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Introduction

In this paper, we survey second-order optimality conditions for the following
slightly simplified class of optimal control problems:

Minimize
1

2

∫
Q

(y(x, t)− yQ(x, t))2 dxdt+
γ

2

∫
Ω

(y(x, T )− yT (x))2 dx

+
ν

2

∫
Q

u2(x, t) dxdt

(1.1)

subject to the parabolic state equation
∂y

∂t
(x, t)−∆y(x, t) +R(x, t, y(x, t)) = u(x, t) in Q

y(x, t) = 0 on Σ

y(x, 0) = y0(x) in Ω

(1.2)

and to the pointwise control constraints

a ≤ u(x, t) ≤ b for almost all (x, t) ∈ Q. (1.3)

Here, Ω ⊂ RN , N ∈ N, is a bounded Lipschitz domain with boundary Γ ; T > 0 is
a fixed terminal time and we set Q = Ω × (0, T ), and Σ = Γ × (0, T ).

In the optimal control problem, constants ν ≥ 0, γ ≥ 0, −∞ < a < b < +∞
and desired state functions yQ ∈ Lp(Q) with p > N/2 + 1, yT ∈ L∞(Ω), are given.

The function y, the state of the control system, is defined as weak solution of
(1.2), while the control function u is assumed to be bounded and measurable. The
nonlinearity R : Q × R → R (”reaction term”) is assumed to be a Carathéodory
function of class C2 with respect to the second variable and satisfies the following
assumptions{

R(·, ·, 0) ∈ Lp(Q), p > N/2 + 1, and

∃CR ∈ R such that
∂R

∂y
(x, t, y) ≥ CR for a.a. (x, t) ∈ Q and ∀y ∈ R, (1.4)


∀M > 0 ∃CM > 0 such that∣∣∣∣∂jR∂yj (x, t, y)

∣∣∣∣ ≤ CM for a.a. (x, t) ∈ Q, ∀|y| ≤M and j = 1, 2,
(1.5)


∀ρ > 0 ∃ε > 0 such that∣∣∣∣∂2R

∂y2
(x, t, y2)− ∂2R

∂y2
(x, t, y1)

∣∣∣∣ < ρ ∀(x, t) ∈ Q and |y2 − y1| < ε.
(1.6)

These assumptions include in particular functions R : R −→ R of class C2 that
are monotone non-decreasing, a standard case in the optimal control of semilinear
parabolic equations. Moreover, polynomials of odd order,

R(y) = aky
k + . . .+ a1y + a0

with k = 2n−1, n ∈ N, and ak > 0 are allowed. Then R′ is an even order polynomial
and hence bounded from below. Highly nonlinear functions, as R(y) = exp(y), can
be also considered. Further, y0 is a given initial state belonging to L∞(Ω).
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We discuss second-order conditions that are sufficient for local optimality of
stationary solutions of the problem. Stationary solutions are pairs (ȳ, ū) that satisfy
the first-order necessary optimality conditions of the control problem (1.1)-(1.3).
For non-vanishing Tikhonov regularization parameter ν > 0, associated results are
known since years, we refer to our recent survey paper [12] and the references
therein.

Our main interest, however, is the case ν = 0, where the objective functional
in (1.1) does not contain the last integral that is often called a Tikhonov regu-
larization term; see Corollaries 3 and 4. We became interested in this degenerate
case by numerical observations: The numerical solution method of optimal control
problems for the more general FitzHugh-Nagumo system, a well known system of
mathematical physics that includes a second linear partial differential equation,
turned out to be surprisingly stable for very small regularization parameters ν > 0.
Eventually, this observation brought us to the ques tion, whether we can prove
stability of locally optimal solutions as ν ↘ 0.

To answer this question, we developed second-order sufficient optimality con-
ditions for local solutions that are strong in the sense of calculus of variations and
also work for the degenerate case ν = 0. Our first associated result is presented
in [10]. It is valid for the FitzHugh-Nagumo system and can even be applied to
sparse optimal controls, where the objective functional includes in addition the
L1(Q)-norm of the control function.

To our best knowledge, the first result on strong local minima in PDE control
was recently obtained in [1] for the case of semilinear elliptic equations. Moreover,
an unknown referee called our attention to the preprint [2] on a parabolic control
problem.

Although our results are similar to the ones of [1], [2], they are more general
than those of [1], [2]. In particular, we admit the case of a vanishing Tikhonov
regularization parameter ν, while ν > 0 is required in [1], [2].

In our paper, we introduce a new extended cone of critical directions Eτū prior
to Theorem 9. This cone can be used to deal with the issue of stability for vanishing
Tikhonov regularization parameter ν, cf. more detailed remarks in the introduction
to Section 3.

On the one hand, the results of [10] are more general than the results we will
present in this paper, because they include a nondifferentiable sparsity term. On
the other hand, the reaction term R was assumed to be a special third-order poly-
nomial and the domain Ω was assumed to have a dimension not larger than three.
Moreover, due to the more complicated form of the FitzHugh-Nagumo system, the
analysis in [10] is very technical.

Therefore, we present our theory of second-order conditions here for a simpler
equation but with more general nonlinearity R and for all dimensions N ∈ N.

2 Well posedness of state equation and control problem

We begin our analysis by recalling known results on the solvability of the state
equation (1.2). We discuss existence and uniqueness of the state y for given u
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and prove differentiability properties of the control-to-state mapping G : u 7→ y.
Adopting a standard notation we set

W (0, T ) =

{
y ∈ L2(0, T ;H1

0 (Ω)) :
∂y

∂t
∈ L2(0, T ;H−1(Ω))

}
.

For the convenience of the reader we recall that a function y ∈ W (0, T ) ∩ L∞(Q)
is said to be a weak solution of (1.2), if∫

Q

{
−y ∂v

∂t
+∇y · ∇v +R(·, ·, y) v

}
dxdt =

∫
Q

u v dxdt+

∫
Ω

y0 v(·, 0) dx

holds for all v ∈ H1(0, T ;H1
0 (Ω)) such that v(·, T ) = 0.

The following theorem can be shown in the same way as [4, Theorem 1].

Theorem 1 Under our assumptions, for all u ∈ Lp(Q) with p > N/2+1, the equation

(1.2) has a unique weak solution yu ∈ W (0, T ) ∩ L∞(Q). There exists a constant C

independent of u such that

‖yu‖L∞(Q) + ‖yu‖W (0,T ) ≤ C(‖u‖Lp(Q) + ‖y0‖L∞(Q) + ‖R(·, ·, 0)‖Lp(Q)).

and we have yu ∈ C(Ω̄ × (0, T ]). If y0 is in addition continuous in Ω̄, then yu belongs

to C(Ω̄ × [0, T ]).

The main idea of the proof is the use of the substitution y(x, t) = eλtv(x, t)
with sufficiently large parameter λ, cf. [4]. In this way, an equation with monotone
nonlinearity is obtained where the known results on existence, uniqueness, and
regularity [16, Theorem 5.5] or in [5] can be applied.

Following [11], cf. also [9], we introduce the control-to-state mapping G : Lp(Q)
−→ W (0, T ) ∩ L∞(Q), p > N/2 + 1, defined by G(u) = yu. Then the following
differentiability properties can be proved, see [4] or the more general version [9,
Theorem 2.2].

Theorem 2 (Differentiability of the control-to-state mapping) The mapping

G is of class C2. The derivative ηv := G′(u)v is equal to the function η that solves the

linearized equation 
∂η

∂t
−∆η +

∂R

∂y
(x, t, yu)η = v in Q

η = 0 on Σ

η(x, 0) = 0 in Ω.

(2.1)

The second derivative ωv1,v2 := G′′(u)[v1, v2] in the directions v1, v2 ∈ Lp(Q) is given

by the solution ω of the equation
∂ω

∂t
−∆ω +

∂R

∂y
(x, t, yu)ω = −∂

2R

∂y2
(x, t, yu) ηv1ηv2 in Q

ω = 0 on Σ

ω(x, 0) = 0 in Ω,

(2.2)

where ηvi = G′(u)vi, i = 1, 2.
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Remark 1 The operator G is not differentiable from L2(Q) to W (0, T ). However,
G′(u) and G′′(u) can be extended to continuous linear and bilinear mappings from
L2(Q) to W (0, T ), for any u ∈ Lp(Q) with p > N/2 + 1.

Since yu is uniquely determined by u, we can formulate the optimal control
problem (1.2)-(1.3) in the following control reduced form:

(Pν)

{
Min Jν(u),

u ∈ Uad

where the (control reduced) objective functional is defined by

Jν(u) :=
1

2

∫
Q

(yu(x, t)− yQ(x, t))2 dxdt+
γ

2

∫
Ω

(yu(x, T )− yT (x))2 dx

+
ν

2

∫
Q

u2(x, t) dxdt,

(2.3)

and the set of admissible controls Uad is

Uad = {u ∈ L∞(Q) : a ≤ u(x, t) ≤ b for a.a. (x, t) ∈ Q}.

Thanks to Theorems 1 and 2, it is easy to prove that for all ν ≥ 0 the control
problem (Pν) has at least one solution ūν ; see [9, Theorem 3.1]. In view of the
differentiability properties of G, also Jν is of class C2. In a standard way, the
derivatives can be expressed by using an adjoint equation. For given u ∈ Lp(Q),
the equation

−∂ϕu
∂t
−∆ϕu +

∂R

∂y
(x, t, yu)ϕu = yu − yQ in Q

ϕu = 0 on Σ

ϕu(x, T ) = γ(yu(T )− yT ) in Ω

(2.4)

is called the adjoint equation. Its solution ϕu is the adjoint state associated with u.

Theorem 3 The functional Jν : Lp(Q) −→ R, p > N/2 + 1, is of class C2. Its first

order derivative is given by

J ′ν(u)v =

∫
Q

(ϕu + νu)v dxdt ∀u, v ∈ Lp(Q), (2.5)

where ϕu is the solution in W (0, T )∩L∞(Q) of the adjoint equation (2.4). For direc-

tions v1, v2 ∈ Lp(Q), the second order derivative of Jν is

J ′′ν (u)[v1, v2] =

∫
Q

[1− ∂2R

∂y2
(x, t, yu)ϕu]ηv1ηv2 dxdt

+γ

∫
Ω

ηv1(T )ηv2(T ) dx+ ν

∫
Q

v1v2 dxdt. (2.6)

The proof of the existence and uniqueness of the solution ϕu ∈W (0, T )∩L∞(Q) of
the adjoint system and the formula (2.5) can be found in [9, §3.2]. The expression
of the second derivative follows from the chain rule, (2.2), and (2.4).
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3 First-Order Necessary Optimality Conditions

Since the control problem (Pν) is not convex, we consider local minima. In this
section we set up the associated first-order necessary optimality conditions and
draw some conclusions from the optimality system.

We say that ūν is a local minimum of problem (Pν) in the sense of Lp(Q),
1 ≤ p ≤ +∞, if there exists ε > 0 such that

Jν(ūν) ≤ Jν(u) ∀u ∈ Uad ∩Bε(ūν). (3.1)

Here, Bε(ūν) denotes the Lp(Q)-ball centered at ūν with radius ε.

The boundedness of Uad in L∞(Q) implies that ūν is a local minimum in
the L2(Q) sense if and only if it is a local minimum in the Lp(Q) sense for any
1 ≤ p < +∞. On the other hand, if ūν is a local minimum in the L∞(Q) sense,
then it is a local minimum in the Lp(Q) sense for any 1 ≤ p ≤ +∞. Hereafter,
local minima will be always understood as local minima in the L2(Q) sense.

Remark 2 Minima of the type (3.1) are, viewed in the sense of calculus of variations,
weak local minima. This means that Jν(ūν) ≤ Jν(u) is satisfied for all admissible u
out of a neighborhood of the control ūν .

Notice that the control u is the image of yu of the differential operator y 7→
∂y/∂t − ∆y + R(·, ·, y). Therefore u plays the role of the derivative y′ of the un-
known function x 7→ y(x) in the classical calculus of variations. In this sense, the
neighborhood Bε(ūν) is a neighborhood that accounts also for the derivatives of
y.

Later, we will also investigate conditions for local minima that are strong in
the sense of calculus of variations. This means that

Jν(ūν) ≤ Jν(u) ∀u ∈ Uad such that ‖yu − yūν‖L∞(Q) < ε,

no matter how far u is from ūν .

For the definition and discussion of weak and strong local minima in the clas-
sical calculus of variations, we refer to [15, Chpt. 2] and [18, Sect. 37.4e].

The following first order necessary optimality conditions have to be satisfied by
any local minimum of (Pν).

Theorem 4 Let ūν be a local minimum of (Pν), let ȳν be the associated state, and let

ϕ̄ν := ϕūν ∈ W (0, T ) ∩ L∞(Q) be the associated adjoint state defined as the unique

solution of (2.4) for u := ūν . Then ūν obeys the variational inequality∫
Q

(ϕ̄ν + νūν)(u− ūν) dxdt ≥ 0 ∀u ∈ Uad. (3.2)

The well-known projection formula below follows by a standard discussion of the
variational inequality (3.2).
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Corollary 1 Let ūν , ϕ̄ν be as in Theorem 4 and assume that ν > 0. Then

ūν(x, t) = Proj[a,b]

(
−1

ν
ϕ̄ν(x, t)

)
,

where Proj[a,b] : R→ [a, b] is defined by Proj[a,b](z) = max{a,min{b, z}}.

From the projection formula above, the regularity ūν ∈ L2(0, T ;H1(Ω)) is
obtained.

Corollary 2 Let ūν and ϕ̄ν be as in Theorem 4 and assume that ν = 0. Then the

following implications hold,
ūν(t, x) = a ⇒ ϕ̄ν(t, x) ≥ 0,

ūν(t, x) = b ⇒ ϕ̄ν(t, x) ≤ 0,

a < ūν(t, x) < b ⇒ ϕ̄ν(t, x) = 0,

and

{
ϕ̄ν(x, t) > 0 ⇒ ūν(x, t) = a,

ϕ̄ν(x, t) < 0 ⇒ ūν(x, t) = b.

From the above relations we deduce that the optimal control ūν is bang-bang if
the set of points of Q where ϕ̄ν vanishes has a zero Lebesgue measure.

For these well known results, we refer the reader to [8, Corollary 3.2] and [6,
Theorem 3.1] that deal with the cases ν > 0 and ν = 0, respectively, in a similar
situation. Moreover, these implications are extensively explained in [16, p.70] for
the elliptic case.

4 Second Order Optimality Conditions

Next, we develop the second order analysis for (Pν) and begin with second order
necessary conditions. Let a control ūν ∈ Uad fulfill the optimality conditions of
Theorem 4. This means that ūν obeys, along with the adjoint state ϕ̄ν , the vari-
ational inequality (3.2). Associated with ūν , we introduce the standard cone of

critical directions

Cūν = {v ∈ L2(Q) : v obeys the sign conditions (4.1) below and J ′ν(ūν)v = 0},

v(x, t)

{
≥ 0 if ūν(x, t) = a,

≤ 0 if ūν(x, t) = b.
(4.1)

The next theorem is well known; the reader is referred to [3] or [11] for a general
result.

Theorem 5 (Second order necessary condition) The set Cūν is a convex and

closed cone in L2(Q). If ūν is locally optimal for (Pν), then

J ′′ν (ūν)v2 ≥ 0 ∀v ∈ Cūν .
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Now we turn over to second order sufficient conditions. Depending on different
situations, besides Cūν we will introduce two more cones of critical directions,
namely the cones Cτū and Eτū.

The cone Cū, considered for the necessary second order conditions, will also
appear in the formulation of second order sufficient conditions for ν > 0 in Thm.
6. This is a result on weak local optimality. However, as a corollary, we obtain the
surprising result that, in this case, ūν yields even a strong local minimum.

The two other cones are introduced for the case ν = 0. The second order
conditions based on Eτū guarantee that ȳ affords a minimum to the objective
functional that is strong in the sense of calculus of variations, cf. Theorem 9 and
relation (4.35). This property of strong local optimality cannot be deduced, if we
substitute Cτū for Eτū.

In Section 5, we shall apply these different second order conditions to proving
results on stability of optimal solution with respect to certain perturbations of the
data in the optimal control problem.

4.1 The case ν > 0

The following properties of Cūν will be needed.

Lemma 1

(i) If v ∈ L2(Q) satisfies (4.1), then (ϕ̄ν + νūν)v ≥ 0 holds a.e. in Q.

(ii) If v ∈ Cūν , then

(ϕ̄ν + νūν) v = 0 a.e. in Q. (4.2)

(iii) A function v ∈ L2(Q) belongs to Cūν iff the following properties hold true a.e.,

v(x, t)


= 0 if |ϕ̄ν(x, t) + νūν(x, t)| > 0,
≥ 0 if ūν(x, t) = a

≤ 0 if ūν(x, t) = b.

(4.3)

Proof Statement (i) is a simple consequence of Corollary 1. Indeed, if (ϕ̄ν +
νūν)(x, t) > 0, then we have ūν(x, t) > − 1

ν ϕ̄ν(x, t). In view of the projection for-
mula for ūν , this inequality is possible only if ūν(x, t) = a. Then (4.1) implies that
v(x, t) ≥ 0. Analogously, we proceed when (ϕ̄ν + νūν)(x, t) < 0.

Now (ii) follows immediately: If v ∈ Cūν , then v obeys in particular the sign
conditions (4.1). By (i), (ϕ̄ν + νūν)v is almost everywhere nonnegative. Moreover,
J ′ν(ūν)v = 0 is included in the definition of Cūν , hence

0 = J ′ν(ūν)v =

∫
Q

(ϕ̄ν + νūν)v dxdt. (4.4)

Since the integrand is nonnegative, this can only hold, if (4.2) is true.
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To show (iii), we consider first an element v ∈ L2(Q) satisfying (4.3). Then v

obeys (4.1) and it remains to prove that J ′ν(ūν)v = 0. This, however, is obvious by
the representation (4.4) for J ′ν(ūν)v: Whenever (ϕ̄ν + νūν)(x, t) 6= 0, then v(x, t)
vanishes by (4.3). Conversely, if v ∈ Cūν , then the sign conditions are fulfilled
again by definition. The implication (ϕ̄ν + νūν)(x, t) 6= 0 ⇒ v(x, t) = 0 follows
immediately from (4.2). ut

Our next auxiliary result is important. The equivalence that is stated in the fol-
lowing lemma is not in general true for infinite-dimensional optimization problems.
However, it holds true if the Tikhonov regularization term ν

2 ‖u‖
2
L2(Q) is included

in the cost functional with ν > 0; see [12] for the proof.

Lemma 2 The following statements are equivalent

(i) J ′′ν (ūν)v2 > 0 ∀v ∈ Cūν \ {0}.
(ii) There exists σ > 0 such that

J ′′ν (ūν)v2 ≥ σ‖v‖2L2(Q) ∀v ∈ Cūν . (4.5)

In the case of unconstrained optimization, the coercivity condition (4.5) can be
required in the whole space and is sufficient for a local minimum. For a comparison
with this case, we refer to [19, Sect. 2.2].

Finally, we recall the following result.

Theorem 6 (ν > 0; Second order sufficient condition, [11]) Assume ν > 0 and

let ūν ∈ Uad, along with the adjoint state ϕ̄ν , satisfy the variational inequality (3.2).

Assume also that J ′′ν (ūν)v2 > 0 ∀v ∈ Cūν \ {0}. Then δ > 0 and ε > 0 exist such that

Jν(ūν) +
δ

2
‖u− ūν‖2L2(Q) ≤ Jν(u) ∀u ∈ Uad ∩Bε(ūν), (4.6)

where Bε(ūν) is the L2(Q)-ball centered at ūν with radius ε.

Compared with the classical calculus of variations, this result means that ū affords
to Jν a weak local minimum. However, we are able to prove the surprising fact
that the local optimality ensured by Theorem 6 is even strong.

Theorem 7 (ν > 0; Strong local optimality) Let ūν satisfy all assumptions of

Theorem 6. Then δ′ > 0 and ε′ > 0 exist such that

Jν(ūν) +
δ′

2
‖u− ūν‖2L2(Q) ≤ Jν(u) ∀u ∈ Uad : ‖yu − ȳν‖L∞(Q) < ε′. (4.7)

Proof Assume the contrary, i.e. that (4.7) does not hold for any δ′ and ε′. Then,
for any integer k ≥ 1, we can find a control uk ∈ Uad with ‖yuk − ȳν‖L∞(Q) < 1/k
such that

Jν(uk) < Jν(ūν) +
1

2k
‖uk − ūν‖2L2(Q). (4.8)
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We can select a subsequence, denoted in the same way, such that {uk}k≥1 is
weakly∗ convergent to some ũ ∈ L∞(Q). From the parabolic equation, we have

∂tyk −∆yk = −R(x, t, yk) + uk.

The right-hand side converges weakly in Lp(Q) to −R(x, t, ȳν) + ũ. Therefore, by
the weak continuity of the solution mapping for linear parabolic equations, the
sequence {yk} converges weakly in W (0, T ) to a solution ỹ that satisfies

∂tỹ −∆ỹ = −R(x, t, ȳν) + ũ.

From yk ⇀ ỹ in W (0, T ) and yk → ȳν in L∞(Q), we find ỹ = ȳν and hence ũ = ū. In

this way, uk
∗
⇀ ūν in L∞(Q) is obtained. In particular, we also have that uk ⇀ ūν

in L2(Q).

By our notation and the convergence yk → ȳν in L∞(Q), we have J0(uk) →
J0(ūν); hence we deduce from (4.8)

ν

2
‖uk‖2L2(Q) ≤

ν

2
‖ūν‖2L2(Q) + J0(ūν)− J0(uk) +

1

2k
‖uk − ūν‖2L2(Q).

Passing to the limit k →∞, we arrive at

ν

2
‖ūν‖2L2(Q) ≤ lim inf

k→∞

ν

2
‖uk‖2L2(Q) ≤ lim sup

k→∞

ν

2
‖uk‖2L2(Q) =

ν

2
‖ūν‖2L2(Q).

This implies that ‖uk‖2L2(Q) → ‖ūν‖
2
L2(Q) holds in addition to the weak conver-

gence. Therefore, the convergence of {uk} to ūν is strong in L2(Q). Consequently,
given ε > 0 such that (4.6) holds, we have that ‖uk − ūν‖L2(Q) < ε for all k
sufficiently large. Then (4.8) contradicts (4.6). ut

In the framework of optimal control of partial differential equations, the first
result about strong local optimality was proved in [1] for the elliptic case.

4.2 The case ν = 0

Our main results on second order conditions for ν > 0 (except Theorem 7) were
known since for some years, cf. [11]. In the degenerate case ν = 0, we found our
results just recently in [10] for the FitzHugh-Nagumo system. Here, we adapt the
ideas of [10] to our semilinear parabolic state equation with slightly more general
nonlinearity R.

To simplify the notation, we will write (P) instead of (P0), J instead of J0,
and ū, ȳ, ϕ̄, etc., instead of ū0, ȳ0, ϕ̄0.

For general infinite-dimensional optimization problems, the strict positivity of
the second derivative of the objective functional on the critical cone is not sufficient
for local optimality. An associated example is known from [14]. (The situation is
different for our objective functional Jν , if ν > 0. Then the second derivative
generates a Legendre form (cf. [15, Chpt. 6.2.1]) and we were able to argue as in
the preceding section).
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Therefore, we have to consider the well-known extended cone Cτū , cf. [13] for
the elliptic case or [16, (5.42)] for a parabolic state equation. For given (small)
threshold τ > 0, we define Cτū as the set of elements v ∈ L2(Q) satisfying

v(x, t)


= 0 if |ϕ̄(x, t)| ≥ τ,
≥ 0 if ū(x, t) = a,

≤ 0 if ū(x, t) = b.

(4.9)

Proposition 1 The extended cone Cτū covers Cū, i.e. Cū ⊂ Cτū holds for all τ > 0.

For every v ∈ L2(Q) satisfying the sign conditions (4.1), the inequality

J ′(ū)v ≥ τ‖v‖L1(Qv) (4.10)

is fulfilled, where Qv denotes the set of points (x, t) ∈ Q such that the first condition

of (4.9) is not satisfied by v(x, t).

Proof The inclusion Cū ⊂ Cτū is obvious. Let us prove the second claim.

If ϕ̄(x, t) ≥ τ , then Corollary 2 implies that ū(x, t) = a and therefore v(x, t) ≥ 0,
hence ϕ̄(x, t) v(x, t) ≥ τ |v(x, t)|. Analogously, we show ϕ̄(x, t) v(x, t) ≥ τ |v(x, t)|, if
−ϕ̄(x, t) ≤ τ . Therefore,

J ′(ū)v =

∫
Q\Qv

ϕ̄(x, t) v(x, t) dxdt+

∫
Qv

ϕ̄(x, t) v(x, t) dxdt

≥
∫
Qv

ϕ̄(x, t) v(x, t) dxdt ≥ τ
∫
Qv

|v(x, t)| dxdt = τ‖v‖L1(Qv).

The nonnegative of the first integral in the inequalities above follows from Lemma
1,(i). ut

Now one might be tempted to formulate the second order sufficient conditions
as

∃τ > 0 and ∃σ > 0 such that J ′′(ū)v2 ≥ σ‖v‖2L2(Q) ∀v ∈ C
τ
ū . (4.11)

Unfortunately, this condition cannot be expected for ν = 0, since the Tikhonov
regularization term is missing. This term is needed to fulfill the condition above.
Actually, the inequality (4.11) holds in a few very exceptional cases; see [6] and
[10].

The following second order sufficient condition is adequate:

Theorem 8 Let ū ∈ Uad, along with the adjoint state ϕ̄ = ϕū, satisfy the variational

inequality (3.2). Assume that

∃τ > 0 and ∃σ > 0 : J ′′(ū)v2 ≥ σ
(
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

)
∀v ∈ Cτū , (4.12)

where ηv = G′(ū) v. Then, there exists ε > 0 such that

J(ū) +
σ

16

(
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

)
≤ J(u) ∀u ∈ Uad ∩Bε(ū), (4.13)

where Bε(ū) is the ball of L2(Q) centered at ū with radius ε.
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The inequality (4.12) of the second order condition in Theorem 4.13 can be moti-
vated by the form of the second order derivative J ′′(ū)[v, v] in Theorem 3: If ν = 0,
then the L2(Q)-norm of v2 is missing, while the associated L2-norms of ηv and
ηv(T ) are still present.

Before proving this theorem, we derive some auxiliary results.

Lemma 3 Assume that p > N/2+1. Then constants Ca,b, C1, C2, C3, and C∞ exist

such that, for all u ∈ Uad, the following estimates are satisfied:

‖yu‖W (0,T ) + ‖yu‖L∞(Q) + ‖ϕu‖W (0,T ) + ‖ϕu‖L∞(Q) ≤ Ca,b (4.14)

‖yu − ȳ‖W (0,T ) + ‖ϕu − ϕ̄‖W (0,T ) ≤ C2‖u− ū‖L2(Q) (4.15)

‖ϕu − ϕ̄‖L∞(Q) ≤ C∞‖yu − ȳ‖L∞(Q) ≤ Cp‖u− ū‖Lp(Q) (4.16)

‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω) ≤ C1‖v‖Lp(Q)‖v‖L1(Q) ∀v ∈ L
p(Q). (4.17)

Proof The first estimate follows from Theorem 1 and the estimates for the solution
of (2.4). To prove the second and third estimates, we we substitute (yu− ȳ)(x, t) =
eµtw(x, t) with some µ ≥ −cR, see (1.4), and subtract the parabolic equations
satisfied by yu and ȳ. We obtain

∂w

∂t
−∆w + (e−µt

∂R

∂y
(x, t, ŷu) + µ)w = e−µt(u− ū) in Q

w = 0 on Σ

w(x, 0) = 0 in Ω,

(4.18)

where ŷu(x, t) = ȳ(x, t) + θ(x, t)(yu(x, t) − ȳ(x, t)) and 0 ≤ θ(x, t) ≤ 1. In view of
(1.4), e−µt ∂R∂y (x, t, ŷu) + µ is a.e. nonnegative. Now a standard estimate for linear

parabolic equations leads to an estimate of the type (4.15) for ‖w‖. Transforming
back by yu − ȳ = eµt w delivers the W (0, T )-estimate for yu − ȳ in (4.15).

To confirm the associated estimate for ϕu− ϕ̄, we consider the difference of the
adjoint equations for ϕu and ϕ̄,

∂(ϕu − ϕ̄)

∂t
−∆(ϕu − ϕ̄) +

∂R

∂y
(x, t, ȳ)(ϕu − ϕ̄)

=
(
∂R

∂y
(x, t, ȳ)− ∂R

∂y
(x, t, yu)

)
(ϕu − ϕ̄) + yu − ȳ in Q,

(ϕu − ϕ̄) = 0 on Σ, (ϕu − ϕ̄)(T ) = γ(yu − ȳ)(T ) in Ω.

(4.19)

Notice that ∂R
∂y (x, t, ȳ) might be negative, hence we consider the transformed dif-

ference e−µt(ϕu − ϕ̄).

From the estimate (4.14) we know that all states yu are uniformly bounded.
Moreover, we already have shown the W (0, T )-estimate for yu− ȳ in (4.15). In this
way, we are able to bound the right hand sides of (4.19) against ‖u− ū‖L2(Q) and
to verify the W (0, T )-estimate for ϕu − ϕ̄ in (4.15).

For the L∞-estimate (4.16), we recall that the L∞-norm of the solution of a
linear parabolic equation with bounded coefficients can be estimated against the
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Lp-norm of the right-hand side and to the L∞-norm of the initial data, provided
that p > N/2+1, see [16, Thm. 5.5]. (This result has to be applied to the equations
for e−µt(yu − ȳ) and e−µt(ϕu − ϕ̄), respectively.)

In the terminal condition for ϕu−ϕ̄ of (4.19), we use that ‖yu(T )−ȳ(T )‖L∞(Ω)≤
‖yu − ȳ‖L∞(Q). The L∞ estimation of ϕu − ϕ̄ in (4.16) is now straightforward.

Finally, we verify (4.17). To this aim, we set analogously w(x, t) = e−µtηv(x, t).
Then, w satisfies (4.18) with e−µtv in the right hand side and ȳ substituted for ŷu.
Next, we fix µ large enough such that e−µt ∂R∂y (x, t, ȳ) + µ ≥ 0 in Q. Multiplying
the equation by w and integrating in Q we infer

1

2
‖w(T )‖2L2(Ω) + ‖∇w‖2L2(Q) + ‖w‖2L2(Q) ≤

∫
Q

e−µtvw dx dt ≤ ‖v‖L1(Q)‖w‖L∞(Q).

From here we get

‖w‖2L2(Q) + γ‖w(T )‖2L2(Ω)

≤ max{1, γ}(‖w‖2L2(Q) + ‖w(T )‖2L2(Ω)) ≤ C‖v‖L1(Q)‖v‖Lp(Q).

Transforming back by ηv(x, t) = eµtw(x, t), we obtain (4.17). ut

Lemma 4 There exist a constant Cη such that

‖ηu,v − ηv‖W (0,T ) ≤ Cη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q) ∀v ∈ L
2(Q), ∀u ∈ Uad, (4.20)

where ηu,v = G′(u)v and ηv = G′(ū)v. Moreover, a constant C0 exists such that

‖yu − ȳ − ηu−ū‖W (0,T ) ≤ C0 ‖yu − ȳ‖L∞(Q)‖yu − ȳ‖L2(Q) ∀u ∈ Uad. (4.21)

Proof Proceeding as in the last proof, we substitute ηu,v − ηv = eµtw(x, t) with
µ ≥ −cR. Now, we subtract the equation satisfied by ηv from that for ηu,v, perform
the substitution and apply the mean value theorem to get

∂w

∂t
−∆w + (e−µt

∂R

∂y
(x, t, yu) + µ)w = −e−µt ∂

2R
∂y2 (x, t, ỹu)(yu − ȳ) ηv in Q

w = 0 on Σ

w(x, 0) = 0 in Ω,

(4.22)
where ỹu(x, t) = ȳ(x, t) + ϑ(x, t)(yu(x, t) − ȳ(x, t)), 0 ≤ ϑ(x, t) ≤ 1. Following the
lines of the last proof, we obtain (4.20).

To show (4.21), we proceed similarly. We substitute yu − ȳ − ηu−ū = eµtw̃ and
perform the Taylor expansion

R(x, t, yu) = R(x, t, ȳ) +
∂R

∂y
(x, t, ȳ)(yu − ȳ) +

1

2

∂2R

∂y2
(x, t, ȳ + θ(yu − ȳ))(yu − ȳ)2

with 0 ≤ θ(x, t) ≤ 1. From the PDEs for yu, ȳ, and ηu−ū, we deduce analogously
to (4.22)

∂w̃

∂t
−∆w̃+ e−µt

∂R

∂y
(x, t, ȳ)w̃+ µ w̃ = −e−µt

∂2R

∂y2
(x, t, ȳ + θ(yu − ȳ))(yu − ȳ)2 in Q

subject to the same homogeneous boundary and initial conditions as for w above.
Then the estimate (4.21) for w̃ = yu − ū− ηu−ū follows as the one for w. ut
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For convenience of the reader we recall that, by the definition in Lemma 4, we
have ηu,v = G′(u)v while ηv = G′(ū)v belongs to the fixed reference control ū.

Lemma 5 There exists a constant Ma,b such that, for all u ∈ Uad and for all v1, v2 ∈
L2(Q), the following estimate holds

|J ′′(u)(v1, v2)| ≤Ma,b

(
‖ηv1‖L2(Q)‖ηv2‖L2(Q) + γ‖ηv1(T )‖L2(Ω)‖ηv2(T )‖L2(Ω)

)
.

(4.23)

Proof This estimate follows easily from the expression (2.6) of J ′′ and (4.14). ut

We also need the following preparatory result:

Lemma 6 For every ρ > 0 there exists ε > 0 such that

|[J ′′(u)− J ′′(ū)]v2| ≤ ρ
(
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

)
(4.24)

holds for all v ∈ L2(Q) and for all u ∈ Uad such that ‖yu − ȳ‖L∞(Q) < ε.

Proof From (2.6), it follows

[J ′′(u)− J ′′(ū)]v2 =

∫
Q

(η2
u,v − η2

v) dx dt

+

∫
Q

{∂R
∂y

(x, t, ȳ)ϕ̄η2
v −

∂R

∂y
(x, t, yu)ϕuη

2
u,v

}
dxdt

+γ

∫
Ω

(η2
u,v(T )− η2

v(T )) dx =: I1 + I2 + I3.

Now we discuss the estimation of I1, I2, and I3. First, (4.20) yields that

‖ηu,v − ηv‖L2(Q) ≤ ‖ηu,v − ηv‖W (0,T ) ≤ Cη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q) (4.25)

‖ηu,v(T )− ηv(T )‖L2(Ω) ≤ C‖ηu,v − ηv‖W (0,T )

≤ CCη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q). (4.26)

From here, we also get

‖ηu,v‖L2(Q) ≤
(
1 + Cη‖yu − ȳ‖L∞(Q)

)
‖ηv‖L2(Q) (4.27)

‖ηu,v(T )‖L2(Ω) ≤ ‖ηu,v(T )− ηv(T )‖L2(Ω) + ‖ηv(T )‖L2(Ω)

≤ CCη‖yu − ȳ‖L∞(Q)‖ηv‖L2(Q) + ‖ηv(T )‖L2(Ω). (4.28)

By (4.25) and (4.27), we estimate I1,

|I1| ≤ ‖ηu,v + ηv‖L2(Q)‖ηu,v − ηv‖L2(Q)

≤
(
2 + Cη‖yu − ȳ‖L∞(Q)

)
Cη‖yu − ȳ‖L∞(Q)‖ηv‖

2
L2(Q).
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I3 is handled by (4.26) and (4.28) as follows

|I3| ≤ γ‖ηu,v(T ) + ηv(T )‖L2(Ω)‖ηu,v(T )− ηv(T )‖L2(Ω)

≤ γ[C2C2
η‖yu − ȳ‖2L∞(Q)‖ηv‖

2
L2(Q)

+ CCη‖yu − ȳ‖L∞(Q)2‖ηv‖L2(Q)‖ηv(T )‖L2(Ω)]

≤ γ‖yu − ȳ‖L∞(Q)

{
C2C2

η(1 + ‖yu − ȳ‖L∞(Q))‖ηv‖
2
L2(Q) + ‖ηv(T )‖2L2(Ω)

}
.

Finally, we deal with I2 by

|I2| ≤ ‖
∂R

∂y
(x, t, ȳ)− ∂R

∂y
(x, t, yu)‖L∞(Q)‖ϕ̄‖L∞(Q)‖ηv‖

2
L2(Q)

+‖∂R
∂y

(x, t, yu)‖L∞(Q)‖ϕ̄− ϕu‖L∞(Q)‖ηv‖
2
L2(Q)

+‖∂R
∂y

(x, t, yu)‖L∞(Q)‖ϕu‖L∞(Q)‖η
2
v − η2

u,v‖L1(Q).

The first term is handled with the assumption (1.6) and (4.14). Thanks to (4.16),
the second term can be estimated by C′‖yu−ȳ‖L∞(Q)‖ηv‖2L2(Q) with some constant

C′. The third term is handled as I1. The statement of the lemma is a straightfor-
ward consequence of the obtained estimates. ut

Proof of Theorem 8. In view of Lemma 6, an ε0 > 0 exists such that, for all
u ∈ Uad with ‖yu − ȳ‖L∞(Q) < ε0,

|[J ′′(u)− J ′′(ū)]v2| ≤ σ

8

{
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

}
∀v ∈ L2(Q). (4.29)

Invoking Lemma 3, we find that

‖yu − ȳ‖L∞(Q) ≤
CN
C∞
‖u− ū‖L2N (Q) ≤

CN
C∞

(b− a)1−1/N‖u− ū‖1/NL2(Q)
.

Now we select ε1 such that

0 < ε1 ≤
(

C∞ε0
CN (b− a)1−1/N

)N
.

Then ‖yu− ȳ‖L∞(Q) < ε0 if ‖u− ū‖L2(Q) < ε1. Hence, (4.29) is true in Uad∩Bε1(ū),

|[J ′′(u)−J ′′(ū)]v2| ≤ σ

8

{
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

}
∀v ∈ L2(Q), u ∈ Uad∩Bε1(ū).

(4.30)
Now we show (4.13) with ε = min{ε1, ε2}, where ε2 is defined below. Select u ∈
Uad ∩ Bε(ū) and denote by Qv the set of points (x, t) ∈ Q such that (4.9) is
not satisfied by (u − ū)(x, t). Moreover, set v = (u − ū)χQv , where χQv is the
characteristic function of Qv, and w = (u − ū) − v. By definition, w(x, t) satisfies
(4.9) for every (x, t) ∈ Q, and hence w ∈ Cτū .
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From (4.10) and (4.30), we infer

J(u)− J(ū) ≥ J ′(ū)(u− ū) +
1

2
J ′′(ū+ θ(u− ū))(u− ū)2

≥ τ‖v‖L1(Qv) +
1

2
J ′′(ū)(u− ū)2

+
1

2
[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2

≥ τ‖v‖L1(Q) +
1

2
J ′′(ū)w2 +

1

2
J ′′(ū)v2 + J ′′(ū)(v, w)

− σ

16

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
. (4.31)

Invoking (4.17), we get

‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω) ≤ C1(b− a)1−1/N‖u− ū‖1/NL2(Q)
‖v‖L1(Q)

≤ C1(b− a)1−1/Nε
1/N
2 ‖v‖L1(Q).

From here it follows

‖v‖L1(Q) ≥
1

C1(b− a)1−1/Nε
1/N
2

{
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

}
.

Inserting this inequality in (4.31) and using (4.12) and (4.23), we continue by

J(u)− J(ū) ≥ τ

C1(b− a)1−1/Nε
1/N
2

{
‖ηv‖2L2(Q) + ‖ηv(T )‖2L2(Ω)

}

+
σ

2

{
‖ηw‖2L2(Q) + γ‖ηw(T )‖2L2(Ω)

}
−
Ma,b

2

{
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

}
−Ma,b

{
‖ηv‖L2(Q)‖ηw‖L2(Q) + γ‖ηv(T )‖L2(Ω)‖ηw(T )‖L2(Ω)

}
− σ

16

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
and, with Young’s inequality,

≥

(
τ

C1(b− a)1−1/Nε
1/N
2

−
Ma,b

2
−
M2
a,b

σ

){
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

}
+
σ

4

{
‖ηw‖2L2(Q) + γ‖ηw(T )‖2L2(Ω)

}
− σ

16

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
.

(4.32)

Now we fix ε2 > 0 satisfying

τ

C1(b− a)1−1/Nε
1/N
2

−
Ma,b

2
−
M2
a,b

σ
≥ σ

4
.
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Inserting this inequality in (4.32) we obtain

J(u)− J(ū) ≥ σ

4

{
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω) + ‖ηw‖2L2(Q) + γ‖ηw(T )‖2L2(Ω)

}
− σ

16

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
≥ σ

8

{
‖ηv+w‖2L2(Q) + γ‖ηv+w(T )‖2L2(Ω)

}
− σ

16

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
=

σ

16

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
(notice that v + w = u− ū). Hence, (4.13) holds with ε = min{ε1, ε2}. ut

Corollary 3 (ν = 0; Sufficient condition for a weak local solution) Under the

assumptions of Theorem 8, there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2

{
‖yu − ȳ‖2L2(Q) + γ‖yu(T )− ȳ(T )‖2L2(Ω)

}
≤ J(u) ∀u ∈ Uad ∩Bε(ū).

(4.33)

Proof We define w = yu − ȳ − ηu−ū. Then the estimate (4.21) yields that

‖w‖W (0,T ) ≤ C0 ‖yu − ȳ‖L∞(Q)‖yu − ȳ‖L2(Q) ∀u ∈ Uad.

Let now ε be as in Theorem 8 and take ε0 ≤ ε such that C0ε0 < 1
2 . Then, for

‖yu − ȳ‖L∞(Q) < ε0 we have

‖yu − ȳ‖L2(Q) ≤ ‖w‖L2(Q) + ‖ηu−ū‖L2(Q) ≤
1

2
‖yu − ȳ‖L2(Q) + ‖ηu−ū‖L2(Q),

hence, moving the term 1
2‖yu − ȳ‖L2(Q) to the other side,

‖yu − ȳ‖L2(Q) ≤ 2 ‖ηu−ū‖L2(Q) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Q) < ε0.

Moreover, we have

‖yu(T )− ȳ(T )‖L2(Ω) ≤ ‖w(T )‖L2(Ω) + ‖ηu−ū(T )‖L2(Ω)

≤ C2‖w‖W (0,T ) + ‖ηu−ū(T )‖L2(Ω)

≤ C2

2
‖yu − ȳ‖L2(Q) + ‖ηu−ū(T )‖L2(Ω) ≤ C2‖ηu−ū‖L2(Q) + ‖ηu−ū(T )‖L2(Ω).

Therefore, we get from the last two estimates

‖yu − ȳ‖2L2(Q) + γ‖yu(T )− ȳ(T )‖2L2(Ω) ≤ C3

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
∀u ∈ Uad such that ‖yu−ȳ‖L∞(Q) < ε0. Finally, we take 0 < δ ≤ σ

8C3
and 0 < ε ≤ ε0

so that ‖yu − ȳ‖L∞(Q) < ε0 for every u ∈ Uad ∩ Bε(ū). Then, (4.33) follows from
(4.13). ut
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The growth condition (4.33) is valid in a ball around ū, hence we obtained a
result on local optimality in weak sense. We were not able to prove that, under
these assumptions based on the cone Cτū , the solution is locally optimal in strong
sense. To deal with this problem, we introduce another extended cone by

Eτū =
{
v ∈ L2(Q) satisfying (4.1) and

J ′(ū)v ≤ τ(‖ηv‖L2(Q) + γ‖ηv(T )‖L2(Ω))
}
.

From Lemma 1,(i) we infer that Cū ⊂ Eτū for every τ > 0. Thus the cone Eτū is a
small extension of Cū. We are able to prove the following result on second order
sufficiency that is based on Eτū:

Theorem 9 Let ū ∈ Uad, along with the adjoint state ϕ̄, satisfy the variational in-

equality (3.2). Assume also that τ > 0 and σ > 0 exist such that

J ′′(ū)v2 ≥ σ
(
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

)
∀v ∈ Eτū . (4.34)

Then, there exists ε > 0 such that

J(ūν)+
δ

2

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
≤ J(u) ∀u ∈ Uad : ‖yu−ȳ‖L∞(Q) < ε.

(4.35)

Proof Proceeding completely analogous to [10], we obtain a constant M > 0 such
that

‖ηu−ū‖L2(Q) + γ‖ηu−ū(T )‖L2(Ω) ≤M ‖yu − ȳ‖L∞(Q) ∀u ∈ Uad. (4.36)

Define

ε1 =
4τCγ

M(σ + 2Ma,b)
with Cγ =

{
1 if γ = 0 or γ ≥ 1,
γ if 0 < γ < 1.

where Ma,b was introduced in Lemma 5. From Lemma 6, we deduce the existence
of ε2 > 0 such that ∀u ∈ Uad with ‖yu − ȳ‖L∞(Q) < ε2

|[J ′′(u)− J ′′(ū)]v2| ≤ σ

2

{
‖ηv‖2L2(Q) + γ‖ηv(T )‖2L2(Ω)

}
∀v ∈ L2(Q). (4.37)

With these prerequisites, we are able to verify (4.35) with ε = min{ε1, ε2}. To this
aim, we select u ∈ Uad such that ‖yu − ȳ‖L∞(Q) < ε and distinguish between two
cases.

CASE I: u− ū 6∈ Eτū. This is the case, where J ′(ū)(u− ū) is sufficiently big to
ensure local optimality without the coercivity assumption (4.34).
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Here we estimate as follows:

J(u)− J(ū) ≥ J ′(ū)(u− ū) +
1

2
J ′′(ū+ θ(u− ū))(u− ū)2

> τ
{
‖ηu−ū‖L2(Q) + γ‖ηu−ū(T )‖L2(Ω)

}
−
Ma,b

2

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
≥ τ

Mε

{
‖ηu−ū‖L2(Q) + γ‖ηu−ū(T )‖L2(Ω)

}2

−
Ma,b

2

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
≥
(
τCγ
Mε

−
Ma,b

2

){
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
≥ σ

4

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
.

Notice that (4.36) yields (Mε)−1(‖ηu−ū‖L2(Q) + γ‖ηu−ū(T )‖L2(Ω)) ≤ 1.

CASE II: u− ū ∈ Eτū. Here, the term J ′(ū)(u− ū) is so small that the coercivity
condition (4.34) has to be invoked.

This time, we use (3.2), (4.34) and (4.37) to get

J(u)− J(ū) = J ′(ū)(u− ū) +
1

2
J ′′(ū+ θ(u− ū))(u− ū)2

=

∫
Q

ϕ̄(u− ū) dx dt+
1

2
J ′′(ū+ θ(u− ū))(u− ū)2

≥ 1

2
J ′′(ū)(u− ū)2 +

1

2
[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2

≥ σ

2

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
−σ

4

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
=
σ

4

{
‖ηu−ū‖2L2(Q) + γ‖ηu−ū(T )‖2L2(Ω)

}
. ut

Corollary 4 (ν = 0; Sufficient condition for a strong local minimum) If ū

satisfies the assumptions of Theorem 9, then there exist δ > 0 and ε > 0 such that

J(ū) +
δ

2

{
‖yu − ȳ‖2L2(Q) + ‖yu(T )− ȳ(T )‖2L2(Ω)

}
≤ J(u) (4.38)

holds for all u ∈ Uad with ‖yu − ȳ‖L∞(Q) < ε.

The proof of this corollary is completely analogous to that of Corollary 3. We
take ε0 and C3 as in the proof of Corollary 3, and δ and ε as in the statement of
Theorem 9. Then the inequality (4.38) follows by substituting ε for min{ε0, ε} and
δ for δ/C3.
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5 Applications to the Stability Analysis with Respect to Perturbations

In this section we explain how our second order sufficient conditions for strong local
solutions can be applied to proving stability estimates for the local solution with
respect to certain perturbations in the data of our optimal control problem. Here,
we concentrate on the case ν = 0, where the second-order sufficient optimality
conditions known from earlier papers cannot be applied.

First, we consider perturbations of the desired state yQ and second the behavior
of the local solution for the Tikhonov regularization parameter ν tending to zero.
The second problem is also an issue of stability analysis, because a small Tikhonov
parameter can be viewed as a perturbation of the reference parameter ν = 0.

5.1 Perturbation of yQ and yT

Assume that, for all ε > 0 a perturbed desired state yεQ ∈ L
p(Q), p > N/2 + 1, and

a perturbed desired final state yεT ∈ L
∞(Ω) are given such that

‖yεQ − yQ‖L2(Q) + γ‖yεT − yT ‖L2(Ω) ≤ C ε ∀ε > 0 (5.1)

holds with some constant C > 0.

Associated with these perturbed target functions, we define the family of per-
turbed objective functionals

Jε(u) =
1

2

∫
Q

(yu − yεQ)2 dxdt+
γ

2

∫
Ω

(yu(T )− yεT )2 dx (5.2)

and consider the family of perturbed optimal control problems

(Pε)

{
Min Jε(u).

u ∈ Uad

Notice that the perturbed functionals do not include a Tikhonov regularization
term, i.e. we have ν = 0.

It follows by the same arguments as for the unperturbed problem that for each
ε > 0 at least one optimal control ūε exists. We denote by ȳε the associated optimal
state and investigate the behavior ȳε for ε↘ 0.

First, we quote a result on convergence from [9] that does not yet contain infor-
mation on the rate of convergence. Notice that the set Uad is bounded. Therefore,
a subsequence of ūε can be selected that converges weakly in L2(Q). By selecting
a subsequence if necessary, we can assume weak convergence of {ūε}ε.

Theorem 10 (ν = 0; Convergence for ε↘ 0) If {ūε}ε is any sequence of optimal

controls of the problems (Pε) that converges weakly in L2(Q) to some ū, then ū is

optimal for (P) and

lim
ε↘0
‖ȳε − ȳ‖L∞(Q) = 0. (5.3)

Conversely, let ū be a strict locally optimal control of (P). Then there exists a sequence

{ūε}ε of locally optimal controls of (Pε) converging weakly to ū. For this sequence,

(5.3) holds as well. Furthermore, a radius ρ > 0 exists such that every ūε affords a

global minimum to Jε with respect to all elements u ∈ Uad such that ‖yu − ȳ‖∞ ≤ ρ.
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We refer to the proof in [10]. This theorem ensures the convergence of ȳε to ȳ
as ε↘ 0. The associated rate of convergence is the subject of the next result.

Theorem 11 (ν = 0; Lipschitz stability for ε ↘ 0) Assume that ū is a locally

optimal control of (P) that satisfies the second order sufficient optimality condition

(4.34). Let {ūε} be a sequence of locally optimal controls of (Pε) that converges weakly

to ū in Lp(Q) as ε ↘ 0 and has the properties stated in Theorem 10; denote the

associated states by ȳ and ȳε, respectively. Then a number C > 0 exists such that

‖ȳε − ȳ‖L2(Q) + γ‖ȳε(T )− ȳ(T )‖L2(Ω) ≤ C ε. (5.4)

Proof In view of the assumed properties of the sequence {ūε} we have ‖ȳε −
ȳ‖L∞(Q) → 0 as ε ↘ 0. Consequently, for all sufficiently small ε > 0, ȳε is so
close to ȳ that the quadratic growth condition (4.38) is satisfied by Corollary 4.
Invoking this growth condition, we proceed as follows:

Jε(ū) ≥ Jε(ūε) = J(ūε) + Jε(ūε)− J(ūε)

≥ J(ū) +
δ

2

(
‖ȳε − ȳ‖2L2(Q) + γ‖ȳε(T )− ȳ(T )‖2L2(Ω)

)
+ Jε(ūε)− J(ūε).

By shifting the the first and the last two terms to the left-hand side, this inequality
becomes

Jε(ū)−J(ū)−(Jε(ūε)−J(ūε)) ≥
δ

2

(
‖ȳε − ȳ‖2L2(Q) + γ‖ȳε(T )− ȳ(T )‖2L2(Ω)

)
. (5.5)

The left side is an integral of various differences of squares. Expanding the squares,
it can be considerably simplified. For instance, the tracking terms on Q are handled
as follows:

1

2

∫
Q

(
(ȳ − yεQ)2 − (ȳ − yQ)2

)
dxdt− 1

2

∫
Q

(
(ȳε − yεQ)2 − (ȳε − yQ)2

)
dxdt

=
1

2

∫
Q

2(ȳ − ȳε)(yQ − yεQ) dxdt ≤ C ε‖ȳ − ȳε‖L2(Q)

in view of (5.1). In the same way, the integrals on Ω are simplified to finally obtain

Jε(ū)− J(ū)− (Jε(ūε)− J(ūε)) ≤ C ε
(
‖ȳ − ȳε‖L2(Q) + γ‖ȳ(T )− ȳε(T )‖L2(Ω)

)
.

Now we invoke (5.5) to conclude

C ε
(
‖ȳ − ȳε‖L2(Q) + γ‖ȳ(T )− ȳε(T )‖L2(Ω)

)
≥ δ

2

(
‖ȳε − ȳ‖2L2(Q) + γ‖ȳε(T )− ȳ(T )‖2L2(Ω)

)
≥ c

(
‖ȳε − ȳ‖L2(Q) + γ‖ȳε(T )− ȳ(T )‖L2(Ω)

)2
.

The desired result follows immediately. ut
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Remark 3 Assume that the locally optimal control ū considered in Theorem 10 is
bang-bang. Then the second order sufficient optimality condition (4.34) – as one
of the assumptions of Theorem 11 – can be replaced by the condition (4.12) and
the result of the theorem remains true.

Indeed, if ū is bang-bang and ūε ⇀ ū in L2(Q), then ūε → ū strongly in every
space Lp(Q) for p < +∞; see [7, Theorem 4.4]. Therefore, ūε belongs to any Lp-
neighborhood Br(ū) provided that ε is sufficiently small. Then the assumptions
of Corollary 3 are satisfied so that the quadratic growth condition (4.33) applies
(substitute Br(ū) for Bε(ū) there). In view of that, the estimate (5.5) in the proof
above holds for sufficiently small ε > 0.

5.2 Tikhonov parameter tending to zero

As a further application of second order optimality conditions for strong local
minima, we investigate the behavior of a sequence of optimal controls {ūν}ν>0 of
(Pν) and the corresponding states {ȳν}ν>0 as ν ↘ 0.

Again, by the boundedness of Uad, any sequence of solutions of (Pν) contains
subsequences converging weakly in L2(Q).

Theorem 12 Let {ūν}ν>0 be a sequence of global solutions of (Pν) such that ūν ⇀ ū

in L2(Q) for ν ↘ 0. Then ū is a global solution of (P) and ‖ūν − ū‖L2(Q) → 0.

Moreover,

‖ū‖L2(Q) = min
{
‖u‖L2(Q) : u is a global solution of (P)

}
. (5.6)

Proof The boundedness of {ūν}ν>0 in L∞(Q) and the weak convergence ūν ⇀ ū

for ν ↘ 0 in L2(Q) imply that ūν ⇀ ū for ν ↘ 0 in Lp(Q) for any 1 ≤ p < ∞.
Moreover, we have ū ∈ Uad. Let ȳν = G(ūν) and ȳ = G(ū).

Now we pass to the limit in the state equation (1.2) that is satisfied by ȳν .
In view of (4.14) and (4.16), it is easy to confirm that ȳν ⇀ ȳ in W (0, T ). The
embedding W (0, T ) ↪→ L2(Q) is known to be continuous; also the linear mapping
W (0, T ) 3 w 7→ w(T ) ∈ L2(Ω) is continuous. The cost functional is convex with
respect to (y, u). Since ūν is a solution of (Pν), it follows

J(ū) ≤ lim inf
ν↘0

J(ūν) ≤ lim inf
ν↘0

Jν(ūν) ≤ lim
ν↘0

Jν(u) = J(u) ∀u ∈ Uad.

Therefore, ū is a solution of (P).

Next, we verify the strong convergence of {ūν}ν>0 to ū. Since ūν and ū are
solutions of (Pν) and (P), respectively, we obtain

J(ūν) +
ν

2
‖ūν‖2L2(Q) = Jν(ūν) ≤ Jν(ū) = J(ū) +

ν

2
‖ū‖2L2(Q) ≤ J(ūν) +

ν

2
‖ū‖2L2(Q).

Consequently, ‖ūν‖2L2(Q) ≤ ‖ū‖
2
L2(Q) holds for every ν > 0. From here, we infer

‖ū‖L2(Q) ≤ lim inf
ν↘0

‖ūν‖L2(Q) ≤ lim sup
ν↘0

‖ūν‖L2(Q) ≤ ‖ū‖L2(Q)
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and hence ‖ūν‖L2(Q) → ‖ū‖L2(Q). This fact implies, along with the weak conver-

gence ūν ⇀ ū, the strong convergence ūν ↘ ū in L2(Q). Finally, arguing as above,
we obtain for any (global) solution u of (P) the inequality ‖ūν‖L2(Q) ≤ ‖u‖L2(Q)

∀ν > 0. The minimum norm property (5.6) follows from

‖ū‖L2(Q) = lim
ν↘0
‖ūν‖L2(Q) ≤ ‖u‖L2(Q). ut

Now, we formulate a converse result, namely that strict local solutions to (P)
can be approximated by local solutions of (Pν). This result is analogous to the
second part of Theorem 10.

Theorem 13 Let ū be a strict local solution of (P). Then there exist constants ρ > 0,

ν̄ > 0, and a sequence {ūν}0<ν≤ν̄ of local solutions of (Pν) such that ūν → ū in L2(Q)
and every ūν affords a global minimum to Jν in Kρ = Uad ∩ B̄ρ(ū).

Again, this is a fairly standard result. We refer the reader to [10].

We do not know the rate of convergence of global (local) solutions ūν of (Pν)
to global (local) solutions ū of (P). Notice that the Tikhonov parameter ν vanishes
in the limit, hence it should be difficult to find such a rate.

Instead, we are able to estimate the rate of convergence for the associated state
functions, if certain second order sufficient optimality conditions are satisfied at ū.

The associated theorem below is applicable, if the coercivity condition is ful-
filled in the form (4.12) (based on Cτū) or in the form (4.34) (based on Eτū). Notice
that yu 6= yv implies u 6= v. Therefore, the strong quadratic growth condition
(4.38) ensures in particular that ū is a strict local solution.

Theorem 14 (Hölder rate of convergence as ν ↘ 0) Let ū and {ūν}0<ν≤ν̄
be a sequence of local solutions as in Theorem 13. Assume that one of the coercivity

conditions (4.12) or (4.34) is satisfied. Then, the equation

lim
ν↘0

1√
ν

{
‖ȳν − ȳ‖L2(Q) + γ‖ȳν(T )− ȳ(T )‖L2(Ω)

}
= 0 (5.7)

is fulfilled, where ȳν = G(ūν) and ȳ = G(ū).

Proof We use the condition (4.33) or (4.38) and the fact that Jν(ūν) ≤ Jν(ū). Then
we get

J(ū) +
δ

2

{
‖yν − ȳ‖2L2(Q) + γ‖yν(T )− ȳ(T )‖2L2(Ω)

}
+
ν

2
‖ūν‖2L2(Q)

≤ J(ūν) +
ν

2
‖ūν‖2L2(Q) = Jν(ūν) ≤ Jν(ū) = J(ū) +

ν

2
‖ū‖2L2(Q).

From here, we deduce that ‖ūν‖L2(Q) ≤ ‖ū‖L2(Q) and furthermore

δ

2

{
‖yν − ȳ‖2L2(Q) + γ‖yν(T )− ȳ(T )‖2L2(Ω)

}
≤ ν

2

(
‖ū‖2L2(Q) − ‖ūν‖

2
L2(Q)

)
≤ ν‖ū‖L2(Q)‖ū− ūν‖L2(Q).
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Now we obtain the estimate

1√
ν

{
‖yν − ȳ‖L2(Q) + γ‖yν(T )− ȳ(T )‖L2(Ω)

}
≤
(

2

δ
‖ū‖L2(Q)‖ū− ūν‖L2(Q)

)1/2

,

where the right hand side converges to zero. ut

It might be surprising that both of the coercivity conditions (4.12) or (4.34)
can be used this time. The reason is that, since ū and ūν are requested to be as
in Theorem 13, here the strong convergence ūν → ū is assumed while Theorem 11
was based only on weak convergence of {ūν}.

In [17] the reader can find a deeper analysis of the stability when the Tikhonov
parameter ν goes to zero in the case of a control problem of a linear elliptic partial
differential equations. The extension of their results to the case of nonlinear partial
differential equations is an open issue.
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