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Sparse optimal control of the Schlögl and
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Abstract — We investigate the problem of sparse optimal controls for the so-called
Schlögl model and the FitzHugh-Nagumo system. In these reaction-diffusion equations,
traveling wave fronts occur that can be controlled in different ways. The L1-norm of
the distributed control is included in the objective functional so that optimal controls
exhibit effects of sparsity. We prove the differentiability of the control-to-state mapping
for both dynamical systems, show the well-posedness of the optimal control problems
and derive first-order necessary optimality conditions. Based on them, the sparsity of
optimal controls is shown. The theory is illustrated by various numerical examples,
where wave fronts or spiral waves are controlled in a desired way.
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1. Introduction

In this paper, we investigate optimal control problems for two reaction-diffusion problems,
namely the so-called Schlögl or Nagumo model and the FitzHugh-Nagumo equations. Un-
der appropriate initial conditions, the uncontrolled solutions of these systems behave like
a traveling wave or a spiral wave. It is a natural task to control such wave type solutions
in an optimal way. Often, it is desired to apply controls only in small parts of the spatial
domain, since it is not always realistic to apply distributed controls in the whole spatial do-
main. This is a typical situation, where the theory of sparse optimal control can be applied
that has recently been studied actively for elliptic partial differential equations. For exam-
ple [Stadler (2009)], [Wachsmuth and Wachsmuth (2010)], and [Casas et al.(2012)] deal with

This work was supported by DFG in the framework of the Collaborative Research Center SFB 910, project
B6. The first author was also supported by Spanish Ministerio de Economı́a y Competitividad under project
MTM2011-22711.

Eduardo Casas
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this topic. In [Casas et al.(2012)], first-order necessary conditions along with second-order
necessary and second-order sufficient optimality conditions are derived for sparse optimal
controls of semilinear elliptic equations. Moreover, [Casas et al.(2013)] study this problem
for a general class of semilinear parabolic equations with monotone nonlinearity.

Our state equations belong to the class of reaction-diffusion equations. They can also
be classified as semilinear parabolic equations or systems, but they are of non-monotone
type. Therefore, the theory of existence, uniqueness and regularity of associated solutions
is more delicate than for equations of monotone type. Existence and uniqueness theorems
for the Schlögl and FitzHugh-Nagumo system have already been proved by several authors.
In particular, we mention the paper [Jackson (1990)] on the FitzHugh-Nagumo system with
nonsmooth data. We also refer to the books [Smoller (1994)] and [Murray (1993)].

The optimal control theory for such equations requires additional investigations. To our
knowledge, [Brandão et al.(2008)] published the first paper on the optimal control theory
for the FitzHugh-Nagumo system. They derived first-order necessary optimality conditions
for optimal controls and discuss also aspects of controllability. Their approach is based
on an existence theorem for the FitzHugh-Nagumo equations that is proved by the Leray-
Schauder principle in an L2-setting for domains with smooth boundary. The authors do not
discuss the differentiability of the control-to-state mapping. Moreover, we mention the paper
[Kunisch and Wang (2012)] on time-optimal control of a linear version of the FitzHugh-
Nagumo system. The authors solve the existence problem by a semigroup technique and
derive optimality conditions.

Further contributions to the optimal control of reaction-diffusion equations that admit
wave-type solutions were published by [Borz̀ı and Griesse (2006)] and in the sequence of
papers [Kunisch and Wagner (I)] - [Kunisch and Wagner (III)].

Our paper contains the following novelties: In the first part, we prove existence and
uniqueness of a solution to the FitzHugh-Nagumo equations in a new way that also works
in Lipschitz domains. By an L∞-approach, we show the second-order Fréchet differentiabil-
ity of the control-to-state mapping. Based on this foundation, we derive first-order neces-
sary optimality conditions for sparse optimal controls. Here, we mainly follow the lines of
[Casas et al.(2012)], where the sparsity of optimal controls was derived in the elliptic case.
By the presence of the L1-norm of the control, the objective function is not differentiable.
This needs special techniques, which were developed in [Casas et al.(2012)] and can be ex-
tended to our parabolic case in a direct way. We do not exploit the proved second-order
differentiability to set up second-order optimality conditions. However, we state the associ-
ated differentiability as a basis for later applications to second-order optimization methods.

In the second part of our paper we study various numerical examples in 1D and 2D spatial
domains. We control traveling wave fronts as solutions to the Schlögl-equation. In the case
of the FitzHugh-Nagumo-system, spiral waves occur. Controlling such patterns is geometri-
cally impressive but numerically fairly demanding. To our best knowledge, sparse optimal
controls for such equations were not yet discussed in literature. However, there is a rich lit-
erature on feedback control problems in the community of Physics. We refer exemplarily to
[Zykov and Engel(2004)], [Breuer (2006)], [Mantel et al.(1996)], or [Schrader et al.(1995)],
and to the survey volume [Schöll and Schuster (2007)].

We consider optimal control problems for the following two reaction-diffusion equations:
The first one, in Physics known as Schlögl model and in Neurology as Nagumo equation, has
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the form
∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) = u(x, t) in QT

∂νy(x, t) = 0 in ΣT

y(x, 0) = y0(x) in Ω,

(1)

where R is the cubic polynomial

R(y) = k (y − y1)(y − y2)(y − y3)

with given real numbers k > 0 and y1 < y2 < y3.

In this setting, Ω is a bounded open Lipschitz domain of Rn, n ∈ {1, 2, 3}, T > 0 is a
fixed time, and we use the notation QT := Ω × (0, T ) and ΣT := ∂Ω × (0, T ). Moreover,
an initial function y0 ∈ L∞(Ω) is given. By ν and ∂ν , we denote the outward unit normal
vector and the associated outward normal derivative on ∂Ω, respectively.

The second reaction-diffusion equation, the FitzHugh-Nagumo system, is given by

∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) + z(x, t) = u(x, t) in QT

∂νy(x, t) = 0 in ΣT

y(x, 0) = y0(x) in Ω

∂

∂t
z(x, t) + β z(x, t)− γ y(x, t) + δ = 0 in QT

z(x, 0) = z0(x) in Ω.

(2)

Here, more real constants β, γ, δ, and initial data z0 ∈ L∞(Ω) are given.

In this system, the partial differential equation for y is said to be the activator equation,
while the one for z is called the inhibitor equation. The function y is the state that is to
be controlled, while the inhibitor z has only some auxiliary character with respect to the
control.

To handle the analysis for both equations at once, we shall discuss the more general
model

∂

∂t
y(x, t)−∆y(x, t) +R(y(x, t)) + α z(x, t) = u(x, t) in QT

∂νy(x, t) = 0 in ΣT

y(x, 0) = y0(x) in Ω

∂

∂t
z(x, t) + β z(x, t)− γ y(x, t) + δ = 0 in QT

z(x, 0) = z0(x) in Ω,

(3)

where α is a real number. For the choice α = 0, both equations decouple and the state
function y has to solve the Schlögl equation. Here, the inhibitor equation is meaningless.
For α = 1, the FitzHugh-Nagumo system is obtained. These values α ∈ {0, 1} are the values
of our interest, but the analysis for the system (3) is also true for arbitrary real α. We shall
consider optimal control problems, where the objective functional

f(yu, zu, u) = I(u) + µ j(u) =: J(u) (4)
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is to be minimized, where

I(u) :=
1

2

T∫
0

∫
Ω

cYQ(x, t)(yu(x, t)− yQ(x, t))2 + cZQ(x, t)(zu(x, t)− zQ(x, t))2 dxdt

+
1

2

∫
Ω

cYT (x)(yu(x, T )− yT (x))2 + cZT (x)(zu(x, T )− zT (x))2 dx+
κ

2

T∫
0

∫
Ω

u2(x, t)dxdt,

j(u) :=

T∫
0

∫
Ω

|u(x, t)| dxdt,

and the state (yu, zu) is the unique solution of equation (3) for the given control u. Existence
and uniqueness of such a solution are proved in Theorem 2.1, respectively in Corollary 2.1.
Moreover, the functions cYT , c

Z
T ∈ L∞(Ω), cYQ, c

Z
Q ∈ L∞(QT ) and the constants κ, µ are non-

negative weights, and yT , zT ∈ L∞(Ω) and yQ, zQ ∈ L∞(QT ) are given target functions. In
control problems for the Schlögl model, we fix cZQ = 0 and cZT = 0, since only the function y
is of interest.

The control functions u are taken from the set of admissible controls defined by

Uad := {u ∈ L∞(QT ) | u(x, t) ∈ [a, b] for a.a. (x, t) ∈ QT} (5)

with real constants a 6 0 < b. We also allow for the case a = 0, because in some appli-
cations u = 0 (no control) stands for the smallest value. Then the objective functional is
differentiable so that the later use of a subdifferential is not needed in this case.

The optimal control problems for the Schlögl model and the FitzHugh-Nagumo system
are both covered by the following one:

Minimize the objective functional

min
u∈Uad

f(yu, zu, u), (6)

where the pair (yu, zu) denotes the solution of the general system (3) that is associated to
the control u. To make this well defined, we have to show that to each u ∈ Uad there exists
a unique solution (yu, zu) of (3) and that the mapping u 7→ (yu, zu) is continuous. This is
the subject of the next section.

2. Well-posedness of the state equation

To prove the existence and uniqueness of a solution (y, z) of (3), we proceed as follows: By
eliminating the linear ordinary differential equation for z, we transform (3) to an integro-
differential equation for y. Next, following [Engel et al.(2013)], we substitute y = eη tv with
sufficiently large η > 0 to get a new equation with monotone nonlinearity. Finally, based on
standard estimates, we invoke the Schauder fixed point theorem to show the existence of a
solution. The uniqueness follows then by standard energy estimates.
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2.1. Transformation of the state equation

Let us first perform the transformation of (3) to an integro-differential equation. The last
two equations of (3) can be resolved by

z(x, t) = e−βtz0(x)+

t∫
0

e−β(t−s)(γ y(x, s)− δ)ds = e−βtz0(x)+
δ

β

(
e−βt − 1

)
+(K y)(x, t), (7)

where the integral operator K is defined by

(K y)(x, t) =

t∫
0

γ e−β(t−s)y(x, s)ds.

We have K ∈ L(Lp(QT )) for all 1 6 p 6∞, where L(X) denotes the space of all linear and
continuous operators acting in a Banach space X. Inserting (7) in the first equation of (3),
the integro-differential equation

∂

∂t
y −∆y +R(y) + αKy = u− α

(
e−βtz0 +

δ

β

(
e−βt − 1

))
in QT

is obtained. Since R is not monotone, we follow [Engel et al.(2013)] and substitute

y(x, t) := eη t v(x, t)

with a sufficiently large real parameter η. This leads to a new equation for v,

∂

∂t
v −∆v + e−η tR

(
eη tv

)
+ ηv + αKηv = e−η t

(
u− α

(
e−βtz0 +

δ

β

(
e−βt − 1

)))
in QT , (8)

with the given initial and boundary conditions, where the operator Kη is defined by

(Kη v)(x, t) :=

t∫
0

γ dse−(β+η)(t−s) v(x, s).

We discuss equation (8) for convenience with simplified right-hand side u, i.e. in the form

∂

∂t
v −∆v + e−η tR(eη tv) + ηv + αKηv = u in QT

∂νv = 0 in ΣT

v(0) = y0 in Ω.

(9)

2.2. A priori estimates

Next, preparing a fixed point argument, we derive a bound for any weak solution y ∈
W (0, T ) ∩ L∞(QT ) of (9), where

W (0, T ) =

{
y ∈ L2

(
0, T ;H1(Ω)

) ∣∣∣∣ ∂y∂t ∈ L2
(
0, T ;H1(Ω)

∗)}
.
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A function y ∈ W (0, T ) ∩ L∞(QT ) is said to be a weak solution of (9), if

T∫
0

〈v′(t) , ϕ(t)〉dt+

T∫
0

∫
Ω

{
∇v(t) · ∇ϕ(t) + [e−η tR(eη tv(t)) + ηv(t)]ϕ(t)

}
dxdt

+

T∫
0

∫
Ω

α (Kηv)(t)ϕ(t)dxdt =

T∫
0

∫
Ω

u(t)ϕ(t)dxdt

holds for all ϕ ∈ W (0, T ) and the initial condition v(0) = y0 is satisfied in Ω. Here, 〈· , ·〉
denotes the pairing between H1(Ω) and H1(Ω)∗.

To this aim, let us first estimate the norm of the operator Kη. We get∣∣∣∣∣∣
t∫

0

e−(β+η)(t−s) v(x, s)ds

∣∣∣∣∣∣ 6
 t∫

0

e−2(β+η)(t−s) ds


1
2
 t∫

0

v2(x, s)ds


1
2

=

(
1

2(β + η)

(
1− e−2(β+η)t

))1
2

 t∫
0

v2(x, s)ds


1
2

6
1√

2(β + η)

 t∫
0

v2(x, s)ds


1
2

provided that η > |β|. Therefore, we have that

T∫
0

∫
Ω

(Kη v)2 dxdt = γ2

T∫
0

∫
Ω

∣∣∣∣∣∣
t∫

0

e−(β+η)(t−s) v(x, s)ds

∣∣∣∣∣∣
2

dxdt

6
γ2

2(β + η)

T∫
0

∫
Ω

 T∫
0

v2(x, s)ds

dxdt 6
T γ2

2(β + η)
‖v‖2

L2(QT )

for η > |β|. It follows that

‖Kη‖L(L2(QT )) 6 |γ|

√
T

2(β + η)
∀η > |β| , (10)

hence Kη tends to zero in L(L2(QT )) as η →∞.
Let us mention that the derivative of R is a convex quadratic polynomial, hence its

derivative is bounded from below. There is some constant cR such that

R′(v) > cR ∀v ∈ R. (11)

Lemma 2.1 (L2-a-priori estimate). There exist positive constants C2 and η0 with the
following properties: If η > η0 and v ∈ W (0, T )∩L∞(QT ) is any weak solution of the system
(9), then there holds for all u ∈ L2(QT ) and y0 ∈ L2(Ω)

‖v‖L2(0,T ;H1(Ω)) 6 C2

(
‖u‖L2(QT ) + ‖y0‖L2(Ω) + |R(0)|

)
. (12)
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Proof. Define Rη(t, v) := e−η tR(eη tv) + η
3
v. If η

3
> cR, then

∂

∂v
Rη(t, v) > 0 ∀v, t ∈ R. (13)

We write the parabolic PDE of (9) in the form

∂

∂t
v −∆v + e−η tR

(
eη tv

)
+
η

3
v︸ ︷︷ ︸

Rη(t,v)

+
η

3
v +

(η
3
v + αKηv

)
= u. (14)

The first ηv/3 is added to the term with R to get a monotone function Rη, the second one
contributes to an L2(QT )-estimate for the solution v, and the third ηv/3 is to compensate
the operator Kη.

Next, we subtract Rη(t, 0) = e−ηtR(0) from both sides of (14) and test this equation by
v, associated with an integration over QT . After integrating by parts w.r. to t in the first
item and w.r. to x in the second, we obtain

1

2
‖v(T )‖2

L2(Ω) +

T∫
0

∫
Ω

(|∇v|2 +
η

3
v2)dxdt+

T∫
0

∫
Ω

(Rη(t, v)−Rη(t, 0))(v − 0)dxdt

+

(
η

3
− |α γ|

√
T

2(β + η)

)
‖v‖2

L2(QT ) 6

T∫
0

∫
Ω

|u−Rη(t, 0)| |v| dxdt+
1

2
‖v(0)‖2

L2(Ω) .

The first and second terms in the left-hand side are obviously non-negative. The third is
non-negative by monotonicity for η > |cR|, while the fourth is non-negative provided that

η > 3 |α γ|

√
T

2(β + η)
.

We define

η0 = max

{
|cR| , 3 |α γ|

√
T ,

1

2
− β

}
;

then we have 2(β + η) > 1 and

η > 3 |α γ|
√
T > 3 |α γ|

√
T

2(β + η)
∀η > η0.

Young’s inequality yields for all η > η0

T∫
0

∫
Ω

(
|∇v|2 +

η

3
v2
)
dxdt 6 c

(∥∥u− e−η ·R(0)
∥∥2

L2(QT )
+ ‖v(0)‖2

L2(Ω)

)
.

An application of the triangle inequality and e−η t 6 1 finally yield the estimate (12).
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Let us complement this L2-estimate by an L∞-estimate. Obviously, the operator Kη

maps continuously L2(0, T ;H1(Ω)) into C([0, T ], H1(Ω)) and we easily verify∥∥∥∥∥∥
t∫

0

e−(β+η)(t−s)v(x, s)ds

∥∥∥∥∥∥
H1(Ω)

6

t∫
0

e−(β+η)(t−s) ‖v(s)‖H1(Ω) ds 6
1√

2(β + η)
‖v‖L2(0,T ;H1(Ω)) .

The continuous embedding of H1(Ω) in L6(Ω) for n 6 3 yields

‖Kηv‖L6(QT ) 6 C ‖Kηv‖C([0,T ],L6(Ω)) 6 C ‖Kηv‖C([0,T ],H1(Ω)) 6
C√

2(β + η)
‖v‖L2(0,T ;H1(Ω)) .

(15)
Assume now that u belongs to Lp(QT ) with p > 5/2 and set q := min{p, 6}. In (14), we
shift the term αKηv to the right hand side and consider the associated semilinear equation

∂

∂t
v −∆v +Rη(t, v) +

2

3
ηv = u− αKηv

subject to the given initial and boundary conditions v(0) = y0, ∂νv = 0. The non-
linearity Rη is monotone increasing, hence we can invoke known L∞-estimates for semi-
linear parabolic equations for the given q, cf. the treatment of quasilinear equations in
[Ladyzhenskaya et al.(1968)], or the discussion of the semilinear case in [Casas (1997)], or
[Tröltzsch (2010)]. We obtain from (15) and (12) with a generic constant c > 0

‖v‖L∞(QT ) 6 c
(
‖u− αKηv −Rη(·, 0)‖Lq(QT ) + ‖y0‖L∞(Ω)

)
6 c
(
‖u‖Lp(QT ) + |α| ‖Kηv‖L6(QT ) + |R(0)|+ ‖y0‖L∞(Ω)

)
6 c
(
‖u‖Lp(QT ) + |R(0)|+ ‖y0‖L∞(Ω)

)
+

c |α|√
2(β + η)

‖v‖L2(0,T ;H1(Ω))

6 c
(
‖u‖Lp(QT ) + |R(0)|+ ‖y0‖L∞(Ω)

)
+

c |α| C2√
2(β + η)

(
‖u‖L2(QT ) + ‖y0‖L2(Ω) + |R(0)|

)
6 c

(
1 +

1√
2(β + η)

)(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω) + |R(0)|

)
6 2c

(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω) + |R(0)|

)
provided that η > η0. In this way, we have proved the following result:

Lemma 2.2 (L∞-a-priori estimate). Assume u ∈ Lp(QT ) with p > 5/2 and y0 ∈ L∞(Ω).
If η > η0 and v ∈ W (0, T ) ∩ L∞(QT ) is any weak solution to (9), then there holds

‖v‖L∞(QT ) 6 C∞

(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω) + |R(0)|

)
(16)

with some constant C∞ > 0 that does not depend on α, η, y0, u, and R.

2.3. Solvability of the state equation

Now we keep the given control u, together with y0, fixed and set

M∞ := C∞

(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω) + |R(0)|

)
.
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By M∞, we define the following auxiliary function cutting off Rη:

R̂η(t, v) =


Rη(t,M∞) if v > M∞
Rη(t, v) if |v| < M∞
Rη(t,−M∞) if v 6 −M∞.

Theorem 2.1 (Existence and uniqueness). For all η > η0, u ∈ Lp(Q) with p > 5/2,
and y0 ∈ L∞(Ω), the integro-differential system (9) has a unique solution v ∈ W (0, T ) ∩
L∞(QT ) ∩ C

(
Ω× (0, T ]

)
. There is a constant C∞ > 0 such that

‖v‖L∞(QT ) + ‖v‖W (0,T ) 6 C∞

(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω) + |R(0)|

)
.

If y0 is continuous in Ω, then the solution v belongs to C
(
QT

)
.

Proof. (i)Existence of a solution. For given w ∈ L2(QT ), we consider the equation

∂

∂t
v −∆v + R̂η(t, v) +

2

3
η v = u− αKηw (17)

subject to the given initial and boundary conditions v(·, 0) = y0 and ∂νv = 0. Though
the right-hand side does possibly not belong to Lp(QT ) with p > 5/2, there is a unique
solution of this system in W (0, T ), because the function (x, t) 7→ R̂η(t, v(x, t)) is bounded in
L∞(QT ) independently of v ∈ L2(QT ). Therefore, the existence of a solution v follows by a
simple application of Schauder’s theorem. The uniqueness is an immediate consequence of
the monotonicity of R̂ w.r. to v.

Let us denote by F the mapping F : w 7→ v acting in L2(QT ).
The a-priori estimate (12) for solutions of equation (9) holds in particular for α = 0,

hence it can be applied to equation (17), too. We define

M := C2

(
‖u‖L2(QT ) + ‖y0‖L2(Ω) + |R(0)|

)
and assume that ‖w‖L2(QT ) 6 2M . Then we obtain from (12), applied to the right-hand
side with u substituted by u− αKηw,

‖F w‖L2(QT ) = ‖v‖L2(QT ) 6 ‖v‖L2(0,T ;H1(Ω))

6 C2

(
‖u‖L2(QT ) + |α| ‖Kηw‖L2(QT ) + ‖y0‖L2(Ω) + |R(0)|

)
6M + C2 |α| ‖Kηw‖L2(QT ) 6M +

C2 |α| C√
2(β + η)

‖w‖L2(QT ) 6 2M,

if η is sufficiently large. Therefore, F maps B2M(0), the closed ball of L2(QT ) around zero
with radius 2M , into itself. Moreover, considering equation (17) in the form

∂

∂t
v −∆v +

2

3
η v = u− αKηw − R̂η(t, v)

we obtain from standard estimates for linear parabolic equations that

‖F w‖W (0,T ) 6 c



10 Eduardo Casas et al.

holds with some constant c for all w in B2M(0). Notice that R̂η is uniformly bounded in
L∞(QT ). By Aubin’s Lemma, bounded sets of W (0, T ) are relatively compact in L2(QT ),
hence the mapping F is compact. By Schauder’s theorem, F has a fixed point in B2M(0);
this is a solution of (9) when Rη is replaced by R̂η.

(ii)Uniqueness of the solution. Suppose that v1 and v2 are solutions of (9) and set
v := v1 − v2. Subtracting the associated equations and applying the mean value theorem to
the appearing difference R̂η(t, v1)− R̂η(t, v2), we see that v solves

∂

∂t
v −∆v +

(
∂

∂v
R̂η(t, vϑ) +

2

3
η

)
v + αKηv = 0

subject to homogeneous initial and boundary conditions, where vϑ = v1 + ϑ (v2 − v1) with
some measurable ϑ taking values in (0, 1). This is a linear equation with non-negative
coefficient ∂

∂v
R̂η(t, vϑ) + 2

3
η. Applying the same technique as in the proof of Lemma 2.1, we

find a constant C̃2 such that ‖v‖L2(0,T ;H1(Ω)) 6 C̃2 ‖0‖L2(QT ) = 0, hence v = v1 − v2 = 0
showing the uniqueness.

(iii)The solution v obeys (9). By Lemma 2.2, the solution v satisfies the L∞-estimate
(16) provided that η is taken sufficiently large. In this case, R̂η(t, v) = Rη(t, v) is satisfied
so that v is a solution of (9).

(iv) Continuity properties of v. As a solution to (17) with bounded initial function
and right-hand side in Lp(QT ), v belongs to the space L∞(QT ) ∩ C(Ω̄× (0, T ]), we refer to
[Raymond and Zidani (1999)]. If v0 is even continuous in Ω̄, then v ∈ C(Ω̄× [0, T ]) = C(QT )
follows from [Casas (1997)] and the references therein.

Corollary 2.1. For all u ∈ Lp(QT ) with p > 5/2, y0 ∈ L∞(Ω), z0 ∈ L∞(Ω) and all

α ∈ R, the equation (3) has a unique solution (y, z) ∈
(
W (0, T ) ∩ L∞(QT ) ∩ C

(
Ω× (0, T ]

))2
.

If y0 and z0 are continuous on Ω, then y and z belong to C
(
Ω× [0, T ]

)
.

Proof. We apply Theorem 2.1 to the equation (8) and obtain a unique solution v. Next, we
return to the original quantities y and z by y = eηtv and z = e−βtz0 + δ

β

(
e−βt − 1

)
+ Kη v.

2.4. Differentiability of the control-to-state mapping

To show the differentiability of the control-to-state mapping u 7→ y, we first prove an analog
of Theorem 2.1 for a linear system.

Lemma 2.3. If η is taken sufficiently large, c0 ∈ L∞(QT ) is almost everywhere non-
negative, u ∈ L2(QT ) and y0 ∈ L2(Ω), then the linear integro-differential system

∂

∂t
v −∆v + c0(x, t) v + ηv + αKη v = u in QT

∂νv = 0 in ΣT

v(x, 0) = y0(x) in Ω

(18)

has a unique solution v ∈ W (0, T ). There is C2 > 0 depending neither on y0 nor on c0 such
that

‖v‖W (0,T ) 6 C2

(
‖u‖L2(QT ) + ‖y0‖L2(Ω)

)
∀u ∈ L2(QT ), y0 ∈ L2(Ω). (19)
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Proof. The result can be shown completely analogously to Lemma 2.1 and Theorem 2.1 by
formally substituting c0(x, t)v for Rη(t, v). If η is taken sufficiently large, then the term
αKηv can be absorbed by ηv in the estimation. Since the equation (18) is linear, a cut-off

function like R̂η is not needed.

Remark 2.1. In the same way, we show for u ∈ Lp(QT ), p > 5/2, and y0 ∈ L∞(Ω), that
the solution v of (18) belongs to L∞(QT ) ∩ C

(
Ω× (0, T ]

)
and there exists a constant C∞

such that
‖v‖L∞(QT ) 6 C∞

(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω)

)
. (20)

We reduce the problem of differentiability of the control-to state mapping for the equation
(3) to known results for semilinear parabolic equations with monotone nonlinearity.

Lemma 2.4. For all p > 5/2 and all sufficiently large η, the solution mapping Gη : u 7→ v
for equation (9) is of class C2 from Lp(QT ) to W (0, T ) ∩ L∞(QT ) ∩ C(Ω× (0, T ]).

Proof. At first, we consider the semilinear parabolic differential equation of monotone type

∂

∂t
v −∆v +Rη(t, v) +

2

3
η v = u in QT

∂νv = 0 in ΣT

v(x, 0) = y0(x) in Ω.

(21)

For each u ∈ Lp(QT ), y0 ∈ L∞(Ω) and η > η0, this equation has a unique solution vu ∈
V∞ := W (0, T )∩L∞(QT )∩C

(
Ω× (0, T ]

)
. By Gη we denote the associated solution mapping,

Gη : u 7→ vu, Gη : Lp(QT )→ V∞.

It is known that Gη is twice continuously Fréchet-differentiable. For this differentiabil-
ity property and the concrete form of the first- and second-order derivatives, we refer to
[Casas et al.(2008)] or to Thm. 5.9 and Thm. 5.16 in [Tröltzsch (2010)].

By Lemma 2.3 and Remark 2.1, there exists a constant C∞ such that

‖vu‖L∞(QT ) 6 C∞

(
‖u‖Lp(QT ) + ‖y0‖L∞(Ω)

)
∀u ∈ Lp(QT )

holds, no matter how large η > η0 or ∂
∂v
Rη are. With this prerequisite at hand, we return

to the nonlinear equation (9) in the form

∂

∂t
v −∆v +Rη(t, v) +

2

3
η v + αKηv = u in QT

∂νv = 0 in ΣT

v(x, 0) = y0(x) in Ω.

(22)

Let us denote the solution mapping for this equation by Gη, Gη : Lp(QT ) → V∞; then we
have v = Gη(u). Obviously, v solves (22) if and only if, using the mapping Gη for (21),

v −Gη(u− αKη v) =: F(v, u) = 0. (23)

Suppose that the pair (v0, u0) is a solution to (23). We know that Gη is of class C2, hence
also the mapping (v, u) 7→ F(v, u), where F defined above is considered for simplicity as F :
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L∞(QT )×Lp(QT )→ L∞(QT ). To apply the implicit function theorem, we need continuous
invertibility of the derivative

∂

∂v
F(v0, u0) = I + αG′η(u0 − αKη v0)Kη.

The norm of ‖Kη‖L(L∞(QT )) tends to zero as η →∞, because it holds

‖Kη v‖L∞(QT ) 6
c√

2(β + η)
‖v‖L∞(QT ) ,

hence ∥∥αG′η(u0 − αKη v0)Kη

∥∥
L∞(QT )

< 1

holds for all sufficiently large η. Here we exploit that, by Lemma 2.3 with c0(x, t) :=
∂
∂v
Rη(t, v0(x, t)), the norm of the operator G′η(u0 − αKη v0) remains bounded for η → ∞.

Therefore, ∂
∂v
F(v0, u0) is continuously invertible for sufficiently large η. By the implicit

function theorem, the mapping Gη : u 7→ vu is also of class C2 from Lp(QT ) to L∞(QT )
provided that η is sufficiently large.

Let us finally verify this property for the original range V∞ of Gη. We re-write (23) as

v = Gη(u) = Gη(u− αKηGη(u)).

Since Gη is of class C2 from Lp(QT ) to V∞ and Gη(u) is of class C2 from Lp(QT ) to L∞(QT ),
we obtain by the chain rule that Gη is also of class C2 from Lp(QT ) to V∞.

Remark 2.2. Since the function y 7→ R(y) is of class C∞, the implicit function theorem
yields immediately that Gη is even of class C∞.

By this result, it is easy to prove our main result with respect to differentiability.

Theorem 2.2 (Differentiability of the control-to-state mapping). The solution mapping
G : u 7→ (yu, zu) associated with the system (3) is twice continuously Fréchet differentiable

from Lp(QT ) to
(
W (0, T ) ∩ L∞(QT ) ∩ C(Ω× (0, T ])

)2
. The derivative (yh, zh) := G′(u)h is

equal to the pair (y, z) solving the system

∂

∂t
y −∆y +R′(yu)y + α z = h in QT

∂νy = 0 in ΣT

y(x, 0) = 0 in Ω

∂

∂t
z + β z − γ y = 0 in QT

z(x, 0) = 0 in Ω.

(24)

The second derivative (yh1h2 , zh1h2) := G′′(u)[h1, h2] in the directions h1, h2 ∈ Lp(QT ) is
equal to the pair (y, z) that solves the equation

∂

∂t
y −∆y +R′(yu)y + α z = −R′′(yu) yh1yh2 in QT (25)

and the last 4 equations of (24). Here, yhi, i = 1, 2, are the first components of the derivatives
G′(u)hi defined in (24).



Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems 13

Proof. We apply Lemma 2.4 to (8). By affine linearity, the associated mapping u 7→ v is of
class C2, hence also the mapping u 7→ yu = eηt v. The same is true for the mapping u 7→ zu,
because zu is obtained from (7), hence G : u 7→ (yu, zu) is of class C2 in the indicated spaces.
Let us write G(u) = (Gy(u), Gz(u)). Inserting this in (3) and differentiating in a direction
h ∈ Lp(QT ), we find

∂

∂t
G′y(u)h−∆G′y(u)h+R′(Gy(u))G′y(u)h+ αG′z(u)h = h in QT

∂νG
′
y(u)h = 0 in ΣT

(G′y(u)h)(x, 0) = 0 in Ω

∂

∂t
G′z(u)h+ β G′z(u)h− γ G′y(u)h = 0 in QT

(G′z(u)h)(x, 0) = 0 in Ω.

This system is equivalent to (24). Differentiating the first partial differential equation above
again with respect to another direction k ∈ Lp(QT ), we obtain

∂

∂t
G′′y(u)[h, k]−∆G′′y(u)[h, k] +R′(Gy(u))G′′y(u)[h, k]

+R′′(Gy(u))[G′y(u)h,G′y(u)k] + αG′′z(u)[h, k] = 0,

i.e. the first equation of (25) with h1 := h and h2 = k. The other equations follow easily.

3. Well-posedness of the optimal control problems and first-order
necessary optimality conditions

3.1. Solvability of the general optimal control problem

Let us introduce the reduced objective functional.

J(u) := f(yu, zu, u) = I(u) + µ j(u).

Then we consider for both model equations (Schlögl for α = 0, FitzHugh-Nagumo for α = 1)
the optimal control problem

min
u∈Uad

J(u) := f(yu, zu, u), (26)

where the state (yu, zu) is the unique solution of equation (3) for the given control u.

Theorem 3.1 (Existence of an optimal solution). The optimal control problem (26) has
at least one optimal solution ū with associated optimal state ȳ := G(ū).

Proof. The set Uad is non-empty and weakly compact in Lp(QT ). Moreover, the reduced
objective functional J : u 7→ f(yu, zu, u) is weakly lower semicontinuous in Lp(QT ) for
p > 2 because of the compactness of the mapping u ∈ Lp(QT ) → (y, z) ∈ L2(QT )2 and the
convexity of the terms involving the control. Notice also that the mapping G : u 7→ (yu, zu)
is of class C2. The result follows now by standard arguments.

In view of this general result, the optimal control problems defined upon the Schlögl or
the FitzHugh-Nagumo equations are solvable.
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3.2. First-order necessary optimality conditions

Again, we deal with both problems at once by considering the general state equation (3). Let
ū ∈ Uad be a locally optimal control with associated state (ȳ, z̄). Since any global solution
is also a local one, we formulate the optimality conditions for local solutions. The triple
(ȳ, z̄, ū) has to satisfy a variational inequality including the subdifferential ∂j(ū). We recall
that

∂j(ū) =
{
λ ∈ L∞(QT )

∣∣∣ j(u) > j(ū) +

T∫
0

∫
Ω

λ (u− ū)dxdt ∀u ∈ L∞(QT )
}
.

In our case, where j is the norm of L1(QT ), this means almost everywhere

λ(x, t) ∈


{1}, if ū(x, t) > 0

[−1, 1], if ū(x, t) = 0
{−1}, if ū(x, t) < 0.

Lemma 3.1. If (ȳ, z̄, ū) is a local solution to the optimal control problem (26), then there
exists a function λ̄ ∈ ∂j(ū) such that, with µ introduced in (4),

I ′(ū)(u− ū) +

T∫
0

∫
Ω

µ λ̄(x, t)(u(x, t)− ū(x, t))dxdt > 0 ∀u ∈ Uad. (27)

This result is obtained from the standard variational inequality

I ′(ū)(u− ū) + µ j′(ū, u− ū) > 0 ∀u ∈ Uad,

where j′(ū, u− ū) denotes the directional derivative of j. Then (27) follows from

j′(ū, u− ū) = max
λ∈∂j(ū)

〈λ , u− ū〉,

cf. [Casas et al.(2012)]. The derivative I ′(ū) is given by

I ′(ū)(u− ū) =

∫
Ω

cYT (ȳ(x, T )− yT (x)) vu−ū(x, T ) + cZT (z̄(x, T )− zT (x))wu−ū(x, T )dx

+

T∫
0

∫
Ω

cYQ(ȳ − yQ) vu−ū + cZQ(z̄ − zQ)wu−ū dxdt+ κ

T∫
0

∫
Ω

ū (u− ū)dxdt,

(28)

where vu−ū ∈ C
(
QT

)
denotes the y-component and wu−ū ∈ C

(
Ω× [0, T ]

)
the z-component

of the derivative G′(ū)(u− ū). Thanks to Theorem 2.2 and equation (24), (vu−ū, wu−ū) solves
the linear equation

∂

∂t
v −∆v +R′(ȳ) v + αw = u− ū in QT (29)

∂νv = 0 in ΣT (30)

v(x, 0) = 0 in Ω (31)

∂

∂t
w + β w − γ v = 0 in QT (32)

w(x, 0) = 0 in Ω. (33)
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Introducing adjoint states, we are able to get rid of the functions vu−ū and wu−ū in (28). We
define the following adjoint system for a pair of adjoint states (ϕ1, ϕ2) ∈ W (0, T )×W (0, T ):

− ∂

∂t
ϕ1 −∆ϕ1 +R′(ȳ)ϕ1 − γ ϕ2 = cYQ (ȳ − yQ) in QT (34)

∂νϕ1 = 0 in ΣT (35)

ϕ1(x, T ) = cYT (x) (ȳ(x, T )− yT (x)) in Ω (36)

− ∂

∂t
ϕ2 + β ϕ2 + αϕ1 = cZQ (z̄ − zQ) in QT (37)

ϕ2(x, T ) = cZT (x) (z̄(x, T )− zT (x)) in Ω. (38)

Existence, uniqueness and regularity of the adjoint state (ϕ1, ϕ2) follows from Theorem (2.1)
after the transformation ϕ̃i(t) := ϕi(T − t), i = 1, 2. In this way, the (well-posed) backward
problem (34)-(38) is transformed to a forward one, where Theorem 2.1 can be applied.

Remark 3.1. If y0, z0 belong to C(Ω), then (ȳ, z̄) and (ϕ̄1, ϕ̄2) are continuous on Ω×[0, T ].
If in addition yT , zT belong to C(Ω) and yQ, zQ to L∞(QT ), the data ȳ−yQ, z̄−yQ, ȳ(·, T )−yT
and z̄(·, T ) − zT given in the adjoint system belong to L∞(QT ) and C(Ω), respectively. In
this case, Theorem 2.1 yields the regularity ϕ̄i ∈ C

(
Ω× [0, T ]

)
.

Lemma 3.2. Let (ϕ̄1, ϕ̄2) ∈ W (0, T ) × W (0, T ) be the unique solution of the adjoint
system (34)-(38). Then it holds

T∫
0

∫
Ω

ϕ̄1 (u− ū)dxdt =

T∫
0

∫
Ω

cYQ (ȳ − yQ) vu−ū + cZQ (z̄ − zQ)wu−ū dxdt

+

∫
Ω

cYT (·)(ȳ(·, T )− yT (·))vu−ū(·, T ) + cZT (·)(z̄(·, T )− zT (·))wu−ū(·, T )dx.

(39)

Proof. Let us write for short v := vu−ū, w := wu−ū. We multiply (29) with ϕ̄1 and (32)
with ϕ̄2, integrate both equations over QT and integrate by parts in the term containing ∆v.
Next, we add both equations to obtain

T∫
0

∫
Ω

(u− ū) ϕ̄1 dxdt =

T∫
0

〈w′ , ϕ̄2〉+ 〈v′ , ϕ̄1〉 dt

+

T∫
0

∫
Ω

β w ϕ̄2 − γ v ϕ̄2 +∇v · ∇ϕ̄1 +R′(ȳ) v ϕ̄1 + αw ϕ̄1 dxdt.

(40)

Next, we multiply (34) with v and (37) with w and perform the same operations as above.
In addition, we integrate by parts with respect to t in the terms containing ϕ̄′i, i = 1, 2. We
arrive at

T∫
0

∫
Ω

cYQ (ȳ − yQ) v + cZQ (z̄ − zQ)wdxdt = −
∫
Ω

ϕ̄1(·, T ) v(·, T ) + ϕ̄2(·, T )w(·, T )dx

+

T∫
0

〈v′ , ϕ̄1〉+ 〈w′ , ϕ̄2〉 dt+

T∫
0

∫
Ω

∇v · ∇ϕ̄1 +R′(ȳ) v ϕ̄1 − γ v ϕ̄2 + β w ϕ̄2 + αw ϕ̄1 dxdt.

(41)
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Now we insert the initial and final conditions ϕ̄1(·, T ) = cYT (·) (ȳ(·, T )−yT (·)) and ϕ̄2(·, T ) =
cZT (·) (z̄(·, T )− zT (·)) and subtract (41) from (40) to find∫

Ω

cYT (·)(ȳ(·, T )− yT (·))v(·, T ) + cZT (·)(z̄(·, T )− zT (·))w(·, T )dx

=

T∫
0

∫
Ω

ϕ̄1 (u− ū)dxdt−
T∫

0

∫
Ω

cYQ (ȳ − yQ) v + cZQ (z̄ − zQ)wdxdt.

(42)

This is equivalent to the statement of the lemma.

The next theorem summarizes our findings.

Theorem 3.2 (Necessary optimality conditions). If ū is a local solution to the opti-
mal control problem (26) and (ȳ, z̄) is the associated state, then there exists a unique pair
(ϕ̄1, ϕ̄2) ∈ W (0, T )2 of adjoint states solving the adjoint system (34)-(38) and a function
λ̄ ∈ L∞(QT ) such that

T∫
0

∫
Ω

(
ϕ̄1(x, t) + κ ū(x, t) + µ λ̄(x, t)

)
(u(x, t)− ū(x, t))dxdt > 0 ∀u ∈ Uad. (43)

Proof. The theorem follows from the relations (27), (28), and Lemma 3.2.

In the case κ > 0, from the variational inequality (43) the following standard projection
formula is obtained, cf. [Casas (1997)] or the exposition in [Tröltzsch (2010)]:

ū(x, t) = P[a,b]

{
−1

κ

(
ϕ̄1(x, t) + µ λ̄(x, t)

)}
for a.a. (x, t) ∈ QT , (44)

where P[a,b] : R→ [a, b] is defined by

P[a,b](u) = max{a,min{v, b}}.

A further discussion, related to the element λ̄ of the subdifferential ∂j(ū), reveals the spar-
sity of ū. The associated analysis is completely analogous to the one of the elliptic case dis-
cussed in [Casas et al.(2012)]. We recall this approach for convenience [Casas et al.(2013)].

Theorem 3.3. Assume that κ and µ are positive. Then, for almost all (x, t) ∈ QT , there
holds

ū(x, t) = 0, if and only if

{
|ϕ̄1(x, t)| 6 µ, if a < 0
ϕ̄1(x, t) > −µ, if a = 0,

(45)

λ̄(x, t) = P[−1,1]

{
− 1

µ
ϕ̄1(x, t)

}
. (46)

Proof. The proof is completely analogous to [Casas et al.(2012)]. Let us show this result for
convenience of the reader. In the proof, we write ϕ̄ := ϕ̄1 to avoid the repeated use of the
index 1. At first, we take a > 0. By the projection formula (44), it is obvious that

ū(x, t) = 0 ⇔ ϕ̄(x, t) + µ λ̄(x, t) = 0 (47)
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holds for almost all (x, t) ∈ QT . Assume now the right-hand part of (47) holds true. Then
we have ϕ̄(x, t) = −µ λ̄(x, t) and on the other hand it holds |λ̄(x, t)| 6 1. Together, this
yields

|ϕ̄(x, t)| =
∣∣µ λ̄(x, t)

∣∣ = µ
∣∣λ̄(x, t)

∣∣ 6 µ.

Consider now the points (x, t) ∈ QT with ū(x, t) 6= 0, say first that ū(x, t) > 0. Then (44)
gives

0 < −1

κ

(
ϕ̄(x, t) + µ λ̄(x, t)

)
.

Because λ̄ is equal to 1 where ū > 0, this inequality implies 0 > ϕ̄(x, t)+µ, hence ϕ̄(x, t) < 0
and finally

|ϕ̄(x, t)| = −ϕ̄(x, t) > µ > 0.

A similar argumentation shows |ϕ̄(x, t)| > µ also in the case ū(x, t) < 0. Therefore, for
almost all (x, t) ∈ QT , nonzero values of ū(x, t) can only occur if and only if |ϕ̄(x, t)| > µ.
This shows the first case of (45).

If a = 0, it is easy to see that λ(x, t) = 1, because j is differentiable with derivative 1.
For this reason, a simple computation and (44) lead to the second case of (45),

ū(x, t) = 0 ⇔ ϕ̄(x, t) > −µ

Next, we derive the projection formula (45) for λ̄. In a.a. points with ū(x, t) > 0, it
holds λ̄(x, t) = 1 by the definition of the subdifferential. Then the projection formula (44)
implies −(ϕ̄(x, t) + µ · 1) > 0. This is equivalent to −ϕ̄(x, t)/µ > 1, hence

λ̄(x, t) = 1 = P[−1,1]

{
− ϕ̄(x, t)

µ

}
holds true as claimed. Analogously, (45) is proved, if ū(x, t) < 0. Consider finally the case
ū(x, t) = 0. By formula (44), we have then 0 = ϕ̄(x, t) + µλ̄(x, t) and hence

λ̄(x, t) = − ϕ̄(x, t)

µ
= P[−1,1]

{
− ϕ̄1(x, t)

µ

}
,

because we also know that λ̄(x, t) belongs to [−1, 1] for ū(x, t) = 0.

From this theorem, we are able to draw several important conclusions about the behavior
of the optimal control.

Corollary 3.1 (Sparsity of optimal controls). Assume that y0, yT , z0, zT ∈ L∞(Ω) and
yQ, zQ ∈ L∞(QT ).

(i) Then there exists a constant Mϕ > 0 such that there holds

|ϕ1(x, t)| 6Mϕ for a.a. (x, t) ∈ QT (48)

for all adjoint states ϕ1 associated with any admissible control u ∈ Uad. Any locally optimal
control ū of the problem (26) vanishes in almost all points (x, t) ∈ QT , where |ϕ(x, t)| > µ
is satisfied. For µ > Mϕ, problem (26) has the unique (locally) optimal control ū = 0.

(ii) The functions λ̄ and ū have the regularity L2(0, T ;H1
0 (Ω)) ∩ C(Ω̄ × (0, T ]). If in

addition yT , zT belong to C(Ω), then any locally optimal control ū belongs to C(Ω× [0, T ]).
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Proof. The set Uad is bounded in L∞(QT ), therefore, Lemma 2.2 provides a bound for the
norm of all admissible states vu in L∞(QT ). Obviously, we have the same for all states
zu. Therefore, thanks to the boundedness of the data y0, yT , z0, zT , yQ, zQ ∈ L∞(QT ), the
right-hand sides of the adjoint system (34)–(38) are uniformly bounded in L∞(QT ) or L∞(Ω),
respectively. This turns over to the adjoint states, hence the existence of the constant Mϕ

in (48) is clear. The other statements of (i) are only a reformulation of property (45) in 3.3.

(ii) The adjoint state ϕ̄1 belongs to L2(0, T ;H1
0 (Ω))∩C(Ω̄×(0, T ]). By the representation

(46), λ̄ has the same regularity. The projection formula (44) yields this regularity for ū.

If yT and zT are continuous, then the continuity of the adjoint state ϕ̄1 follows from
an application of Remark 3.1 to the adjoint system. Therefore, (46) and (44) ensure the
continuity of λ̄ and ū.

Remark 3.2. If ū is continuous in QT , then the set {(x, t) ∈ QT | ū(x, t) 6= 0} is open and
hence the union of countably many disjoint open and connected subsets (so-called compo-
nents) of QT , cf. [Alexandroff (2001)]. Therefore, the optimal control has a fairly regular
shape.

4. Numerical examples

In this section, we present various numerical examples of optimal control problems for the
Schlögl and the FitzHugh-Nagumo model, where traveling wave fronts or spiral waves are
controlled. The sparse optimal controls turn out to be concentrated at the front region of
the traveling waves. We shall also see in some of our examples that sparse controls improve
the convergence of the CG method compared to the case of µ = 0 without sparsity.

For the numerical treatment of the forward problem (3), respectively the adjoint sys-
tem (34) - (38), we use a semi-implicit Euler-method with respect to the time and linear
continuous finite elements for the spatial discretization. As optimization procedure for (6),
respectively (26), a projected conjugate gradient method with nonlinear CG-step (namely
the one by Hestenes-Stiefel) along with the strong Wolfe-Powell step-size rule for the line-
search is used, cf. [Engel et al.(2013)].

We recall the steps of this method for the convenience of the reader:

1. Initialization: Select an initial control u0 and an initial step size s0. Compute (y, z)0 =
(yu0 , zu0) (states), ϕ0

1 = ϕ1,y0,z0 (adjoint state), λ0 = λu0,ϕ0
1

(subgradient of j), g0 =

κu0 + ϕ0
1 + µλ0 (subgradient of f), d0 = −g0 (anti-subgradient of f); set k := 0.

2. New subgradient:

uk+1 = uk + skd
k (new control),

(y, z)k+1 = (yuk+1 , zuk+1) (new states),
ϕk+1

1 = ϕ1,yk+1,zk+1 (new adjoint state),
λk+1 = λuk+1,ϕk+1

1
(new subgradient of j),

gk+1 = κuk+1 + ϕk+1
1 + µλk+1 (new subgradient of f).

3. Stop, if
∥∥gk+1

∥∥ < ε.
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4. Direction of descent: Compute the conjugate direction according to Hestenes und
Stiefel

dk+1 = −gk+1 +

(
gk+1

)T(
gk+1 − gk

)
(dk)T(gk+1 − gk)

.

5. Select the step size sk+1 by the strong Wolfe-Powell rule, cf. [Engel et al.(2013)], set
k := k + 1 and go to (2.).

The notation ϕ1,y,z is used for the adjoint state that corresponds to the solution ϕ1 of (34) -
(38) with y and z given instead of ȳ and z̄ in the right hand side. Moreover, λu,ϕ1 denotes the
subgradient of j(u) that satisfies formula (46) with respect to ϕ1 in the points (x, t), where
u(x, t) = 0 holds. We remark that we modified (3.) such that the algorithm also terminates,
if the controls and the states of two consecutive iterations differ only very marginally.

Since we also have to deal with a subgradient, we should remark that the projection
formula (46) is used to set λ, if |u| is below a certain threshold. Further, in all of our numerical
optimization runs, we selected the weight κ = 10−10 and started with the admissible initial
control u ≡ 0.

4.1. The Schlögl model in Ω ⊂ R

In this subsection, we consider the model described by (1) and therefore, we set cZQ = cZT =
zT = zQ = 0. The nonlinearity R is taken as R(y) = 1

3
y3 − y. We discuss the problem of

extinguishing a wave after a certain time and that of reaching a desired target state yT in a
one-dimensional spatial domain.

Example 1: Extinction of waves. We discuss the following setting: the domain is
given by Ω = (0, 40), the final time by T = 5, and the initial state by

y0(x) :=
4∑

k=1

(−1)kk−2(1− cos(ψ(x, `k))),

where `1 = 7, `2 = 16, `3 = 24, `4 = 33, and ψ is defined as

ψ(x, `) :=

{
(x− `+ 1)π

7
, if x ∈ [`− 7, `+ 7]

0, else.

Without any control, i.e. for u ≡ 0, traveling wave fronts appear that expand outwards and

0 10 20 30 40
−1

−0.5

0

0.5

x

y
0

Figure 1. Example 1: Initial state y0 (left) and state ynat (right) for u ≡ 0.
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seem to lock each other where they collide. In Fig. 1, the initial state y0 and the development
of the state ynat as the solution of (1) for u ≡ 0 are presented. Notice that, in the figures
displaying wave fronts, the vertical axis is the time axis.

Our task is to extinguish the wave fronts at t = 1 and keep the state at zero until t = T .
Therefore, let cYQ(t) = 1, if t ∈ [1, T ], and cYQ(t) = 0, else, as well as yQ ≡ 0. Further, we
set cYT = 0 and yT ≡ 0. We split (0, 40) and (0, T ) by partitions with m = 601 and n = 500
equidistant node points, respectively, and select a = −1 and b = 1. The optimal control
and its associated state behave as shown in Fig. 2. Due to the constraints on u, the desired

Figure 2. Example 1: Optimal control ū (left) and associated state ȳ (right) for µ = 0.

state cannot be approximated that well. However, the objective functional value J = 0.094
is acceptable.

Figure 3. Example 1: Sparse optimal control ū (left) and associated state ȳ (right) for µ = 1.

It is obvious that the optimal value increases as µ > 0 increases. For µ = 1, it is
J = 13.954. Also the value J(ū)− µj(ū) = 0.23 (the objective functional value without the
additional costs µj(ū)) is larger than before. But the computed control is sparse, indeed.
Fig. 3 presents the result for this case.

We remark that, in addition to the sparsity of the optimal control, the CPU-time for
optimization decreases with increasing µ. For µ = 1 it is half the time than for µ = 0.

Example 2: Reaching a desired state. The second task is to reach a desired state yT
at the final time t = T . To this aim, we take cYQ = 0, yQ ≡ 0, and cYT = 1. Moreover, let yT
be defined as y0 of the first example. With y0 ≡ 0, QT as before, a = − 1

20
, and b = 1

20
, an

optimal objective functional value of J = 5.07 · 10−7 is reached.
Fig. 4 displays the optimal control for µ = 0 and for µ = 1

4
. The sparsity of ū is quite

obvious for µ = 1
4
. In this case, the costs J = 0.0396 (J(ū) − µj(ū) = 0.0032) are much

higher but still acceptable. The desired trajectory is qualitatively well approximated, since
‖ȳ( · , T )− yT‖L∞(Ω) = 3.12 · 10−2.
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Figure 4. Example 2: Optimal control ū for µ = 0 (left) and sparse optimal control ū for µ = 1
4 (right).

4.2. The Schlögl model in Ω ⊂ R2

In this subsection, we consider the model (1) as before,

Figure 5. Initial state y0.

but with the nonlinearity R(y) = y(y−0.25)(y+1). There-
fore, we set cZQ = cZT = zT = zQ = 0, again. Since the spa-
tial dimension is N = 2, the optimization method turned
out to be much slower than for N = 1, though we selected
only 141× 141 node points in Ω. Due to this, reducing the
calculation time is even more important.

For the examples that are discussed in this subsection,
let Ω = (0, 70) × (0, 70) and the initial state be given by
two parallel wave fronts as shown in Fig. 5. We define the
initial state y0 by

y0(x) :=

(
exp

( 70
3
− x1√

2

))−1

+

(
exp

(
x1 − 140

3√
2

))−1

− 1.

Without any control, i.e. for u ≡ 0, the waves expand outwards in positive respectively
negative x1-direction and cover the whole spatial domain after approximately t = 65.

Example 3: Extinction of wave fronts. The first task is to extinguish both wave
fronts at the final time T = 20. With cYT = 1, yT ≡ 0, cYQ = 0, yQ ≡ 0, a = −1, and b = 1,
an optimal objective functional value of J = 0.08 is reached. Since the CG method was
quite fast for µ = 0, a positive parameter µ did not essentially reduce the needed CPU-time
noticeable. Because the optimal control ū shows similar behaviour along the x2-axis, we only
present it in the x1-t-plane for x2 = 35. Fig. 6 presents this view of ū for µ = 0 and µ = 1

10
.

Although the use of µ = 1
10

causes an optimal functional value of J = 242.19 (J(ū) −
µj(ū) = 9.13), we have ‖ȳ(., T )‖L∞(Ω) = 0.097 and therefore, the reached state is close
enough to zero such that ȳ( · , t) tends rapidly to zero for increasing t > T and ū( · , t) ≡ 0
for all t > T . Notice that zero is a stable fixed point here.

Example 4: Turning and stopping wave fronts. Our second task is to rotate the
vertical initial wave fronts of Example 3, displayed in Fig. 5, counter-clockwise in a horizontal
position until t = 60 and to keep them like this for another 20 time-units. Therefore, we
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Figure 6. Example 3: Optimal control ū for µ = 0 (left) and sparse optimal control ū for µ = 1
10 (right),

both shown in the x1-t-plane at x2 = 35.

take T = 80, a = −1, b = 1, cYQ = 1, cYT = 0, yT ≡ 0, and define the desired state yQ as

yQ(x, t) :=

(
exp

(
cos(ψ(t))(70

3
− x1) + sin(ψ(t))(70

3
− x2)

√
2

))−1

+

(
exp

(
cos(ψ(t))(x1 − 140

3
) + sin(ψ(t))(x2 − 140

3
)

√
2

))−1

− 1,

where ψ(t) := π
2

min
(
1, 4t

3T

)
. Fig. 7 displays the behaviour of this desired trajectory.

Figure 7. Example 4: Desired trajectory yQ at t = 20 (left), t = 40 (middle) and t = 60 (right).

For µ = 0, the desired state is approximated

Figure 8. Example 4: Optimal control ū at

t = 20 for µ = 0.

quite well and there is no visible difference be-
tween ȳ and yQ. The associated optimal control
is presented in Fig. 8. We remark that the CG
method was very slow for µ = 0. After 440 iter-
ations, it stopped at an objective functional value
of J = 0.083. However, the method terminated
much faster for a positive sparse-parameter µ > 0.
For instance, the method terminated after 59 iter-
ations in the case µ = 1. Indeed, the optimal costs
J = 4.95 ·103 are much higher, even if we take into
account that J contains the additional cost µ j(ū)
and consider J(ū)−µj(ū) = 911.62, but the desired
trajectory is qualitatively approximated well. The
associated optimal controls and the corresponding states are presented in Fig. 9, exemplarily
at t = 20.
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Figure 9. Example 4: Sparse optimal control ū (left) and associated state ȳ (right) at t = 20 for µ = 1.

Considering the result of the CG method for µ = 0 for the same fixed CPU-time, namely
after 60 iterations, the desired state is not approximated as well as for µ = 1. Fig. 10
displays the calculated control and associated state.

Figure 10. Example 4: Control u (left) and associated state y (right) at t = 20 for µ = 0 after 60 iterations

of the CG method.

It is worth mentioning that not only a better approximation of the terminal target is
achieved by sparse controls but also a tremendous reduction of the running time of the CG
method by more than 85% in this example.

4.3. The FitzHugh-Nagumo-model in Ω ⊂ R2

As mentioned in the first section, the FitzHugh-Nagumo system (2) has solutions which form
patterns of spiral waves. These patterns do not occur for all settings of the parameters β,
γ, δ, k, y1, y2, and y3. Since a spiral wave is needed as initial state in some of the following
examples, we briefly introduce one possible way of exciting spiral wave solutions.

Let Ω be rectangular and u = 1 close to the bottom boundary of Ω in a certain short
period of time and u = 0 elsewhere. As result, a traveling wave appears that propagates
to the upper boundary of the spatial domain. After a short period of time, when the wave
front is located between the upper and the bottom boundary, we set the state (y, z) equal
to zero in the left half of Ω. Then the wave starts to curl up and forms a spiral pattern.

In the following examples, the considered spatial domain Ω is discretized by 97× 97 up
to 121 × 121 nodes. Further, we select β = 1

100
, δ = 0, and k = 1. Moreover, we discuss
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the case of given trajectories yQ and zQ in the objective functional and we therefore set
cYT = cZT = yT = zT = 0.

Example 5: Acceleration of a spiral wave. The first task is to accelerate an initially
given spiral wave. We set Ω = (−150, 150)2, γ = 1

500
, y1 = 0, y2 = 1

20
, and y3 = 1. With the

above mentioned procedure, an initial state (y0, z0) is generated as shown in Fig. 11.

Figure 11. Example 5: Initial states y0 (left) and z0 (right) for the acceleration of the spiral wave.

Let T = 50 and (ynat, znat) denote the natural development of (y, z) in the uncontrolled
case u ≡ 0 starting with (y0, z0). We define

yQ(x, t) := ynat

(
x,

1

5
t2 + t

)
and zQ(x, t) := znat

(
x,

1

5
t2 + t

)
,

where the term t2/5 accounts for the acceleration. The admissible controls are restricted
by a = −5 and b = 5. After the optimization, an objective functional value of J = 0.664
is reached, since the calculated state follows the desired trajectory very well. Fig. 12
presents the optimal control and its associated state, exemplarily at t = 40. Graphically,
the computed optimal state ȳ coincides with yQ.

Figure 12. Example 5: Optimal control ū (left) and associated state ȳ (right) at t = 40 for µ = 0.

Again, a positive parameter µ > 0 causes sparsity of the optimal control and accelerates
the CG method considerably. Instead of 850 iterations in the case of µ = 0, the CG method
stopped after only 59 iterations for µ = 1

3
. Due to the high costs of J = 1.351 · 105
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(J − µj = 4.471 · 104), the result seems not to be acceptable. Nevertheless, the goal of
accelerating the natural spiral wave is achieved fairly well. In Fig. 13, the calculated optimal
state is displayed at t = 40. Comparing it to ȳ in Fig. 12, the patterns are qualitatively well
approximated. For any other time 0 6 t 6 T , a similar result is obtained.

Figure 13. Example 5: Optimal control u (left) and associated state y (right) at t = 40 for µ = 1
3 .

Example 6: Extinction of a spiral wave. The next example deals with the extinction
of a spiral wave. This goal might be achieved by reaching the desired final state (yT , zT ) =
(0, 0) at the final time t = T instead of approaching a desired trajectory (yQ, zQ). But in
this case, the target of extinction is not achieved. Therefore, we followed the idea of moving
the tip of the spiral across the boundary of Ω, which was already known in Physics, cf.
[Yang and Zhang (2006)]. In addition, referring to [Breuer (2006)], it was also known that
a translation of the tip of the spiral wave is sufficient to move the whole wave. Determining
the (approximated) tip numerically is very easy. The intersection of a level curve (isocline)
of y with a level curve of z leads to a unique intersection point, the approximated tip, cf.
[Breuer (2006)]. Based on this knowledge, we define the desired trajectory (yQ, zQ) and the
coefficients

(
cYQ, c

Z
Q

)
in a way that only the area around a moved tip is considered in the

objective functional.
Therefore, let x ∈ Ω be the center of the tip trajectory of ynat, the solution of (2) that

develops in the uncontrolled case u = 0. The trajectory ynat is a spiral that is turning around
the fixed center x. We define

c̃YQ(x) :=

{
1, if |x− x| 6 r
0, else

and c̃ZQ(x) :=

{
10, if |x− x| 6 r
0, else

(49)

for some r > 0, where | · | denotes the Euclidean norm. Thus, c̃YQ and c̃ZQ only differ from
zero in the circled area around x with radius r. To move the tip to a desired boundary point
x ∈ ∂Ω, let us define the distance ` := |x− x| and the direction d := (x − x)/`. With the
velocity c > 0 for the desired movement, the supports of

cYQ(x, t) := c̃YQ(x−min{`, ct}d), cZQ(x, t) := c̃ZQ(x−min{`, ct}d)

describe the translated circled area from x to x along a straight line in direction d. Analo-
gously, we define the moved trajectories

ỹQ(x, t) := cYQ(x, t) ynat(x−min{`, ct}d), z̃Q(x, t) := cZQ(x, t) znat(x−min{`, ct}d).
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Notice, that ynat and znat are spirals whose tip is turning around the fixed center x. Since
(ỹQ, z̃Q) only accounts for the translation to the boundary but not for the extinction after it,
we introduce

ψ(t) :=


1, if t < T1

((T2 − t)/(T2 − T1))2, if t ∈ [T1, T2]
0, if t > T2,

where 0 < `/c 6 T1 < T2. Finally, the desired trajectories are given by

yQ(x, t) := ψ(t) ỹQ(x, t), zQ(x, t) := ψ(t) z̃Q(x, t).

Remark 4.1. Defining cYQ and cZQ in the way explained above, we restrict the observation
of the states to a small moving region. This does not include that the control u is restricted
to this region. However, we will observe that the support of the optimal control is indeed
close to this region of observation. This confirms the knowledge of physicists.

In our example, let Ω = (−120, 120)2, γ = 3
400

, y1 = 0, y2 = 1
200

, y3 = 1, r = 20,
x = (0, 0), x = (0, 120), c = 1

16
, T = 2500, T1 = 2000, and T2 = 2120. Further, we set

a = a(t) :=

{
−5, if t 6 T1

0, else
b = b(t) :=

{
5, if t 6 T1

0, else

such that the control is able to act only in [0, T1].
For µ = 0, the optimization method did not lead to a satisfying result. Close to t = 900,

the spiral wave starts to split in two parts. Fig. 14 presents the calculated optimal control
and its associated state exemplarily at t = 1200. As result, a new spiral wave occurs whose
tip is located around the point (50, 95).

Figure 14. Example 6: Optimal control ū (left) and associated state ȳ (right) at t = 1200 for µ = 0.

It is remarkable that, for sufficiently large µ close to 1, the spiral behaves more smoothly.
Finally, the tip moves across the upper boundary of Ω such that the formed patterns disap-
pear till t = T . This is exactly the desired development. Figure 15 displays the described
behaviour in the case µ = 1, exemplarily at t = 1200. With 169 iterations of the CG method
for µ = 0 and 161 iterations for µ = 1, we cannot observe a further reduction of CPU time
for increasing µ.
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Figure 15. Example 6: Sparse optimal control ū (left) and associated state ȳ (right) at t = 1200 for µ = 1.

Example 7: Exciting a spiral wave. Let us finally consider a different situation.
Starting from an initial state that does not show a spiral pattern, a spiral should be excited
by the control. For convenience we take (y0, z0) = (0, 0). The use of only a desired final state
(yT , zT ) fails here again. However, we profit from our experience from the last example and
define with the use of (49),

(
cYQ, c

Z
Q

)
(x, t) :=

(
c̃YQ, c̃

Z
Q

)
(x, t), where this time r = r(t) := 4

7
t.

Moreover, let (yQ, zQ)(x, t) := (ynat, znat)(x, t) and (ynat, znat) denote the development of (y, z)
in the uncontrolled case u ≡ 0.

Let Ω = (−150, 150)2, γ = 1
200

, y1 = 0, y2 = 1
10

, y3 = 1, T = 800, a = −5, and b = 5.
Though the objective functional value J = 1.299 · 105 is quite large, the optimal control
forces the state to develop as desired. A spiral wave is excited not only for µ = 0 a but also

Figure 16. Example 7: Optimal control ū at t = 1 (left) and at t = 400 (right) for µ = 0.

in the case of µ > 0. In this example, the sparsity of the optimal control is remarkable for
sparse-parameters in the scale of µ = 10. Comparing Fig. 16 with Fig. 17 presenting the
optimal control for µ = 0 and µ = 10, both exemplarily at t = 1 and t = 400, we observe that
it is sufficient to control only in small sub-domains of Ω to gain the required development.

All examples presented for the FitzHugh-Nagumo equations show that sparse controls
are able to influence the trajectory in a satisfactory way. Even if the objective functional
admits fairly large optimal values, the qualitative approximation of the desired trajectories is
completely acceptable. Moreover, the use of sparse controls can accelerate the CG method of
optimization. Finally, we should mention that the support of the computed sparse controls
shows remarkable coincidence with the front part of the traveling waves or the spiral waves.
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Figure 17. Example 7: Sparse optimal control ū at t = 1 (left) and at t = 400 (right) for µ = 10.

This somehow reflects the intuition of physicists.
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