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ABSTRACT

We consider a distributed optimal control problem governed by
a semilinear parabolic equation, where constraints on the control
and on the state are given. Aiming to show the existence of regular
Lagrange multipliers we follow a linearization approach together
with a two-norm technique. The theory is applied to derive a
generalized bang-bang principle.
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1. INTRODUCTION

In this paper we investigate some optimal control problems where the state
equation is a semilinear parabolic equation. In addition, we consider constraints on
both the control and the state. Our main purpose is to get some Lagrange multipliers
(for the state-equation) as regular as possible. Nonlinear problems usually involve
smooth data. The general duality theory for the mathematical programming in
Banach spaces provides Lagrange multipliers in dual spaces. The smoother the
spaces for the data, the larger the dual spaces are. This means that, even if we
are able to ensure the existence of such multipliers, they are not in general regular
(distributions or measures may appear, for instance).

We are going to derive qualification conditions that allow to get regular Lagrange
multipliers. This question of regularity is quite important if we have in mind, for
instance, the convergence of Lagrangian algorithms or some generalized bang-bang
results.

We are going to treat separately the questions of existence and regularity. In
a first step, we obtain the existence of a multiplier: the framework is the standard
mathematical programming theory in Banach-spaces, and we rely on some strong
regularity properties of the data (as for instance the Fréchet-differentiability). This
allows us to study a linearized problem around the optimal solution. From there on,
we may embed the problem into a less regular variational framework and establish
some conditions to obtain a smooth “linearized” multiplier. Finally we realize that
this multiplier is also a multiplier associated to the original problem.

The paper is organized as follows. First we define the problem we are interested
in and prove some existence results for the optimal solution. Then we show how to
linearize the problem around a (local) optimal solution. A third part is devoted to
regularity properties. We shall finish the paper with some examples and a generalized
Bang-Bang result.

2. SETTING OF THE PROBLEM

We are investigating the following optimal control problem with constraints both
on the state and the control, governed by a semilinear state-equation. Minimize

1
(P) J(y,u) = —/(y—zd)Qdwdt-l—g/u2 dz dt
2 Jg 2 Jg
subject to
wt+Ay+ fly) =u in @ = Qx]0,T7,
y =0 on ¥ = 90x]0,77[, (2.1)
y(z,0) =y,(z) inQ,
and to
(y,u) €C . (2.2)
Here, we denote by y; = % the derivative of y with respect to t.



In this setting, £ is a smooth, open and bounded domain of R" (n < 3), T is a
positive real number, z; € L?(Q), and a > 0. Moreover we assume that

Yo € WHP(Q), wheren <p (2.3)
( for instance y, = 0) and that

C is a non-empty, convex subset of L2(Q) x LP(Q) ,
closed in the natural topology of L?(Q)? (2.4)
and bounded with respect to u in LP(Q) .

Remark 2.1 : We may choose, for instance, C' = K X U,q4, where K is a non-
empty, convex, closed subset of 12(Q) and U,4 is a non-empty, convex, L2-closed

and LP-bounded subset of LP(Q).
Remark 2.2 : Indeed, it would be sufficient to choose the control function in

LP(Q) with p; > nt?

anyway for the sake of simplicity we shall choose the same real number p for both the

control function and the initial data. We just have to remember that if 3, happens

n+2
to be equal to 0, then we may choose p > -2|- .

We recall that W'?(Q) = {y € LP(Q) | Vy € LP(Q)" } and we set V = W, ().
Let us specify the linear differential operator : A is a linear elliptic differential
operator defined by

and g, € Wol’p"’(ﬂ) with n < pg to get the following results;

Ay == 0s,(aij(2)ds,y) + ao(x)y with
1,=1 _
aij € C*(Q), fori,j=1---n,

ag € L>®(Q), infess {ag(z) |2 € Q} >0 (2:5)
2”: a;;(2)6E > ¢, znjff Vo € Q,VE € R, ¢, >0,
ii=1 i=1
and
f: TR — IR is a monotone increasing, C', globally Lipschitz function (2.6)

such that f(0) = 0.

Remark 2.3 : We note that the global Lipschitz assumption on f can be relaxed,
if uniform boundedness of y can be shown by maximum principle arguments inde-
pendently from the Lipschitz property. Then f € C'(Q) would suffice. However, we
rely on the stronger assumption to simplify the presentation. In what follows, we
denote the real function f : IR — IR and the nonlinear operator f : y(-) — f(y(+))
in L2(Q) by the same sign f.

Definition 2.1 :For 1 < p < 400, we set

W,(0,7) = {y € LP(0,T;V) | ' € L7 (0,T;V") } ,

where p’ is the conjugate of p.



We first recall that the state-equation has a unique solution and derive some regu-

larity results for it.

Theorem 2.1 : With the previous assumptions, for any u € L%(Q) the state system

(2.1) has a unique solution y = 7 (u) € W2(0,7).

Moreover we know that W,(0,7) C C([0,77]; L%(Q)) and that the mapping y — y(0)

from Wy(0,7) to L*(Q) is surjective.

Proof .-This is a standard result of the theory of semilinear parabolic equations, since

f is a maximal monotone graph (see Barbu [2] or Neittaanméaki and Tiba [10]). Here

the Lipschitz property of f is not needed. [
To show higher regularity of the solution of the state system (2.1) we shall make

use of the following embedding result due to Lions and Peetre ( Lions [12], pp.24 ) .

We recall that

W219(Q) = {y € LY(Q) | Dy, Dy, w € LY(Q)}.

Lemma 2.1 : If @ C IR®is a bounded domain having the cone property, then the
embedding

wah(Q) C I(Q)

is continuous for

400 if ¢g>5/2
, any positive number if ¢ =5/2
a 5¢ .
f 2.
5o ifg<5/

If L7(Q) is replaced by L"=%(Q), ¢ > 0, then the above embedding is compact.

|
Theorem 2.2 : Under the previous assumptions, the solution y of (2.1) belongs to

C(Q)-
Proof .-The proof is performed for n = 3 (for n < 2 it is even simpler). We have just
seen that y € Wy(0,T) C L%(Q). As f is globally Lipschitz, f(y) € L?(Q) holds as

well. So y is the solution of the “linear” system

vyt Ay =u—fly) inQ,
Y =0 on ¥, (2.7)

y(z,0) = y.(z) in Q,

where u — f(y) € L*(Q), hence classical regularity results (see [3, 13] for instance)
imply that y € W2L2(Q).

Now we use LLemma 2.1 for ¢ = 2 and r = 55—q2 = 10 to obtain y € L'°(Q).

—q

The Lipschitz property of f implies that f(y) € L'°(Q) as well. Once again, we
rely on parabolic regularity: the right hand side of the first line of (2.7) belongs to
L3(Q), since u € L3(Q) and f(y) € L'(Q). Moreover y, € W, ?(Q) C Wy (Q),
since p > 3 > (n+ 2)/2 = 5/2. Therefore, the initial data are compatible with
the boundary condition. The LP-theory of parabolic equations implies now that
y € W213(Q) and (once again) Lemma 2.1 yields that y € L>(Q) .



Now it is possible to show by standard methods that y € C(Q). We refer, for in-
stance to Di Benedetto [8], Corollary 0.1, relying on the assumption y € L*°(Q) and
on the continuity of the boundary data. Moreover, we have to use the compatibility
condition given by y € W,?(Q) € C(Q) (cf. also the remark in [8], p.531). [}

Once we have ensured that the operator 7 : L%(Q) — W2(0,7) is well defined
we may prove the existence of (at least) one optimal solution of problem (P).
Theorem 2.3 : Assume that the feasible domain of problem (P)

D=A{(y,u) € L*(Q)x L"(Q) | y=T(u) and (y,u)€C},

is non empty . Then problem (P) has at least one optimal solution, which we shall
denote by (g, u).
Proof .-Let (y,,u,) € C be a minimizing sequence, such that J(y,,u,) converges
to the infimum d > 0. So the sequence u, is bounded in LP(Q), in L*(Q) and in
L*(0,7; H='(Q)) (because L?(Q) C H~'(Q) with a continuous imbedding).
Thus a subsequence of u, (say u,) weakly converges to some @ in L*(Q) (and in
L2(0,T; H™Y(Q))).

Moreover, ¥, is bounded in L%(Q) as well and we may assume that it weakly

converges to j in L*(Q). C is convex and L*-closed, so it is weakly L*-closed and
(7,u) € C. Relations (2.1) give :

<y7’1(t),yn(t)> + (Ayn(t) + F(yn(1)), yn(1)) = (un(t), yn(1)) , ace. in [0,77,

where (, ) denotes the duality product between V = H!(Q) and V' = H='(Q).
Performing an integration from 0 to t, we get

%/0 %Hyn( 20 ds+/ (Ayn(8) + F(Yn(5)), Yn(8))yy ds 05
:/0 <u’fb(5)7yn(5)>vf’vd5 .

As a conclusion of the Friedrich inequality, A is known to be coercive in H}({).
Moreover, f is monotone. Hence the above relation yields

1
MO T] Il e [ Iy @ <
1
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We have already seen that u, is bounded in L%(0,7; H~=(Q)), so we obtain :

1 2 ! 2
Viel0.T], Sllym®liz) + C/O [9n ()73 () 45 (2.9)
< Co + Cillynll 2 (0,1:H1(02))-
The previous relation with t=T implies that y, is bounded in L2(0,7; H1(Q)).

Therefore A(y,) + f(yn) is bounded in L%(0,7; H=1(R)). As u, is bounded in
L%(0,7; H71(Q)) we may conclude that g/, is bounded in £L2(0,7; H='(Q)) too, so



that y,, is bounded in W5(0,7") and a subsequence (still denoted y,, ) weakly converges
to g in W5(0,T).

The compactness of the embedding H!(Q) C L%(Q) yields the compactness
of the embedding W2(0,7) C L*(Q) (see [11], p.57) and the (sub)sequence y,
strongly converges to § in L%(Q). Moreover, we may prove that the operator
A + f is weakly-sequentially continuous from Wy(0,7) to L*(0,7; H~'(Q)) (for
a detailed proof see [5], Proposition 2.1) : so A(y,) + f(y,) weakly converges to
A(y) + f(y) in L*0,7; H7'(Q)). Thus (g, u) is a feasible point. J is convex and
lower-semicontinuous, so the strong-weak convergence of (y,,u,) towards (g, ) in

L*(Q) x L*(Q) implies that

J(g,n) < liminf J(y,,u,) = lm J(yn,u,)=d.
n—+o00 n—+o00

Finally, as d is the infimum we get J(y,u) < d < J(y,u) . So (y,u) is an optimal
solution of problem (P). ]
Remark 2.4: In the proof of the previous theorem we have considered the problem
as an “L2”-problem. Here the sequence u, belongs to LP(Q) and L?-converges to
@. So a priori @ does not belong to LP(Q). The crucial assumption here is the
L?-closedness of the set C.

Remark 2.5: We may prove quite similarly that the optimal control problem has
at least one solution if we choose a final observation of the state instead of the
distributed one. Moreover, we can replace the first integral of the objective by
a non-convex but continuous functional on L?(Q). This is based on the strong
convergence of the state-sequence in L%(Q).

3. LINEARIZATION OF THE PROBLEM

The regularity property of the solutions of (2.1) allows to consider the mapping
f on C(Q) and give a differentiability result.
Lemma 3.1: The mapping y — f(y) is C! in C(Q).
Proof .-This is a well known result on Nemytskii operators (see for instance Ioffe and
Tikhomirov [9]). ]

Let us define the state-space :

Y ={yeW,(0,T)| y: + Ay € LP(Q) , y(0) ¢ W'P(Q) } .

Lemma 3.2: Y is a subspace of C(()). Moreover, Y endowed with the norm

191l = [l9llw,0m) + [19lle(@) + Iy + Ayllzr@) + l9(0)lwrray

is a Banach-space and the operator y — y; + Ay is continuous from Y to LF(Q).
Proof -Let y, be a Cauchy sequence in Y. Then y,; + Ay, is a Cauchy sequence
in LP(Q) and y, is also a Cauchy sequence in W,(0,7) (because of the boundary

conditions). Parabolic regularity shows that g, is also a Cauchy sequence in C(Q).

The result follows now from the completeness of W,(0,7"), C(Q) and LP(Q). ]

Remark 3.1: The norm ||'3/||C(Q) could be deleted, as convergence of y, in C(Q)

follows from that of y,, ; + Ay, in LP(Q) and that of y,(0) in W'?(Q). However, we
include this norm for convenience.



So the following state-operator 1" is C' :

T: Y xIPQ) — IPQ)
(y,u) — y+ Ay+ fly)—u.

This is due to Lemma 3.1 and to the fact that the operator y — y; + Ay is linear
and continuous from Y to LP(Q) and the identity u — wu is linear and continuous in
17(Q) .

Thus problem (P) has the abstract form

min  J(y,u)
T(y,u)=0,
(y,u) € €,

where €' = { (y,u) € C (1 (Y x L(Q)) | (0) = yos 315 =0 %

On the first glimpse, this seems to be false, since we have restricted the feasible set
from Wy(0,7) x L%(Q) to Y x LP(Q). However, the controls belong automatically
to LP(Q), even if we tegard them as elements of L?(Q). Moreover, the preceding
investigations revealed y € Y. Therefore, the admissible set has not changed at all.
Only the underlying spaces were changed. This is essential for differentiating the
operator f, which is impossible in W5(0,7).

Now, let us we require the following regularity assumption at (y,u) :

T,(yv 7_1) ' é(yv ’ﬁ) = Lp(Q) ) (31)
where C(7,7) = { My —g,u—1a) | A >0, (y,u) € C }. We say that (7, ) is regular
and may use the following result of [16].

Theorem 3.1: If (7, %) is a regular solution of (P), then it is also a solution of the
linearized problem

or equivalently
min J'(y,u) - (y,u)
T/(:lj,’l_l,) : (y_ Y, u— 7_1’) =0,

(y,u)€C .
Proof .- This result appears as an intermediate result (the relation (3.5)) in the proof
of Theorem 3.1 in the paper of Zowe and Kurcyuscz [16]. [

In our very case, assumption (3.1) means that (7, %) is regular if and only if

Vw € LP(Q), IAy > 0,3 (Y, uyw) € C, such that

(yw)t - gt + A(yw - ?7) + f,(y) ' (yw - ?j) - (uw - ﬂ) = ;U_w in Q (32)
Yo = 0 onT
yw(0) = y, inQ.



and introduce the affine-linear operator
Ly(y,u) =y + AW+ f/(7) y+P—u.
Then relation (3.2) is equivalent to
LP(Q) CRT Ly(C) .
4. OPTIMALITY CONDITIONS

We have just seen in the previous section that, imposing the assumption (3.2),
the solution (7, %) of the non-linear optimal control problem is also a solution of the
linearized problem which reads

(P) Min <y — 24,9 >12(9) +a <u,u >12(0)

subject to
y— g+ Ay-9)+ @y -9) =u-7 inQ,
y =0 on Y,
y(0) =yo(w) inQ,
(y,u) e C .

Now we can reverse our arguments. Coming back from the space Y x LP(Q)) (needed
for linearization) to the original space Wy(0,7") x L%(Q) nothing will change except
the underlying spaces. This does not contradict the definition of f'(y) : We have
(F'(@) )z, t) = f'(H(z,1) - y(x,1). The first factor belongs to C(Q), hence this
linear mapping can be continuously extended to L%(Q). We now study the problem
in W5(0,7T) x L*(Q) to give some constraint qualifications ensuring the existence of a
regular Lagrange multiplier. Then we shall prove that this multiplier is a multiplier
for the original nonlinear problem as well.

Let us fix the notations. The state-space is W5(0,7) and we introduce Ay as
the linear, continuous and coercive operator defined on W3(0,7") by Az(y) = Ay +
f(§)-y. Then &; + Ay is a linear continuous operator from W5(0,7’) onto L?(Q).

Once again, problem (F;) may be considered as an optimal control problem in
larger spaces (less “smooth” in some sense) than the “natural” spaces, and may be
rewritten as

Min < ¥ — 24,9 >12(9) +a < u,u >12(9)

subject to
yt+A?7y =u—-"v iIlQ,
y =0 on X, (4.1)
y =Y in 0,

(y,u)e C .

In particular, C'is viewed as a subset of L*(Q) x L*(Q), y, € H,(2) and u — 7 €
L2(0, 15 H7H(Q)). Weset C' = { (y,u) € C' | yjx =0, y(0) = y, } (note that C' C C').



Such linear optimal control problems have been studied in [6] for the parabolic
case and we recall the main result :
Theorem 4.1: Assume

M c €, bounded in C([0,T], L2(£)), such that
(4) 0 € Intw(Ly(M)),
where W is a dense separable Banach-subspace of L(0,7T; H='(Q)) ,

(Intw denotes the interior for the W-topology). Then, there exists § € W’ such
that

(= 2a:9 = 2 +allu ﬂ>L2(Q)+

(@ oy — 41+ Ag(y —y) — (u— 1) wiw 20

)
holds for all (y,u) € C such that v, — g + Ay(y — ) — (v — u) € W.
Proof .-See [6, 4]. [ |
Remark 4.1: Condition (A) is equivalent to

(4.2)

3p>0  Bw(0,p) C Ly(M),

where where By (0, \) is the W-ball centered in 0 with radius A.
We could also use the following qualification assumption which seems to be weaker

than (A) (see Azé [1]) :
(A) W CIRY Ly(C) .

Note that this conditions looks like the Zowe and Kurcyuscz condition (3.2) : only
the underlying space is changed.

The optimality system (4.2) is also an optimality system for problem (P). So ¢
appears as a Lagrange multiplier associated to the state-equation for the (original
nonlinear) problem (P). If we set W = LP(Q), then assumption (A) is equivalent
to the Zowe and Kurcyusz condition applied to the linearized problem : we obtain
a multiplier in the dual L?'(Q) of LP(Q) : it is not better. If we want to get more
regularity we have to choose for instance W = L4(Q) with ¢ < p : the multiplier is
now an element of L¢'(Q). The best situation is obtained for ¢ = 2. We are giving
some examples in the next section.

5. EXAMPLES AND APPLICATIONS

5.1.A First Example
In this subsection we set y, = 0 and C = K x U,q, where

K= {yeWy(0,7) | (e,0) Sy(e,0) S (ot aein Q). (5.1)
Here, ¢ and 1 are L*°(Q)-functions such that
E|p>0,V($,t)€Q @(xvt) +p§0§¢(m,t)—p,

so that
0€ Intr(K) . (5.2)



n+ 2
Following Remark 2.2, we notice that it is sufficient to set p > % Similarly we
set

U ={uweLl®Q)]alz,t) <ul(z,t) <blz,t) V(z,t)e Q }, (5.3)

where a < b are L*>(Q)-functions. (Note that U,q may have an empty L*-interior
if @ = b on Y, for instance.) We note that C is convex, L2-closed and LP-bounded
with respect to u.

We notice that relation (3.2) is equivalent to

Vw € LP(Q), IAy > 0, 3 (Yw, uw) € C, such that
(yw)t + Agjyu} = Uy —V++— in Q

g

Aw (5.4)
Yo = 0 on T
y(0) = o in Q.
First we give a simple sufficient condition to ensure (5.4).
Lemma 5.1: Assume
o= f(§) = (5 7€ Vua - (5.5)

Then condition (5.4) is satisfied.
Proof .-Let be w € LP(Q)) and denote by z(w) the solution of

(z(w)) + Agz(w) w in Q
zZ(w) =0 onX,
z(w)(0) 0 inQ.

Proceeding as in the proof of Theorem 2.2, the continuity of the operator and Sobolev

embedding theorems imply that z(w) € C(Q) and that we may find a constant k
such that

Vwe LP(Q)  [lz(w)lle@gy < F llwllrq) -
As 0 € Intp(K), there exists some constant § > 0 such that

Vz € C(Q) HZHC(Q) <é=> ze K.

k
Now, we set uy, = v € Uyg, Ay = gHwHLp(Q) and y,, = z(w/A,). Then we have

(Yw)t + Agly = Uy — 7+ ;i in Q,

w

Yo =10 on Y,
yu(0) =0 in Q,
and
k
1ulle@) < sllwllzr@) =4,
so that y,, € K and condition (5.4) is fullfilled. [

We shall present at the end of this subsection some meaningful examples. Fur-
thermore, we have :

10



Theorem 5.1: Assume (5.2) and (5.4) (or for instance (5.5) instead of (5.4)). Then,
2 /
for any r > %, there exists a multiplier § € L (Q), such that :

(4 = 24,9 = Y) o)t u— w2+
@y — e+ Agly —7) —(u — 77’)>LT’(Q),LT(Q) >0
for all (y,u) € K X Uyq such that y, + Agy —u € L7(Q).
Proof .-We just have to prove condition (A) with W = L7(Q). Let us formu-

late it more explicitely: we want to find some subset M of K x U,q, bounded

in C([0,7], L*(Q)) and some é > 0 such that
VEe { £ L7(Q) ] €l <13, Hye, ue) € M with
(ge)t + Agye = 0+ ug +66in Q, ¢ =0 on X, y¢(0)=0in Q.

Indeed we take

M= {07 [ve BN}, 1> 22

where B,(0,)) is the L"-ball centered in 0 with radius A, and A > 0 is small;(z(v)
has already been defined before.) Once again, by the continuity with respect of the
right-hand side and the Sobolev embedding theorem, we can choose A such that

12(0)lleg) <@

that is 2(v) € K and M C K x Uyq. Moreover Lz(M) = B,(0, ) and (A) is fulfilled
in L7(Q).

(Note that if n = 1 we may take r = 2). ]
Remark 5.1: Let us indicate some concrete examples where the previous result
may be used :

e f(y) = Ay?, with A > 0;

Uwi={uel™®Q)| —a<u(z,t)<a Y(z,t)€ @ }, where ais a strictly
positive real number, and

K={yeWy,(0,7)| —b<y(z,t) <ba.e. in @ } where bis a real number
such that 0 < b < (%)1/3. It is clear that 0 € Inty~(K).

The computation of = f(y) — f'(§) - ¥ gives v = —2A7>. So
18]l Lo (@) < 277 () < 206° <
hence v € Uygq.
o f(y) =exp(Ay) — 1, with A > 0;

Uw={uwel>®Q)|a, <u(z,t)<ay V(z,t)€ Q },witha, <0< ay.

K={yeWy,(0,7T)| —b<y(x,t) <bae. in Q } where b is a real number
such that 14+ a, < (1 — Ab)exp(—Ab) and (1 + Ab)exp(Ab) < ay + 1.

The same analysis shows that 0 € Intpe(K) and 7 € Upyg.

11



Note that the functions f described in this remark are C' but not globally Lipschitz.
Nevertheless all results are valid because all state-functions considered in this section
belong to K and are uniformly L°°-bounded. So following Remark 2.3, the local-
Lipschitz property of f is sufficient to ensure regularity for the solutions of (2.1).
5.2. A generalized Bang-Bang result

We adopt the notations of the previous subsection with ¢ and % in C(Q), and
we set & = 0. Let us suppose that

(5.4) is fulfilled in L"(Q) and 0 € Intr~(K) .
The optimality system is
<37 — 2, Y — ?7>L2(Q) + <q_9 Yt — Y + Ay(y - 37) - ("’ - ﬂ)>[1r’(Q)’Lr(Q) > 0
n 4+ 2

for all (y,u) € K x Uyq such that y; + Ayy € L7(Q) and r > 5
The state-part of the optimality system reads

(¥ — 24,y — 37>L2(Q) + (@ yr — 9 + Ag(y — ?7)>Lr’(Q),Lr(Q) >0

for all y € K such that y, + Ayy € L™(Q).
We define the adjoint-state p as the solution of

—P+ A =Y—zp n@Q,

p =0 on Y, (5.6)
p(T) =0 in Q,
so that the previous inequality becomes
P+ Ty — 9+ Agly — 37)>Lp’(Q),Lp(Q) 20 (5.7)

for all y € K such that 3 + Ayy € L7(Q) (A} denotes the adjoint operator of Ay
where A; € LIWD(Q), L*(Q))).
The control-part of the optimality system gives

Yu € l/rad @,U - lﬂ/>Lrl(Q)7Lr(Q) < 0. (58)

Now, we are going to use these above relations to get some deeper information
about the optimal pair. Let us define the sets

Q(p = { (mvt) € Q | 37(7'71) :QD(.T,t) } ) Qib = { (Z‘,t) € Q | ?7(1‘,1/): ¢(x7t) } 3

Q°=Q - (QoUQy) .
We know that 4 € C(Q). Then @), and @) are closed sets and )° is an open subset
of Q. Let d € D(Q) be a test function with compact support supp d C Q°. By the
continuity of ¥, ¢, ¥ and the compactness of supp d, one can find é > 0 such that
7+ 6d and § — 6d remain in K . Obviously, they are also regular and we can use
them in (5.7) as test functions to infer

(P+ @ di+ Agd )1 9y 1r(g) = 0

12



for any d € D(Q) with compact support in @°. Taking into account this relation
and the equation satisfied by p, we see that

—G+ A q=9—-2z inD(Q°). (5.9)

This shows that ¢ € W21"(Q°) for r > 1, if z4 belongs to L"(Q). Then ¢ € C(Q°)
by the Sobolev theorem if r is sufficiently large.
Now we are able to clarify the structure of the optimal pair of (P), which may be

termed as a generalized bang-bang result, Troltzsch [14].
Theorem 5.2 : We have :

Q7C {(z.0) [ y(z,1) = za(w,t) JU{ (z,1) | u
U{ (z,1) | a(z,t) = b(z,1) }.

Proof .-Choose u = @ in @ — @° so that (5.8) yields

Vu € Uyg / q(i—u)dz dt >0. (5.10)

We have Q° = { (2,1) € Q° | q(z,1) >0 }U{ (z,1) € Q° | g(z,t) <0 }U{ (2,1) €
Q° | g(z,t) = 0 }. Relation (5.10) shows that @ = b on the first set and @ = « on
the second set.

Let us call Q the last set and suppose it has positive measure (otherwise the
proof is finished). We have to prove that § = z4 on this subset. We use a result
found in Brezis [7] p.195 :

Lemma 5.2: Let z be in W"*(w) with 1 < a < o0 and w any open subset of IR".
Then Vz = 0 a.e. on the set {z € w | 2(z) = k }, where k is a real number.

As q € Wlic] "(Q°) for r > 1, we first apply this result to any compact subset
w C Q°and z = §; so §; and V{ are equal to 0 almost everywhere on Q.
0q

Now for any component indices ¢ and j, we set z = = D;,q and we are going to

prove that D, z vanishes where z vanishes.

11
For any integer n > 0, let be 6, € D(]— —,—[) such that 0 < 6, < 1 and
n’'n

6,(0) = 1; let G, be the real valued function defined by
Gn(z) = / (1=6,(t)) dt, forall z € IR .
0

It is easy to see that G, € C(IR), G,,(0) = 0 and |G, (2)| < |z| for all z € IR.
Moreover G/, (z) € [0,1] for all z € IR and G/, converges everywhere towards £, the
characteristic function of the set IR — {0}. So we infer that G, (z) converges to z
everywhere on IR.

Let us set z, = G,(z). The properties of G, show that

zn(z,t) — 2(2,1) on Q° . (5.11)

As ¢ belongs to W%”’(Q ) then D,z belongs to L} (Q°). Moreover D, z, =
G, (2) D, 2 also belongs to 1],,(Q°) since 0 < G(2) < 1.
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For any ¢ € D(Q°) we get

/ Zn (Dg; ) dzdt = —/ (Dz,;2n) @ dadt

/Ozn (Dz;p) dadt = — o G (2)(Dz,2) @ dadt .

The Lebesgue dominated convergence theorem allows to take the limit with respect
to n and we obtain:

/ 2 (Dy,p) dzdt = — £o(2)( Dy, 2) @ dadt .
o QO
As z vanishes on Q, we finally get

—/O(ijz) @ dedt = /Oz (Dz,p) dzdt = —/O Q(D%z) @ dxdt .

This yields
Ve € D(Q°) /~(Dx]z) ¢ dxdt =0,
Q
that is Dy z = 0 a.e. on Q.

Finally we have proved that —g; + A7¢ = 0 on Q. This implies that § — 24 = 0
a.e. on Q) and the proof is finished. [

6. CONCLUSION

We have chosen to illustrate the method for an example of a semilinear parabolic
problem with distributed control. This can be adapted in the same way to many
boundary or initial control problems or to elliptic problems. The functional frame
has to be chosen quite carefully.
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