
ON THE OPTIMAL CONTROL OF THE SCHLÖGL-MODEL ∗
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Abstract. Optimal control problems for a class of 1D semilinear parabolic equations with cubic nonlinearity
are considered. This class is also known as the Schlögl model. Main emphasis is laid on the control of traveling wave
fronts that appear as typical solutions to the state equation.

The well-posedness of the optimal control problem and the regularity of its solution are proved. First-order
necessary optimality conditions are established by standard adjoint calculus. The state equation is solved by the
implicit Euler method in time and a finite element technique with respect to the spatial variable. Moreover, model
reduction by Proper Orthogonal Decomposition is applied and compared with the numerical solution of the full
problem. To solve the optimal control problems numerically, the performance of different versions of the nonlinear
conjugate gradient method is studied. Various numerical examples demonstrate the capacities and limits of optimal
control methods.
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1. Introduction. In this paper, we consider the numerical treatment of a class of optimal
control problems for a semilinear parabolic equation with non-monotone polynomial nonlinearity
and discuss some associated questions of mathematical analysis. In the applications, the problem
is related to controlled reaction-diffusion processes, where wave type solutions appear that should
be influenced in a desired way. We investigate the following optimal control problem:

Minimize the objective functional

J :=
cQ
2

∫∫
Q

(u(x,t)− uQ(x,t))2dxdt+
cT
2

∫
Ω

(u(x,T )− uT (x))2dx+
λ

2

∫∫
Q

f2(x,t)dxdt (1.1)

subject to the state equation

ut(x,t)− uxx(x,t) +R(u(x,t)) = b(x,t) f(x,t) in Q

u(x,0) = u0(x) in Ω

ux(0,t) = ux(L,t) = 0 in (0,T )

(1.2)

and possibly to pointwise box constraints

f ∈ Fad := {f ∈ L∞(Q)|fa ≤ f(x,t) ≤ fb for a.a. (x,t) ∈ Q} . (1.3)

In this setting, positive numbers T and L, non-negative numbers λ, cQ, cT and numbers fa < fb
are given, where we allow the values fa = −∞ and fb =∞. Moreover, functions b ∈ L∞(Q), u0 ∈
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L∞(Ω), uT ∈ L2(Ω), uQ ∈ L2(Q) are given. Here and throughout this paper, we use the notation
Ω = (0,L), Q = Ω× (0,T ),Σ = {0,L} × (0,T ). The function b can be used to select a subdomain of
Q, where the control f is acting.

The nonlinearity in the parabolic equation is defined by a cubic reaction term R : R → R of
the form

R(u) = k (u− u1)(u− u2)(u− u3)

with real numbers k ≥ 0 and u1 < u2 < u3. In particular, we are interested in the important case

R(u) = k u3 − a u,

with a positive number a. All of our computations are performed with the associated simplified
state equation

ut(x,t)− uxx(x,t) + k u3(x,t)− a u(x,t) = b(x,t) f(x,t) in Q

u(x,0) = u0(x) in Ω

ux(0,t) = ux(L,t) = 0 in (0,T ),

(1.4)

where R can be written as R(u) = k u3 − a u = k u (u−
√
a/k)(u+

√
a/k). In what follows, u is

said to be the state of the system, while f is the control (forcing) function.

In Physics, the equation (1.2) is known under the name ”Schlögl model” and there is an
extensive literature devoted to the behavior of its solutions. We refer, for instance, to Schlögl [28]
or the exposition in [24].

In the theory of partial differential equations, the equation (1.2) belongs to the class of semi-
linear parabolic equations. Meanwhile, many papers were published on associated optimal control
problems and the corresponding numerical analysis is already very well investigated. For instance,
first-order necessary optimality conditions in form of the Pontryagin maximum principle were pre-
sented by Casas [5], Bonnans and Casas [3] or Raymond and Zidani [27]. First-order optimality
conditions of Karush-Kuhn-Tucker type are the subject of many other papers, we just mention the
textbook by the third author [31] and the book by Hinze et al. [14] that in particular contains
details on numerical methods. We also mention an early paper on the numerics for the optimal
control of semilinear equations with Stefan-Boltzmann boundary conditions by Heinkenschloss and
Sachs [12], where the state appears with power 4 in the boundary condition.

Second-order sufficient optimality conditions were also studied, we mention one of the latest
papers by Casas et al. [6], where also state-constraints are admitted. More recently, the error
analysis for the numerical approximation of such problems became an active field of research, see
[22], where also an impressive survey on the whole field is given. In [31] and [14], the reader may
find an extensive list of further references.

In contrast to the papers mentioned above, the nonlinear functionR is not monotone. Therefore,
the theory of existence and regularity of solutions to semilinear parabolic equations of [5] or [27]
cannot be directly applied to (1.4). Closing this gap is, together with a result on H2-regularity,
some new contribution of our paper to the theory of optimal control of PDEs. However, this does
not go much beyond the known theory.

Our interest in the particular optimal control problem (1.1)-(1.3) has another reason; this is
the occurrence of wave type solutions of (1.4) for suitable initial data and f = 0. These solutions
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are functions u of the type u(x,t) = z(x− c t) that behave like traveling waves with velocity c. For
the nonlinearity R(u) = (u−u1)(u−u2)(u−u3) and f = 0, the parabolic equation of (1.4) admits
three constant functions as solutions, namely u(x,t) ≡ ui, i = 1, 2, 3. The values ui are the fixed
points of the dynamical system (1.4). Two of them, u1 and u3 are stable. Solutions with initial
data close to ui converge to ui as t→∞. The value u2, however, is unstable.

Wave type solutions for reaction-diffusion equations constitute an interesting topic that was
extensively studied in literature. We mention only the textbooks by Kuramoto [21], Murray [26]
or Smoller [30]. Moreover, there are many contributions to the control of such equations in the
context of Physics, we refer exemplarily to Schöll and Schuster [29]. Some associated optimal control
problems have also been considered in the mathematical community of PDE control. We refer to
Borzi and Griesse [4], who considered the optimal control of λ-ω-systems, where spiral waves may
occur. Moreover, we mention Kunisch and Wagner [18], [19], [20], and Kunisch et al. [17], who
discuss monodomain or bidomain equations playing an important role in heart medicine.

Controlling wave type solutions is numerically challenging in general. We observed this already
for the 1D Schlögl model, where the presence of the unstable fixed point u2 might cause the
difficulties we observed. Numerical iteration methods of optimization turned out to be much slower
and less stable than for parabolic equations with monotone nonlinearity, say for a semilinear heat
equation with monotone nonlinearity as in Kammann et al. [15].

The report on our numerical experience in controlling traveling wave fronts and the variety of
associated numerical examples with nice geometrical interpretation constitute the main novelty of
our paper. As mentioned above, we also address some aspects of analysis for the problem (1.1)–
(1.3). First, we investigate existence, uniqueness and regularity of solutions to the state equation
by transforming the state equation to one with monotone nonlinearity. Then the solvability of the
optimal control problem is an immediate consequence. For the convenience of the reader, we also
survey some known results on the Schlögl model and on wave type solutions that are well known
in the relevant literature in Physics.

Next, we discuss the numerical optimization by nonlinear conjugate gradient methods for several
types of optimal control problems: We study the stopping of a traveling wave front at a certain
time for a problem that in physics is called nucleation. Moreover, we discuss other objectives such
as acceleration of traveling wave fronts or steering them to one of the steady states. The treatment
of such problems by optimal control methods seems to be new.

Another issue is the performance of POD, a standard method of model order reduction that
turned out to be very efficient for many classes of parabolic control problems. We observed that a
greater number of basis functions is needed than for the semilinear heat equation with monotone
nonlinearity. This behavior was also observed by M. Müller in his thesis [25].

Let us comment already here on the solvability of the optimal control problem related to the
choice of regularization parameter λ. Suppose that we take λ = 0 and that the box constraints
(1.3) are missing. Assume that we can compute a control function f ∈ L2(Q) such that u = uQ
holds for the associated state u. Then the desired state uQ can be exactly reached, i.e. we are
able to exactly follow the desired trajectory uQ. If uT = u(x,T ) holds as well, then the objective
functional has the optimal value zero. In this case, this control f is optimal and hence the optimal
control problem was solvable.

Unfortunately, it is often difficult to predict whether uQ can be exactly reached or not. If not,
then the optimal control problem (1.1)–(1.2) will most likely be unsolvable for λ = 0 without control
constraints. This problem can be avoided by the choice λ > 0 or by adding the box constraints
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(1.3). Then our problem is solvable, even if uQ cannot be reached exactly.

2. The optimal control problem and first-order optimality conditions.

2.1. Well-posedness of the optimal control problem. We start by the well-posedness of
the state equation (1.2). In the associated result that is formulated below, we use the standard
Sobolev space W (0,T ) = L2(0,T,H1(Ω)) ∩H1(0,T ;H1(Ω)′).

Theorem 2.1. Suppose that it holds k ≥ 0 and u1 < u2 < u3. Then, for all f ∈ L2(Q) and
u0 ∈ L∞(Ω), the state equation (1.2) has a unique solution u in L∞(Q)∩W (0,T )∩C([0,L]×(0,T ]).
If u0 ∈ C[0,1], then the solution is continuous even on [0,1] × [0,T ]. The mappings f 7→ u and
f 7→ u(·,T ) are continuously Fréchet differentiable from L2(Q) to W (0,T ) ∩ L∞(Q) and to C(Ω̄),
respectively.

Proof. For R(u) = k (u − u1)(u − u2)(u − u3), the derivative R′ is a polynomial of even order
that is bounded from below by some constant C < 0. Define µ = |C|. Then the function

R̃(u) := R(u) + µu

is monotone non-decreasing. This observation is the reason for the following transformation: We
define

u(x,t) := eµ tv(x,t).

Inserting this expression in (1.2), we obtain after an easy calculation the equation

eµ tvt − eµ tvxx +R(eµ tv) + eµ tµv = b f,

and hence the system

vt(x,t)− vxx(x,t) + e−µ tR(eµ tv) + µv = e−µ tb(x,t)f(x,t) in Q

v(x,0) = u0(x) in Ω

vx(0,t) = vx(L,t) = 0 in (0,T ).

(2.1)

For each fixed t, the function v 7→ e−µ tR(eµ tv)+µv is monotone non-decreasing and differentiable.
Moreover, it is continuous w.r. to t for all fixed v. Therefore, the monotonicity and Carathèodory
conditions are satisfied that are needed for existence and uniqueness of a solution v. Since Ω = (0,L)
is one-dimensional, the equation (2.1) admits for each f ∈ L2(Q) and u0 ∈ L∞(0,L) a unique
solution v ∈ L∞(Q)∩W (0,T )∩C([0,L]× (0,T ]). For u ∈ C[0,L] we even have v ∈ C([0,L]× [0,T ]).
For this result on existence, uniqueness and regularity, we refer to Casas [5], Raymond and Zidani
[27] or to the exposition in [31], Theorem 5.5. Associated with v, we also obtain a unique solution u
with the same regularity as v. The claimed differentiability is also standard for parabolic problems
with monotone nonlinearity, see e.g. [31], Theorem 5.9. 2

Let us mention here a hidden difficulty: For f ∈ L2(Q), the boundedness of the solution u is
only granted in one-dimensional domains as in our case. If the spatial domain is of dimension greater
than one, then we would need control constraints to have control functions f of higher integrability,
say f ∈ L∞(Q) to achieve continuity of u. Without such constraints, the well-posedness of the
optimal control problem is a difficult matter.

In our numerical examples, we discuss the problem in most of the examples without control
constraints. This requires the one-dimensionality of the model. On the other hand, the existence
of such wave-type solutions is only meaningful for spatial dimension one.
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As standard conclusion of Theorem 2.1, we obtain the following result on the solvability of the
optimal control problem:

Theorem 2.2. Under the assumptions of Theorem 2.1, the optimal control problem (1.1)–(1.3)
has at least one optimal control.

The result does not depend on the monotonicity of the nonlinearity in the equation and can be
proved by exactly the same words as Theorem 5.7 in [31]; notice that the spatial dimension is one.
If the box constraints (1.3) are not imposed on f , then we still have existence provided that λ > 0.

2.2. Adjoint equation and first-order necessary optimality conditions. Assume now
that f̄ is an optimal or locally optimal control of the problem and let ū denote the associated state.
Then this solution has to obey the standard first-order necessary optimality conditions that are
based on the differentiability of the control-to-state mapping f 7→ u. To set them up, we introduce
the adjoint equation that is associated to a given pair (f,u), for instance to (f̄ ,ū):

−pt − pxx +R′(u) p = cQ(u− uQ) in Q

p(x,T ) = cT (u(x,T )− uT (x)) in Ω

px(0,t) = px(L,t) = 0 in (0,T ).

(2.2)

The solution p of this equation is said to be the adjoint state associated with the pair (f,u) and
denoted below by pf to indicate the correspondence with f . In the same way, we will denote the
state u associated with f by uf .

The existence and uniqueness of p in W (0,T ) is a standard known result, we refer to [31].
Moreover, the following result is known:

Theorem 2.3 (First-order necessary conditions). Let f̄ ∈ L2(Q) be optimal (or locally optimal)
for the problem (1.1)–(1.3) and let p̄ := pū be the associated adjoint state. Then the variational
inequality ∫

Q

(
b(x,t)p̄(x,t) + λf̄(x,t))(f(x,t)− f̄(x,t)

)
dxdt ≥ 0 ∀f ∈ Fad (2.3)

must be fulfilled. If λ > 0, then the projection formula

f̄(x,t) = P[fa,fb]

{
− 1

λ
b(x,t)p̄(x,t)

}
has to be satisfied for almost all (x,t) ∈ Q, where P[fa,fb] : R → R denotes the projection onto
the interval [fa,fb]. For this result, we refer to Casas [5], Raymond and Zidani [27], or to the
exposition in [31], Section 5.5.1. The associated proofs can be transferred to the case of the Schlögl
model after having transformed the state equation as in the proof of Theorem 1.

By (1.1), the objective functional J is defined that depends on the state uf and the control f .

Since uf is determined uniquely by f , a mapping Ĵ : f 7→ J(uf ,f) is defined, the so-called reduced

objective functional. The functional Ĵ : L2(Q)→ R is twice continuously Fréchet differentiable and
its derivative is given by

Ĵ ′(f) v =

∫
Q

(b(x,t)pf (x,t) + λ f(x,t)) v(x,t) dxdt,
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where pf is the adjoint state associated with the state uf by the adjoint equation (2.2). The function

b pf + λ f is called reduced gradient and can be identified with Ĵ ′(f). In this sense, we have

Ĵ ′(f) = b pf + λf.

These facts are well known, we refer e.g. to [31].

2.3. The discretized state and adjoint equation. In the numerical treatment of the opti-
mal control problem, the state equation and the adjoint equation must be discretized. To the state
equation, we apply a semi-implicit Euler method with respect to the time and a standard finite
element method with piecewise linear and continuous ansatz functions with respect to the space
variable. However, the discretization of the adjoint equation (2.2) should be performed with care
so that the discretized adjoint equation is the adjoint equation to the discretized state equation.

The discretization of the continuous adjoint equation is not necessarily the adjoint equation of
the discretized state equation. This difficulty of potential non-commutativity of the adjoint schemes
with respect to discretization is well known. While this fact is often not that important for the
optimal control of semilinear equations with monotone nonlinearity, it turned out to be essential
for our problems. Using the adjoint equation to the discretized state equation we observed a much
faster convergence of the conjugate gradient method than for a straightforward discretization of the
continuous adjoint equation.

2.3.1. Numerical solution of the state equation. As we have pointed out, we use piecewise
linear and continuous finite elements for the space discretization and a semi-implicit Euler method
with respect to the time.

By ϕ1, . . . ,ϕm we denote the standard piecewise linear and continuous ansatz functions ”hat
functions” defined on the interval [0,L] under the equidistant partition

0 = x1 < . . . < xm = L.

For the discretization of u, f , and u0 with respect to the space variable, we apply the finite element
ansatz

u(x,t) =

m∑
i=1

ui(t)ϕi(x), f(x,t) =

m∑
i=1

f i(t)ϕi(x), u0(x) =

m∑
i=1

ui0ϕi(x)

with unknown coefficients ui, f i, ui0. We write these functions of time in associated m-vector func-
tions,

~u(t) = (u1(t), . . . ,um(t))>, ~f(t) = (f1(t), . . . ,fm(t))>, ~u0 = (u1
0, . . . ,u

m
0 )>.

In the sequel, we apply the notation

R(~u) := (R(u1), . . . ,R(um))> in particular ~u3 = ((u1)3, . . . ,(um)3)>.

Multiplying the PDE of the Schlögl model by ϕj for all j = 1, . . . ,m, we obtain after integration
on Ω and an integration by parts in a standard way the system of nonlinear ordinary differential
equations

m∑
i=1

[
u̇i(t)

∫
Ω

ϕiϕjdx+ ui(t)

∫
Ω

ϕ′iϕ
′
jdx
]

+

∫
Ω

R

(
m∑
i=1

ui(t)ϕi

)
ϕjdx =

m∑
i=1

f i(t)

∫
Ω

ϕiϕjdx.
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In the node points xj associated with ϕj , there holds

R

(
m∑
i=1

ui(t)ϕi(xj)

)
= R

(
m∑
i=1

ui(t)δij

)
= R(uj(t)).

The function ũ(x,t) :=
∑m
i=1R(ui(t))ϕi(x) is piecewise linear w.r. to x and coincides with the

function R
(∑m

i=1 u
i(t)ϕi(x)

)
in the points xj . The difference of these two functions is of the order

h2. Because this is also the order of the finite element discretization error of the equation, we can
use the linear approximation ũ(x,t) as a substitute for R

(∑m
i=1 u

i(t)ϕi(xj)
)
. This does not decrease

the approximation order of our scheme but simplifies the numerical solution considerably. By this
simplification, we arrive at the initial value problem

M
d

dt
~u(t) +K~u(t) +MR(~u(t)) = M ~f(t) (2.4)

~u(0) = ~u0. (2.5)

Here, M and K denote the mass and stiffness matrices with the entries

Mij =

∫
Ω

ϕi ϕj dx, Kij =

∫
Ω

ϕ′i ϕ
′
j dx, i,j = 1, . . . ,m.

The nonlinear system of ordinary differential equations (2.4) is solved by a semi-implicit Euler
method. We split [0,T ] by the equidistant partitioning 0 = t0 ≤ t1 ≤ . . . ≤ tn = T with time step
τ = T/n and approximate the values ~u(ti) by vectors ~ui, i = 1, . . . ,n, i.e. ~u(ti) ∼ ~ui. Moreover, we

discretize f by a vector-valued step function with values ~fi. This amounts to

1

τ
M (~ui − ~ui−1) +K~ui +MR(~ui−1) = M ~fi, i = 1, . . . ,n.

In the particular case R(u) = k u3 − au, this means

(1

τ
M +K

)
~ui =

1

τ
M~ui−1 +M(a~ui−1 − k (~ui−1)3) +M ~fi, i = 1, . . . ,n.

2.3.2. Discretization of the optimal control problem. Analogously to u and f , we dis-
cretize uQ and uT by

uQ(x,t) =

m∑
i=1

uiQ(t)ϕi(x), uT (x) =

m∑
i=1

uiTϕi(x) (2.6)

with coefficients ~uQ(t) := (u1
Q(t), . . . ,umQ (t))>, ~uT := (u1

T , . . . ,u
m
T )>. In the objective functional,

integrals with respect to t are approximated by those for step functions, i.e

T∫
0

z(t)dt ≈ τ
n∑
i=1

z(ti),
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where we adopt the points ti from the time discretization of the state equation. To approximate
the objective functional J , we need the values ~ui and ~fi, i = 1, . . . ,n. In view of the discretization
of u, uQ, uT , f we obtain

J(u,f) =
cQ
2

∫∫
Q

( m∑
i=1

(ui(t)− uiQ(t))ϕi(x)
)2

dxdt+
cT
2

∫
Ω

( m∑
i=1

(ui(T )− uiT )ϕi(x)
)2

dx

+
λ

2

∫∫
Q

( m∑
i=1

f i(t)ϕi(x)
)2

dxdt

=
cQ
2

T∫
0

(~u(t)− ~uQ(t))>M(~u(t)− ~uQ(t))dt+
cT
2

(~u(T )− ~uT )>M(~u(T )− ~uT )

+
λ

2

T∫
0

~f(t)>M ~f(t)dt ∼ Jh,τ (~u1, . . . ,~un, ~f1, . . . , ~fn)

:= τ

n∑
i=1

[cQ
2

(~ui − ~uQ(ti))
>M(~ui − ~uQ(ti)) +

λ

2
~f>i Mfi

]
+
cT
2

(~un − ~uT )>M(~un − ~uT ).

The discretized optimal control problem reads

min Jh,τ (~u1, . . . ,~un, ~f1, . . . , ~fn) (2.7)

subject to

1

τ
M (~ui − ~ui−1) +K~ui +MR(~ui−1) = M ~fi, i = 1, . . . ,n, (2.8)

~fa ≤ ~fi ≤ ~fb, i = 1, . . . ,n. (2.9)

where ~u0 is fixed according to (2.5).

2.3.3. The discrete adjoint equation. Let us derive the adjoint equation to the discretized
optimal control problem (2.7)–(2.9). To this aim, we introduce the discrete Lagrangian L that
considers (”eliminates”) the state equations by Lagrange multipliers ~pi, i = 1, . . . ,n,

L = Jh,τ − τ
n∑
i=1

〈(1

τ
M +K

)
~ui −

1

τ
M~ui−1 +M R(~ui−1)−M ~fi , ~pi

〉
Rm

= Jh,τ − τ
n∑
i=1

〈(1

τ
M +K

)
~ui −M ~fi , ~pi

〉
Rm

+ τ

n−1∑
i=0

〈1

τ
M~ui −M R(~ui) , ~pi+1

〉
Rm
, (2.10)

where
〈
· , ·
〉
Rm denotes the inner product of Rm. It is well known that the discrete adjoint system

is composed of the equations ∂L/∂~uj = 0, j = 1, . . . ,n.

First, we evaluate the equations ∂L/∂~uj = 0 for j = 1, . . . ,n− 1: We obtain for all ~h ∈ Rm

0 = τ
[〈
cQM(~uj − ~uQ(tj))−

(1

τ
M +K

)>
~pj +

1

τ
M>~pj+1 − diag(R′(~uj))M~pj+1 ,~h

〉
Rm

]
.
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By the symmetry of M and K, this implies

−1

τ
M(~pj+1 − ~pj) +K ~pj + diagR′(~uj)M~pj+1 = cQM(~uj − ~uQ(tj)), j = 1, . . . ,n− 1. (2.11)

In the case R(u) = k u3 − a u, this amounts to

−1

τ
M(~pj+1 − ~pj) +K ~pj + (3k diag(~u2

j )− a I)M~pj+1 = cQM(~uj − ~uQ(tj)).

Analogously, we derive for j = n the equation(1

τ
M +K

)
~pn = cQM(~un − ~uQ(tn)) +

cT
τ
M(~un − ~uT ). (2.12)

The discrete adjoint system is formed by the equations (2.11)–(2.12). Setting for convenience

~pn+1 := cT (~un − ~uT ),

we get an equation analogous to the case j ∈ {1, . . . ,n− 1}, but here the nonlinear term does not
appear:

−1

τ
M(~pn+1 − ~pn) +K ~pn = cQM(~un − ~uQ(tn)).

3. The Schlögl model and wave type solutions. In this section, we explain the existence
of traveling waves and their principal behavior. Let us consider the more general version of the
Schlögl model

ut = Duxx − k (u− u1)(u− u2)(u− u3). (3.1)

with additional constant D > 0. This model is one of very few for which traveling wave solutions
are known to exist.

3.1. Transformation from the general model to the standard form. Here, we follow
the exposition in [23]. The general Schlögl model (3.1) can be transformed to the standard Schlögl
model (3.3). First, one performs a change of variables in (3.1), u(x,t) = ũ(x,t)(u3 − u1) + u1, that
yields for the reaction term

R(u) = k ũ(u3 − u1)(ũ(u3 − u1)− (u2 − u1))(ũ(u3 − u1)− (u3 − u1))

= k (u3 − u1)2ũ(ũ(u3 − u1)− (u2 − u1))(ũ− 1)

= k (u3 − u1)3ũ(ũ− (u2 − u1)

(u3 − u1)
)(ũ− 1).

After this substitution, the partial differential equation (3.1) admits the form

(u3 − u1)
∂ũ

∂t
= (u3 − u1)D

∂2ũ

∂x2
− k(u3 − u1)3ũ(ũ− (u2 − u1)

(u3 − u1)
)(ũ− 1). (3.2)

For convenience, we introduce the new parameters

κ = k(u3 − u1)2, ũ2 =
(u2 − u1)

(u3 − u1)
.

9



By u1 < u2 < u3, we have 0 < ũ2 < 1. Now (3.2) can be written as

1

κ
ũt =

D

κ
ũxx − ũ(ũ− 1)(ũ− ũ2).

Next, we introduce the new coordinates t̃ = κ t, x̃ =
√
κ/D x and the transformed function ũ(x̃,t̃) :=

u(
√

D
κ x̃,

1
κ t̃). Then an easy computation leads to the transformed partial differential equation in

the standard form of the Schlögl model,

∂

∂t̃
ũ(x̃,t̃) =

∂2

∂x̃2
ũ(x̃,t̃)− ũ(x̃,t̃)(ũ(x̃,t̃)− ũ2)(ũ(x̃,t̃)− 1). (3.3)

In this case, the velocity of the travelling wave front is

c̃ =
1√
2

(1− 2ũ2), (3.4)

we refer to formula (3.8) below.

3.2. Traveling wave solutions. The existence of traveling wave fronts is known for the
infinite domain (−∞,∞) instead of (0,L). However, if L is sufficiently large, then the solution of
the Schlögl model behaves similar as a traveling wave front. To motivate the existence of traveling
wave fronts, we follow again [23]. We introduce a co-moving coordinate ξ by

ξ = x− ct

and define a function z : R→ R with z(x− ct) := u(x,t) for all (x,t) that belong to the domain of
definition and a suitable constant c ∈ R (velocity of the wave front). From the Schlögl model for
u, we easily get an ODE for z,

D z′′(ξ) + k z′(ξ) +R(z(ξ)) = 0. (3.5)

Moreover, we require the boundary conditions

lim
ξ→−∞

z(ξ) = u3, lim
ξ→∞

z(ξ) = u1.

Solving of (3.5) can be done by the following substitution, see [22],

z′ = B(z − u1)(z − u3) (3.6)

which results in

0 = (u1 − z)(z − u3)(−Bc+B2(u1 + u3)− ku2 + (k − 2DB2)z).

This can hold, except for z = u1 and z = u2, only if

c = ±
√
Dk

2
(u1 + u3 − 2u2), B = ±

√
k

2D
.

10



To solve (3.6), we perform again a change of variables, z(ξ) = 1
2 (u3−u1)(y(ξ) + 1) +u1, that yields

a nonlinear differential equation for y,

y′ =
1

2
B(u3 − u1)(y2 − 1).

Introducing a new parameter B̃ by B = 2B̃/(u3 − u1) gives

1

B̃

d

dξ
y(ξ) = (y2(ξ)− 1).

This equation can be further simplified by the substitutions

ξ̃ = B̃ξ, ỹ(B̃ξ) = y(ξ)

to obtain (the tilde is omitted for convenience)

y′ = y2 − 1

with boundary conditions

lim
ξ→−∞

y(ξ) = 1, lim
ξ→∞

y(ξ) = −1.

This ordinary differential equation can be integrated by separation of variables. With an integration
constant c1, two possible solutions are obtained,

y1 = − tanh(ξ + c1), y2 = − coth(ξ + c1).

Obviously, only y1 is bounded so that y2 can be excluded from further consideration. The integration
constant is obtained by the initial condition and can assumed to be zero because it only corresponds
to a phase shift of the (stationary shaped) traveling wave front. Substituting back all changes of
coordinates and variables gives

y(ξ) = − tanh(B̃ξ) = − tanh(
B

2
ξ(u3 − u1).

Finally, the traveling wave front of the Schlögl model is found as

z(ξ) = Uc(ξ) :=
1

2

(
u1 + u3 + (u1 − u3) tanh

(
1

2

√
k

2D
(u3 − u1)ξ

))

with the velocity

c =

√
Dk

2
(u1 + u3 − 2u2). (3.7)

As we have seen, it is always possible to transform the general Schlögl model to its standard form

∂u

∂t
=
∂2u

∂x2
− u(u− u2)(u− 1). 0 < u2 < 1,

11
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Fig. 3.1. Left: Reaction term R (solid) and corresponding potential V (dashed) for u1 = 0, u2 = 0. 4, u3 = 1,
k = 1. Right: Reaction term R and areas corresponding to the two integrals in equation (3.9).

This corresponds to the form above with D = k = 1, u1 = 0 and u3 = 1. In this standard form,
(3.2) and (3.7) simplify to

Uc(ξ) =
1

2

(
1− tanh

(
1

2
√

2
ξ

))
=

1

1 + exp( ξ√
2
)
,

c =
1√
2

(1− 2u2). (3.8)

3.3. A mechanical analog. The Newtonian equation of motion for an object with mass m,
friction coefficient ρ, and force F is in the 1D case

mx′′(t)− ρx′(t)− F = 0.

Compared with (3.5), we have the relations

m ∼ D, ρ ∼ −c, R ∼ −F.

Therefore, the problem of a traveling wave solution can be considered as the problem of a particle
that moves under friction in a potential with given initial and end values. To the reaction term R,
there corresponds a potential V . Both functions can be seen in Fig. 3.1. The initial values would
be x(0) = u3, x′(0) = 0 and the terminal values x(T ) = u1, x′(0) = 0. In the mechanical analog,
these correspond to the maxima of the potential.

A trajectory should be found that starts from the right (global in the picture) maximum of
the potential with zero velocity, moves down the potential and reaches the (local in the picture)
maximum at the left, where the particle stops. This can only work if the friction dissipates the
energy difference between the two maxima. If the two maxima have the same height, the friction
must be zero. Due to that correspondence, this means that the velocity of the front in the Schlögl
model must be zero if the reaction term R is antisymmetric with respect to some α ∈ R , i.e. it
holds R(α+ u) = −R(α− u) and therefore V is symmetric, i.e. V (α+ u) = V (α− u)).
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Because V is the primitive of R, the case of equal height of the maxima u1, u2 of V can
interpreted in another way.

V (u3)− V (u1) =

u3∫
0

R(u)du−
0∫

u1

R(u)du =

u3∫
u2

R(u)du−
u2∫
u1

R(u)du. (3.9)

If the value of the potential at the maxima is the same, V (u3)− V (u1) = 0, then the two integrals
are equal. This means that the red area (below u = 0 and above R(u)) and the green area (above
u = 0 and below R(u)) in Fig. 3.1 must be equal. This happens e.g. in the case u1 = −u3, u2 = 0.
Then the speed of a front, which connects the two stable fixpoints of R(u), will be zero, and hence
the wave front will not move.

4. Proper Orthogonal Decomposition (POD).

4.1. Short description of POD. For nonlinear partial differential equations, proper orthog-
onal decomoposition (POD) is one of the widely used methods of model reduction. This technique,
also known as Karhunen-Loeve decomposition, determines low dimensional subspaces, where the
main behavior of the solution to the original state equation is still reflected in a high or at least
acceptable precision.

In this paper, we apply the method of snapshots. For some fixed control function f := fsnap,
we determine the solution u of the state equation (1.2) at the time instances 0 = t0 < t1 <
. . . < tn = T that were already used for the time discretization of (1.2). The so-called snapshots
us0 = u(t0), . . . ,usn = u(tn) form a high-dimensional subspace of H1(0,L) of finite dimension.

By POD, for given natural number r ≥ 1, linear combinations ψ1, . . . ,ψr of the snapshots
us0, . . . ,u

s
n are determined, which solve the following quadratic optimization problem in the space

H = L2(0,L):

min
v1,...,vr∈H

n∑
i=0

αi

∥∥∥usi − r∑
j=1

(usi ,vj)H vj

∥∥∥2

H

subject to (vi,vj)H = δij ∀ i,j ∈ {1, . . . ,r},

with given trapezoidal weights α0, . . . ,αn. The solution of this optimization problem is determined
by a singular value decomposition. We do not explain these details and refer the reader to Kunisch
and Volkwein [16], Volkwein [32], Fahl and Sachs [9] or Arian et al. [2] and the references therein.

The functions ψ1, . . . ,ψr form the so-called POD basis. The solution u of (1.2) is approximated
in the r-dimensional subspace span{ψ1, . . . ,ψr}. Instead of the finite element approximation, now
the ansatz

u(x,t) =

r∑
i=1

U i(t)ψi(x)

is applied in the standard Ritz Galerkin method. In what follows, we shall denote the solutions of
POD reduced problems by capital letters. The POD basis functions ψ1, . . . ,ψr were obtained by the
finite element method, hence they are linear combinations of the FE ansatz functions ϕ1, . . . ,ϕm,

ψi(x) =

m∑
k=1

ψik ϕk(x), i = 1, . . . ,r.
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We collect the coefficients by column vectors ~ψi = (ψi1, . . . ,ψ
i
k)> ∈ Rm and define the matrix

Ψ := (~ψ1| . . . |~ψr). The control f and the initial data u0 are discretized as in (2.6) by the finite
element basis functions. After quite a number of calculations, we arrive at the following reduced
state equation:

Mp d

dt
~U(t) +Kp~U(t)− aMp ~U(t) + kΨ>M(Ψ~U(t))3 = Ψ>M ~f(t)

Mp u(0) = Ψ>M~u0,
(4.1)

where M is the mass matrix introduced in Section 2.3.1 and Mp, Kp are the mass and stiffness
matrices for the POD based Galerkin method,

Mp
ij =

(
ψi,ψj

)
L2(Ω)

, i,j ∈ {1, . . . ,r}
Kp
ij =

(
ψ̇i,ψ̇j

)
L2(Ω)

, i,j ∈ {1, . . . ,r}
Mij =

(
ϕi,ϕj

)
L2(Ω)

, i,j ∈ {1, . . . ,m}.

Notice that, for t ∈ [0,T ], we have ~U(t) ∈ Rr, while it holds ~f(t) ∈ Rm. The reduced system (4.1)
is solved, analogously to (2.8), by the semi-implicit Euler method.

4.2. Numerical treatment of the adjoint equation by POD. After a couple of transfor-
mations, the objective functional of the reduced system is obtained as follows:

J =
cQ
2

∫∫
Q

( r∑
l=1

U l(t)ψl(x)−
m∑
j=1

ujQ(t)ϕj(x)
)2

dxdt

+
cT
2

∫
Ω

( r∑
l=1

U l(T )ψl(x)−
m∑
j=1

ujTϕj(x)
)2

dx+
λ

2

∫∫
Q

( m∑
j=1

f j(t)ϕj(x)
)2

dxdt

∼ τ

n∑
i=1

[cQ
2

(
Ψ~Ui − (~uQ)i

)>
M
(

Ψ~Ui − (~uQ)i

)
+
λ

2
~f>i M

~fi

]
+
cT
2

(
Ψ~Un − ~uT

)>
M
(

Ψ~Un − ~uT
)
.

There are two principal options for establishing the reduced adjoint equation. The first is to
derive the one that is associated with the discretized reduced optimal control problem that was
based on the snapshots for the state equation. In this way, the exact gradient of the reduced and
discretized objective functional is obtained. While this is of importance for the performance of
descent methods, it might lead to an unsatisfactory approximation of the exact adjoint state that
is associated with the given state function. The POD basis computed for the state function will
not in general be suitable for the adjoint state.

We observed this in our computations and worked also with a different POD basis for the
adjoint state. In the application to the nonlinear cg method, we preferred to use the first version,
since that improved its performance. Therefore, we do not report on our results with the second
option that enabled us to compute very good POD approximations of the true adjoint state.

To invoke the first option, we consider the Lagrangian L of the reduced model depending on
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(~U1, . . . ,~Un, ~f1, . . . , ~fn, ~P1, . . . , ~Pn) that reads

L = J − τ
n∑
i=1

〈(1

τ
Mp +Kp

)
~Ui − (

1

τ
+ a)Mp~Ui−1 + kΨ>M(Ψ~Ui−1)3 −Ψ>M ~fi , ~Pi

〉
Rr

= J − τ
n∑
i=1

〈(1

τ
Mp +Kp

)
~Ui −Ψ>M ~fi , ~Pi

〉
Rr

+τ

n−1∑
i=0

〈
(
1

τ
+ a)Mp~Ui − kΨ>M(Ψ~Ui)

3 , ~Pi+1

〉
Rr
.

Deriving the Lagrangian with respect to the state leads to the following reduced and discrete adjoint
system: For j = 1, . . . ,n− 1 we derive with respect to the component ~Uj and find(1

τ
Mp +Kp

)
~Pj − (

1

τ
+ a)Mp ~Pj+1 + 3 kΨ>diag((Ψ~Uj)

2)MΨ ~Pj+1 = cQ(Mp~Uj −Ψ>M(~uQ)j).

For j = n, we obtain(1

τ
Mp +Kp

)
~Pn = cQ(Mp~Un −Ψ>M(~uQ)n) +

cT
τ

(Mp~Un −Ψ>M~uT ).

4.3. Numerical tests for selected particular cases. In the context of optimal control
problems, we will report on some computational experience with POD for wave type solutions. In
general, we observed that the number of POD basis functions must be chosen fairly large. Let us
first sketch exemplarily the following problem:

We fix the data L = 20, T = 10,m = 301, τ = 1/60, k = 1/3, a = 1, λ = 10−6.

Moreover, we apply the control f ≡ 0 and use the same control fsnap ≡ 0 for computing the
snapshots. To have a meaningful adjoint equation, we also need the objective functional. We take
cQ = 1, cT = 0, uT = 0. Further, we define

u0(x) =

{
−1. 2

√
3, x ∈ [0,2]

0, else,
uQ0 (x) =

{
1. 2
√

3, x ∈ [0,2]
0, else,

uQ = u(f,uQ0 ) (Schlögl solution for f ≡ 0 and u0 = uQ0 ).

It is worth mentioning that this non-positive initial function u0 generates a propagating wave front
that links the unstable fixed point 0 with the stable fixed point −

√
3. In contrast to this, the initial

function (5.1) does not lead to a travelling front.

The initial function and the associated state, computed by the full FEM model, are shown in
Fig. 4.1. Here and in all Figures presenting wave fronts, the vertical axis displays the time while
the horizontal one displays the spatial variable.

The state function ur computed by the reduced POD model does not essentially differ from
the FE solution u. Using a separate POD basis for the adjoint equation, we also obtained a very
good approximation of the full adjoint state p by the reduced one. We observed that, in contrast
to standard parabolic equations with monotone nonlinearity, the POD modes decay fairly slow, cf.
Fig. 4.2. Therefore, a larger number of basis functions was needed for an acceptable precision.

We also tested the POD method with discrete empirical interpolation (POD-DEIM) by Chat-
urantabut and Sorensen, [7]. However, this method did not essentially improve our results. Notice
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Fig. 4.1. Left: Initial function u0, Right: FE solution u of the Schlögl model for f ≡ 0.

Fig. 4.2. Left: POD solution ur of the reduced Schlögl model for f ≡ 0 with r = 50 POD-Basis functions.
Right: Decay of the POD modes for u.

that we have already used an interpolation by the special method applied to the nonlinearity,

(

m∑
i=1

uiϕi)
3 ∼

m∑
i=1

ui(ϕi)
3.

5. Numerical computation of optimal wave fronts. In this section, we discuss several
examples of optimal control problems that fit into the following one:

min J(u,f) :=
cQ
2

∫∫
Q

(u(x,t)− uQ(x,t))
2
dxdt+

cT
2

∫
Ω

(u(x,T )− uT (x))
2
dx

+
λ

2

∫∫
Q

f2(x,t)dxdt
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subject to

ut(x,t)− uxx(x,t) + 1
3 u

3(x,t)− u(x,t) = f(x,t) in Q

u(x,0) = u0(x) in Ω

ux(0,t) = ux(L,t) = 0 in (0,T )

and possibly to the box constraints

fa ≤ f(x,t) ≤ fb for a.a. t ∈ Q.

We shall specify the given data later in the associated examples.

5.1. The nonlinear conjugate gradient method. In our numerical computations, the
standard gradient method turned out to be very slow. It took too long time to reach an acceptable
precision. This might be explained by the presence of an unstable steady state. Therefore, we
applied the nonlinear conjugate method that was much faster and fairly stable.

For convenience, we briefly sketch the different variants of this method, since we observed
essential differences in their performance. For a detailed survey on this method, we refer to Hager,
[10] and also to Herzog and Kunisch [13], who report on the application of this method in the
optimal control of PDEs. Let us first recall the Algorithm, where u(f) and p(u) denote the state u
associated with the control f and the adjoint state p associated with the state u, respectively.

Nonlinear conjugate gradient method.

1. Initialization: Select an initial control f0 and an initial step size s0. Compute u0 = u(f0)
(initial state) p0 = p(u0) (adjoint state), g0 = λf0 +p0 (gradient), d0 = −g0 (antigradient);
set k := 0.

2. New gradient:

fk+1 = fk + skdk (new control)
uk+1 = u(fk+1) (new state)
pk+1 = p(uk+1) (new adjoint state)
gk+1 = λfk+1 + pk+1 (new gradient).

3. Direction of descent: Compute βk+1 by gk+1, gk, dk according to one of the update formulas
below;

dk+1 = −gk+1 + βk+1dk.

4. STOP IF ‖gk+1‖ < ε.
5. Select the stepsize sk+1 by one of the methods discussed below,

k := k + 1, GO TO 3.

Update rules for conjugate directions. We used the following known options for defining
conjugate directions, cf. [10]:

Hestenes-Stiefel: βk =
g>k (gk − gk−1)

d>k−1(gk − gk−1)
, Fletcher-Reeves: βk =

‖gk‖2

‖gk−1‖2
,

Polak-Ribiere: βk =
g>k (gk − gk−1)

‖gk−1‖2
, Hager-Zhang: βk = max(β̄k,ηk),
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where

η = 0. 01, γ = gk − gk−1, β̄k =

(
γ − 2

‖γ‖2

d>k−1γ
dk−1

)>
gk

d>k−1γ
, ηk = − 1

‖dk−1‖
min(η,‖gk−1‖).

Step size rules. Among the many standard options for updating the step size, we applied

• Bisection: Start by s0 > 0, k = 0; Compute fk+1 = fk + skdk. If

J(uk,fk) ≤ J(uk+1,fk+1)

then accept the stepsize. Otherwise repeat the process by sk = sk/2.
• Strong Wolfe-Powell rule: It is required that

(i) J(uk+1,fk+1) ≤ J(uk,fk) + σskg
>
k dk

(ii) |g>k+1dk| ≤ −ρg>k dk
We iterate sk until uk+1,fk+1 satisfies (i) and (ii).
• Step size by Hager and Zhang with guaranteed descent: The reader is referred to [11].

Next, we discuss the numerical solution of several types of optimal control problems.

5.2. Acceleration of a wave front. We consider first a setting, where – without action of
a control – a wave front moves in a constant direction with constant speed. Here, we want to
determine a control that changes speed and direction of the wave front in a desired way. To this
aim, we solve the optimal control problem for the nonlinearity R(u) := 1

3u
3 − u. Moreover, let unat

denote the solution of the Schlögl model (1.2) obtained for f ≡ 0 and unat(·,0) = u0, where the
initial function u0 is defined by the nonnegative function

u0(x) =

{
−1. 2

√
3, x ∈ [8,12]

0, else.

We select the target function

uQ(x,t) =

{
unat(x,t), t ∈ [0,2. 5]
unat(x+ ct,2. 5), else,

where c denotes the velocity of the wave front of unat in t = 2. 5. Further, to be closer to practical
needs, we restrict the controls to act only close to the boundary of (0,L). We assume that the
control only acts in the set [0,δ]∪ [L− δ,L] such that 2δ/L = q < 1. Let us call this setting q-sparse
control. This notion differs from that of sparse controls in current research. (The support of sparse
controls is not fixed in advance and obtained by the optimization process.) The numerical results
for q = 0. 9 and q = 0. 6 are presented in Fig. 5.1 and Fig. 5.2, respectively.

We obtained the following optimal values of the objective functional J : J(ū,f̄) = 0. 031129
for the 0. 9-sparse control and J(ū,f̄) = 1. 1486 in the 0. 6-sparse case. For the regularization
parameter, we selected λ = 10−6. The computations show that acceptable results can also be
achieved by sparse controls that act only in certain parts of the domain.

5.3. Steering a wave front to zero. Next, we consider the problem to find a control that
steers a traveling wave front, starting from u0 to one of the three fixed points at the final time
t = T . This is a fairly trivial task if the fixed point is stable and if no box constraints are imposed
on the control. Therefore we concentrate here on the instable fixed point u2. We consider again
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Fig. 5.1. Acceleration of a wave front, 0.9 sparse control; Desired state (left) and optimal state (right).

Fig. 5.2. Acceleration of a wave front, 0.6 sparse control; Optimal control (left) and optimal state (right).

the function R(u) = 1
3 u

3 − u, where u2 = 0 is the unstable fixed point, i.e. we want to reach the
zero function u(x,T ) = 0 at the final time T .

Although zero is an unstable fixed point, the optimization process did not cause serious prob-
lems. For the objective function we will consider two cases. The first is cQ = 0 and cT = 1; in the
second we take cQ = 1 and cT = 0. We select the following initial function:

u0(x) =

 −1. 2
√

3, x ∈ [0,10)
0, x = 0

1. 2
√

3, x ∈ (10,20].

(5.1)

In view of formula (3.7), here the speed of the wave front is zero without forcing. After a short
period of equilibration, the wave stops as it can be observed in Fig. 5.4.

Control in the whole domain. For cQ = 0 and cT = 1, our aim is to reach the zero state
at the final time t = T . Figure 5.3 displays the result. The optimal objective function value is
J(ū,f̄) = 4. 1916 · 10−5. The main contribution to this value is due to the control. The deviation
to the target state contributes less than one percent.
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Fig. 5.3. Control to zero in the whole domain; cT = 1. Optimal Control (left) and optimal state (right).

In the second case, our desired state is the function that equals the natural solution unat till
t = 2. 5, and vanishes after this time. We select cT = 0 and cQ = 1. The optimal value is
J(ū,f̄) = 0. 24576. Here, the main contribution to this value is due to the difference of the optimal
state to the desired state. This is not surprising, since the desired state is obviously not reachable.
The result is shown in Fig. 5.4, right-hand side.

Fig. 5.4. Control to zero in the whole domain; cQ = 1. Optimal Control (left) and optimal state (right).

Sparse controls. Here, the aim is to control of a wave front to the zero state at the final time
for the same data as above. We discuss here some other cases for the q-sparse setting. The closer
q is to one, the better is the obtained result.

What happens can be seen in Fig. 5.5 which shows the optimal control and the corresponding
state at t = T for a 0. 7-sparse control. The optimal value J(ū,f̄) = 2. 3324 · 10−2 is more than two
magnitudes larger than that for a control acting in the whole domain (0,L).

Also an increase in the control amplitude is observed. Compared to the control in the whole
domain (0,L), it is approximately three times larger than in the case without spatial restrictions. In
the example of extincting a wave for t > 2. 5, this increase in the control amplitude can be observed
for values q ≤ 0. 7. For the 0.7-sparse control this is shown in Fig. 5.6.
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Fig. 5.5. Control to zero by 0. 7-sparse control, cT = 1. Optimal control (left), optimal final state (right).

Fig. 5.6. Control to zero by 0. 7-sparse control, case cQ = 1; zero target after t = 2. 5. Optimal control (left)
and optimal state (right).

The optimal objective value increases, we have J(ū,f̄) = 3. 3029 for the displayed 0. 7-sparse
control.

Box constraints on the control. We return to the case where the control is allowed to
act in the complete domain (0,L), but we add box constraints. We imposed the box constraints
|f(x,t)| ≤ 3 on u and obtained the solutions displayed in Figure 5.7.

To solve this example, we applied a type of projected gradient method that slightly differs
from the standard one. For the antigradient as descent direction, we selected the step size without
considering the box constraints even if the obtained new (auxiliary) control is unfeasible. Hereafter,
this auxiliary control was projected on the admissible set.

The computed optimal value was J(ū,f̄) = 4. 0009 · 10−5. To our surprise, this value is smaller
than the one obtained for the unrestricted case. This behaviour was also confirmed for smaller
bounds of the form |f(x,t)| ≤ b: For b = 2. 5, we computed J(ū,f̄) = 3. 6523 · 10−5, b = 2 delivered
J(ū,f̄) = 3. 2742 · 10−5, for b = 1. 5 we found J(ū,f̄) = 2. 8994 · 10−5 and b = 1 finally brought an
increase to J(ū,f̄) = 3. 777 · 10−5.
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Fig. 5.7. Control to zero at t = T subject to box constraints. Optimal Control (left) and optimal state (right).

This behaviour might be explained by numerical instabilities or by the presence of different
local minima that are avoided by the restricted paths of iteration.

5.4. Stopping of a nucleation process.

The stopping problem and a simple direct solution. In the uncontrolled case f ≡ 0, the
initial function and data below generate a wave front that propagates with constant speed in both
spatial directions. This can be interpreted as some kind of nucleation process. We select

L = 20, T = 5, k =
1

3
, a = 1,

u0(x) =

{
1. 2
√

3, x ∈ [9,11]
0, else.

This initial function is presented in the left hand side of Fig. 5.8. Solving the Schlögl model with
control function f = 0, the traveling wave front unat in Fig. 5.8 (right) is obtained. Notice that the
vertical axis displays the time, while the horizontal one shows the space variable. The computations
were performed with m = 300 and τ = 1/80. Let us denote this uncontrolled traveling wave front
by unat.

The aim is to stop this wave at t = 2. 5. After stopping, the wave should be kept fixed. To stop
the wave front at this time, we will solve the optimal control problem with cQ = 1, cT = 0, λ :=
10−6, uT (x) ≡ 0 to approach the desired trajectory

uQ(x,t) =

{
unat(x,t), t ∈ [0,2. 5]
unat(x, 2. 5), t ∈ (2. 5 ,T ].

We will show below that this optimization method yields reasonable results.

However, in the simpler case without the box constraints (1.3), the following observation leads
to a very simple control law that instantly stops the wave at t = 2. 5: In the interval [0,2. 5) we
do nothing, i.e. we follow the uncontrolled solution unat. At t = 2. 5, the wave should stop, hence
ut(x,t) = 0 must hold. This yields the equation

0 = uxx(x,t)− k u(x,t)3 + u(x,t) + f(x,t).
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Fig. 5.8. Nucleation process. Initial function u0 (left) and uncontrolled propagating wave front unat (right).

Resolving for f , we obtain the control

fstop(x,t) =

 0 for t ≤ 2. 5,

k u3
nat(x,2. 5)− unat(x,2. 5)− ∂2

∂x2
unat(x,2. 5) for t > 2. 5.

(5.2)

This argument that was told to us by P. Paulau (TU Berlin, Institute of Theoretical Physics), is

mathematically not yet justified, since we did not yet prove that ∂2

∂x2unat(x,2. 5) is well defined. We
will verify this by Theorem 5.1 below. Numerically, we see that this control stops the wave indeed.
The control fstop and the associated wave front are shown in Fig. 5.9.

Fig. 5.9. Control fstop and state ustop.

The objective value for this control is not very close to zero, because we also have the contri-
bution of the regularization term for f ; the computed optimal value is

J(ustop,fstop) = 3. 4814 · 10−6.

In principle, the same control function is obtained by the optimal control method. However, it was
very helpful, if a multiple of fstop was taken as initial control for the nonlinear conjugate gradient
method.
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It remains to justify the direct stopping method using ffstop.

Theorem 5.1. Let u0 ∈ L∞(0,L) be a given initial function and assume that f = 0. Then the
solution u of (1.2) exhibits the regularity u ∈ C((0,T ],H2(0,L)). Therefore, for all t ∈ (0,T ], there
holds u(·,t) ∈ H2(0,L).

Proof. By Theorem 2.1 we already know that u is bounded, i.e. u ∈ L∞(Q). Now Theorem 4
by Di Benedetto [8] can be applied that ensures Hölder continuity of bounded solutions to parabolic
equations. By this theorem, we obtain u ∈ C0,α([ε,T ],C0,α[0,L]) for arbitrarily small ε > 0 and some
Hölder constant α ∈ (0,1) that may depend on ε. In view of this, the function F : (x,t) 7→ R(u(x,t))
is also Hölder continuous on [ε,T ]×[0,L] with some constant α̃ ∈ (0,1). Considering u on the interval
[t0,T ] with t0 := ε and starting with uε := u(·,t0) ∈ C[0,L] ⊂ L2(0,L), we have

ut(x,t)− uxx(x,t) = −F (x,t), t ≥ t0,

where the right-hand side F belongs to C0,α̃([t0,T ],C0,α̃[0,L]) ⊂ C0,α̃([t0,T ],L2(0,L)). Now we are
able to apply Theorem 1.2.1 in Amann [1] that uses the differential operator A = −∂xx with domain
D(A) = {u ∈ H2(0,L) : ux(0) = ux(L) = 0} and spaces E0 = L2(0,L), E1 = H2(0,L).

This theorem ensures that the solution u belongs to C((t0,T ],H2(0,L)). Therefore, we have
u(t) ∈ H2(0,L) for all t ≥ t0 + ε = 2ε. Since ε can be taken arbitrarily small, the claimed result
follows immediately. 2

Stopping by optimal control. Let us now deal with the stopping problem by the optimal
control method. Notice that this would be the only option, if the box constraints (1.3) must be
imposed. Then the explicitely given function fstop of (5.2) might exceed the prescribed bounds.
This can be important in particular for sparse controls because they will attend larger values.

As initial control for the nonlinear cg method, we take first f0 = 0. 99 fstop.

Test 1; FEM – initial control 0.99 fstop. We should expect that, by this very good initial
control, the cg method will converge quite fast to the solution. However, this was not the case, yet
we observed a fairly slow convergence. All computations were stopped after at most 200 iterations
of the cg method. We tested all variants of the nonlinear cg method and of stepsize rules surveyed
in Section 5.1 and obtained diverse results. We did not figure out a method that is superior over
the others, since different methods were the best with respect to the final precision, the computing
time, or with respect to the iteration number. Moreover, this varied in the different examples.
Therefore, the following tables are not representative for the optimization runs with different data.
However, on average, the displayed combinations belonged to the best with respect to all criteria.
They were obtained with the step size rule suggested by Hager and Zhang.

Method Hestenes-Stiefel Fletcher-Reeves Polak-Ribiere Hager-Zhang

Optimal objective value 3.9041e-06 3.004e-06 2.9895e-06 3.0573e-06

CPU time (in s) 100.03 78.3 86.69 101.87

Table 5.1
Test 1, Optimal objective and CPU times for optimizing the FE model.

Graphically, the optimal control is very close to the ”exact stopping control” fstop, cf. Fig. 5.10.
There is only a tiny deviation of the computed optimal control f̄ from fstop. Though marginal,
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Fig. 5.10. Test 1, Optimal control (left) and optimal state (right).

this slight perturbation might force the stopped wave front to move again at an earlier time after
t = 2. 5 than this would happen for fstop by unevitable numerical rounding errors.

Test 2; POD – initial control 0.99 fstop. In the same way, we solved the reduced optimal
control problems generated by POD. A comparison shows a very good coincidence between the FE
solutions and the POD solutions. The reduced model was set up by 15 POD basis functions. We
report on a few data:

Method Hestenes-Stiefel Fletcher-Reeves Polak-Ribiere Hager-Zhang

Optimal objective value 6.3283e-06 5.2063e-06 2.5737e-04 3.335e-06

Error ‖ū− ūPOD‖L2(Q) 1.5179e-03 8.4226e-04 2.2508e-02 1.8802e-03

CPU time (in s) 150.72 103.29 37.58 101.25

Table 5.2
Test 2, Optimal objective values, CPU times, and estimated errors ‖ū− ūPOD‖L2(Q) by POD

On average, 0. 2846s of the CPU time were used to set up the POD basis. Figure 5.11 shows
the POD optimal solutions computed by the method of Hager and Zhang with r = 15 POD basis
functions. As expected, graphically there is no difference to the solution obtained by fstop. The
CPU times for the POD model turned out to be longer than for the FE based full model. At
first glance, this is surprising, but it has a simple explanation. In the POD model with r = 15
basis functions, the system matrices are fully populated. The effort for solving the linear systems
per time step is of the order r3 = 3375. In contrast to this, for the FEM the associated matrices
are tri-diagonal with m = 300 elements in the diagonal. The numerical effort per time step is
about 3m = 900. Therefore, the longer running times for the POD model should not surprise.
Nevertheless, the precision of the reduced model is remarkable. This indicates that reduced models
should be helpful for higher space dimensions, where the computational effort of the FEM will be
much larger.

Test 3; FEM – initial control 0.5 fstop. Here, we took the control f0 = 0. 5 fstop as starting
function for the conjugate gradient method. The optimal control, computed by the Polak-Ribiere
version with strong Wolfe-Powel step size rule, is displayed in Fig. 5.12 (left-hand side). The
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Fig. 5.11. Test 2, Optimal control f̄POD (left) and optimal state ūPOD (right).

associated optimal state does graphically not differ from the one shown in Figure 5.10. The optimal
solutions of the POD model differ only marginally from them. Graphically the difference is not
visible, therefore, we do not show the associated figures.

Fig. 5.12. Optimal controls f̄ for Test 3 (left) and Test 4 (right).

The optimal values of the objective function were 1. 0997 · 10−3 (FE model) and 7. 5269 · 10−4

(POD model). As CPU time, 99.52 s were needed for the optimization of the finite element model
and 152.05 s for the POD model. The errors between the FE and POD optimal solutions are
‖f̄ − f̄POD‖L2(Q) = 3. 46 · 10−2, ‖ū− ūPOD‖L2(Q) = 1. 1 · 10−2, and ‖p̄− p̄POD‖L2(Q) = 0. 1104.

Test 4 – initial control f0 = 0. Here, we started the cg method by f0 ≡ 0. The optimal
solutions are still satisfactory. The optimal objective values are 2. 5959 · 10−3 (FE model) and
4. 8361 · 10−3 (POD model) with CPU times 96.87 s (FE) 154.35 s (POD). The differences between
the optimal states, controls and adjoint states are of the same order as in the last subsection. The
optimal control is presented in Fig. 5.12 (right-hand side). Also here, the optimal state coincides
graphically almost with that of Figure 5.10. The following deviations from the POD optimal
solutions to the ones computed by FEM were determined:

‖f̄ − f̄POD‖L2(Q) = 0. 12067, ‖ū− ūPOD‖L2(Q) = 3. 3512 · 10−2, ‖p̄− p̄POD‖L2(Q) = 0. 20241.
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Again, the results were obtained by the Polak-Ribiere version with strong Wolfe-Powell step size
rule.

Test 5 – initial control f0 = 1. Computations with the initial control f0 ≡ 1 did generate
just acceptable results. Here an optimal value of 6. 6556 · 10−2 was achieved by the FE model and
3. 892 · 10−2 for the POD model with CPU times 94.19 s (FE) and 151.38 s (POD). The differences
between FEM and POD optimal solutions were

‖f̄ − f̄POD‖L2(Q) = 0. 3284, ‖ū− ūPOD‖L2(Q) = 0. 1557, ‖p̄− p̄POD‖L2(Q) = 1. 9822

The computed optimal states approximate the desired ones fairly well. Moreover, the optimal
states for the FE model and for the POD model show again a very good coincidence, cf. Fig. 5.13.
The FE based solutions were computed by the nonlinear cg method of Polak-Ribiere with the strong
Wolfe-Powell step size rule.

Fig. 5.13. Test 5, Optimal states: FE (left) and POD (right)

These 5 tests show that the convergence of the nonlinear cg method is fairly slow and sensitive
with respect to the initial iterate. We did not observe such low performance for the semilinear
heat equation with monotone nonlinearity. This seems to be a difficulty that is related to traveling
waves. While this is not critical with respect to the approximation of the optimal states, significant
deviations between the computed optimal controls arise. POD reduced models are able to determine
the optimal solution with the same precision as the full finite element model.
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Birkhäuser Boston Inc., Boston, MA, 1995. Abstract linear theory.

[2] E. Arian, M. Fahl, and E. W. Sachs. Trust-region proper orthogonal decomposition for flow control. Technical
report, ICASE, 2000. Technical Report 2000-25.

[3] F. Bonnans and E. Casas. Une principe de Pontryagine pour le contrôle des systèmes semilinéaires elliptiques.
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