 that the continuous injection

W 1,2(S,H) ∩ L2(S,D) ↪→ C(S̄, [H,D]1/2) = C(S̄,H1(Ω)) (7.22)

takes place. The interpolation identity [H,D]1/2 = H1(Ω) is well known and can be
found, for instance, in [24].

We fix now τ and η by 0 < τ < η < 1/2 and put λ = τ/η. Then we obtain with
a generic constant c that

‖y(t)− y(s)‖[H,D]τ

|t− s| 12 (1−λ)
≤ c

‖y(t)− y(s)‖[H,[H,D]η]λ

|t− s| 12 (1−λ)
(7.23)

≤ c
‖y(t)− y(s)‖1−λ

H

|t− s| 12 (1−λ)
‖y(t)− y(s)‖λ

[H,D]η

≤ c

(
‖y(t)− y(s)‖H

|t− s| 12

)1−λ

‖y(t)− y(s)‖λ
[H,D]η

, (7.24)

where we have applied the complex re-iteration theorem, [24], Chpt. 1.9.3. In the
last estimate, the first factor is bounded, since W 1,2(S,H) ↪→ C

1
2 (S,H). In view of

the injection (7.22) and [H,D]η = H2η(Ω) with 0 < 2η < 1, the second factor can be
estimated by

‖y(t)− y(s)‖λ
[H,D]η

≤ c ‖y(t)− y(s)‖λ
H2η(Ω) ≤

(
2c ‖y‖C(S̄,H2η(Ω))

)λ

≤
(
c ‖y‖C(S̄,H1(Ω))

)λ

≤ c ‖y‖λ
W 1,2(S,H)∩L2(S,D).

In the last estimate, we have used the embedding (7.22). Moreover, we took advantage
of the equivalence of the norms of [H,D]η and H2η(Ω). Therefore, the second factor
in (7.24) is bounded too. The statement of the Lemma follows now from (7.24) after
inserting τ := 2τ , η := 2η, [H,D]τ = H2τ (Ω) and κ = 1

2 (1− λ) in (7.23).

Proof of Theorem 7.2: The existence result of Theorem 7.2 is well known, we refer to
Casas [5]. Therefore, we only show that weakly converging sequences of controls are
transformed to strongly converging sequences of states.

Let a sequence (uk) be given that converges weakly in L2(Q) to u. Consider the
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equation for yk and uk

∂yk

∂t
+Ayk + f(x, yk) = uk, in Q

∂yk

∂x
(a, t) = 0, in S

∂yk

∂x
(b, t) = 0 in S

yk(0) = y0, in Ω.

Standard arguments show yk ⇀ y in W (0, T ) ∩ C(Q̄), where y = yu. The functions
yk are uniformly bounded in C(Q̄), hence the sequence

(
d(·, yk)

)
is bounded in L2(Q)

and we can select a weakly converging subsequence indexed by kl. We write fk =
uk − d(·, yk) and split yk = v + wk, where wk solves

∂wk

∂t
+Awk = fk

with homogeneous inital and boundary conditions, while v solves

∂v

∂t
+Av = 0

with inhomogeneous initial condition v(0) = y0 and homogeneous boundary condi-
tions. Thanks to Lemma 7.6, the sequence (wkl

) converges weakly in Cκ(S,Hτ (Ω)),
where κ > 0 and τ > 1/2 can be chosen. Therefore, the functions wkl

belong to a
space Cσ(Q̄) with some positive σ so that, by compact embedding into C(Q̄), the se-
quence converges strongly in C(Q̄). Consequently, ykl

= v+wkl
converges strongly in

C(Q̄) towards y. Moreover, it follows by standard arguments that y = yu. Since this
holds for all subsequences with the same limit y, the whole sequence (yk) converges
uniformly to yu. �

Acknowledgement. The authors are grateful to J. Rehberg (Weierstrass Insti-
tute Berlin (WIAS)) for pointing out the proof of Lemma 7.6.
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