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1 Introduction

The Lagrange-Newton method is obtained by applying Newton’s method or a gene-
ralized version of it to find a stationary point of the Lagrangian function associated
to a nonlinear optimization problem. If a constraint qualification and a strong se-
cond order sufficiency condition are satisfied, the Lagrange-Newton method defines a
sequential quadratic programming (SQP) algorithm. It is known since several years
that the SQP algorithm exhibits local quadratic convergence in finite-dimensional
spaces. The method can be easily extended to infinite-dimensional optimization pro-
blems such as optimal control problems. We refer, for instance, to the works by Alt
[1], [2], Alt and Malanowski [3], Kelley and Wright [7], or Levitin and Polyak [10].
Their results were formulated for Banach or Hilbert spaces and focused mainly on the
application to optimal control problems governed by nonlinear ODE’s, while Kupfer
and Sachs [9] consider the numerical application to parabolic control problems with
nonlinear equality constraints. In this context, we also mention Heinkenschlof [6],
who applies Newton type methods to nonlinear parabolic control problems without
constraints.



Recently, Alt, Sontag and Troltzsch [4] proved the local quadratic convergence of
the SQP method for the optimal control of a weakly singular Hammerstein integral
equation with pointwise constraints on the control. The aim of this paper is to
transfer their convergence result to nonlinear parabolic boundary control problems.
It is quite obvious that this is possible by means of the integral equation method.
However, we shall develop the theory directly in the context of weak solutions of
the parabolic system rather than by reducing the problem to one for a Hammerstein
integral equation. In this way, we shed more light on the specific aspects connected
with PDE’s. Moreover, our presentation is self-contained and may serve as a guide
to handle parabolic PDE in domains of higher dimensions.

We shall consider the following optimal control problem.

(P)  Minimize

£0,u) = %/()T(e(t,l) — q(0)%dt + %/OT u(t)2dt (1.1)

subject to the initial-boundary value problem

0:(t,x) = 0..(t,2)

0(0,z) = 0

Hi(t,(;) _— (12)
0.(t,1) = bO(t, 1))+ u(t)

lu(t)] <1 on [0,T]. (1.3)

In (P), the control u is looked upon in L. (0,7"), while the state 8 is defined as weak
solution of (1.2) (cf. section 2). Moreover, constants A > 0, 7' > 0, and functions
be C*IR), and g € Lo(0,T) are given.

We assume that b and its derivatives up to the order 2 are uniformly bounded
and Lipschitz on IR: There are constants ¢, ¢; such that

[BO0)] < e [BO(01) = 5 (02)] < e (1.4)

for all 8, 01, 0, € IR, 1 = 0,1,2. These very strong assumptions may be sligthly
weakened to local estimates. Moreover, we are able to discuss more general nonlinear
functionals than (1.1) and more general nonlinearities in the boundary condition
of the heat equation (1.2). However, we confine ourselves to the simplest case
containing the typical difficulties for proving convergence of the SQP method. In
this way we avoid many technicalities as well as notational complexity. In this paper,
we shall use the following

Notations: L, = L.(0,7), 1 <r < oo, C = C[0,T], endowed with natural norms
| - |l-, and || - ||s0, Tespectively. || - ||s will be used also for the norm in any space
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of continuous functions. Other norms are denoted by appropriate subscripts. In
product spaces X X Y we introduce the norm by || - |[xxy = || |[x + |- ||y- By (-5 )
the inner product of H = L3(0,1) is denoted, while (-,-) is used for ordered pairs
of elements. Moreover, U = {u € Ly, : |[ulleo < 1}, @ = (0,T) x (0,1). Traces
of functions in H'(0,1) at = 1 will be indicated by 7, for instance, 70 = (-, 1).
Within proofs, ¢ denotes a generic constant.

2 Weak solutions and integral equation method

Let us regard at first the linear counterpart of (1.2),

0:(t,x) = 0.(L,2)

0(0,z) = 0

ai(t,o)> =0 =0
0:(t,1) = g(t)

for z € (0,1), t € (0,T], where g € Ly(0,T). We introduce V = H'(0,1) and
W(0,T)={60 € Ly(0,T;V) : 0, € L,(0, T; V") },

where V* 1s the dual space to V', and 6, is the derivative of ¢ in the sense of vector-
valued distributions. A function § € W(0,7) is said to be a weak solution of (2.1),
if
(0:(t);0) + (VO(1); Vo) = g(t)v(1)
6(0) = 0

for almost all ¢ € [0,T] and all v € V. In (2.2), (+;-) denotes the pairing between V*
and V as well as the natural inner product of L,(0,1). Note that 6,(¢) is a function
of Ly(0,7;V*). Tt is known (cf. [12]) that for each g € Ly a unique weak solution
6 € W(0,T) of (2.2) exists. The mapping ¢g + 6 from L, to W(0,7') is continuous.
Moreover, we can assume 6§ € C([0,T], H).

(2.2)

In order to gain L,—estimates we derive a representation of weak solutions by an
equivalent integral equation. Regard the Sturm-Liouville eigenvalue problem

T 29
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The non-negative eigenvalues are ¢, = 0, ¢, = n?r% n = 1,2,..., with normalized

eigenfunctions v,(z) =1, v,(z) = V2 cos nwz. The system {vn}22, forms an ortho-
normal basis of H. Expanding the weak solution #(¢), for each fixed ¢, into a Fourier

series (1) = 300 ) ¢, (t)v, we end up with the integral representation

t

0(1, ) = ivn(;ﬂ)vn(l)/ e~ (=9 4 5) ds. (2.4)

n=0 0



Lemma 2.1 6 is a weak solution of (2.1) with boundary data g € Ly, if and only if
0 satisfies (2.4). If g € Ly, p > 2, then 0 is continuous on Q. There is a constant
¢ = ¢(p) not depending on g such that for all g € L,

10]lo0 < cllgllp- (2.5)
Proof: As (2.4) is standard, we show only (2.5). It holds

[va(x)on(1) Jo e g (s) ds| < 2(fg et T 0= ds) | g,

-2/q
M

(2.6)

<
< ¢n

where 1/g+1/p = 1. From p > 2 we obtain ¢ < 2, hence Y.°2, n=?/% is a convergent
majorant for (2.4). The statement follows from the WeierstraB theorem. O

Note that g(t) := b(6(¢,1)) + u(t) belongs to Le by (1.4). Invoking (2.6) and the
Lebesgue dominated convergence theorem it is easy to verify that (2.4) is equivalent
to

0(t, ) :/Otivn(x)vn(l =" (=) g () ds (2.7)

forge L,,p>2. Atz=1,

b1, 1) = /Ot k(L — s)g(s) ds, (2.8)

where
o0

Z z —'rL27r2t — 142 Z —n’r t (2-9)

= n=1

The kernel k(t) is weakly singular at ¢ = 0, as

00 00 1
2 : —n2nt —r2tx?
nzoe —Jo ‘ ! 2/ 7t ( )

hence
k(t) < et™'2, (2.10)
t € (0,T]. For convenience we introduce also the Green’s function

= > val@)oa(E)e™ .

Now we return to the nonlinear equation (1.2). A function § € W(0,7) is said
to be a weak solution of (1.2), if

0:(t);v) + (VO(t); Vo b((t, 1)) 4+ u(t))v(1
(O050)+ (TS = (06 ) + 400 o)

for almost all ¢ € [0,T] and all v € V.



Lemma 2.2 [f 0 € W(0,T) is a weak solution of (1.2), then z(t) := 0(t,1) is a

continuous solution of the integral equation

z@%i[k@—ﬁ@wﬁﬁ+u@»®. (2.12)
Conversely, t
9@J):Acxﬁht_g@@@»+u@»@ (2.13)
is o weak solution of (1.2), if = € C[0,T) satisfies (2.12).
Proof: Let § be a weak solution of (1.2) and put ¢(f) = b(8(t, 1)) + u(t). Then 0 is

also a weak solution of (2.1) for this g(¢). Moreover, g is bounded and measurable.
By Lemma 2.1 and (2.8) we see that z(t) satisfies the integral equation (2.12).
The weakly singular integral operator in (2.12) transforms bounded and measurable
functions into continuous functions. As g € L, we have z € C[0,T].

Conversely, let z solve (2.12) and define 6 by (2.13). Setting z = 1 in this
equation shows 6(¢,1) = z(¢), thus

t
0@@):/(ﬂaLt—Q@w@Jﬁ+u@D@.
0
The last statement is an immediate consequence of Lemma 2.1. a

Lemma 2.3 For each u € Lo, the parabolic initial-boundary value problem (1.2)
admits a unique weak solution € W(0,T).

Proof: Owing to the strong assumptions (1.4) on b, the integral equation (2.12) has
for all u € Lo a unique solution z € C[0,7]. The existence of § is a conclusion of
Lemma 2.2. By 0(t,1) = z(¢) and Lemma 2.1 applied to ¢g(t) = b(8(t,1)) + u(t) we
obtain immediately the uniqueness of 6. a

Corollary 2.4 The weak solution 0 of (1.2) is continuous on Q.
(Apply Lemma 2.1 to ¢(t) = b(0(t,1)) + u(t).)

3 Optimality conditions

It can be shown by standard methods that (P) possesses at least one optimal control
u,. We now fix one optimal control u, as reference control for all what follows. Let
6, denote the corresponding state, obtained as solution of (1.2). The following result
is well known: Define the adjoint state y, € W(0,T) to be the weak solution of the
adjoint system

—yt((t,;c; = ym(t,:v)
T,z) = 0
zx(t,O) 0 (3.1)

ye(,1) = V(0:(1,1)y(1,1) + 0.(2,1) — g(1)
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for x € (0,1), t € [0,7). The definition of weak solutions of this system as well
as investigations concerning existence and uniqueness can be transferred to (1.2)
performing the transformation ¢ = T'—¢. By means of the Green’s function we find

y(t,z) = /tT Gz, 1,s —0)[b'(0,(s,1)y(s,1) + 0,(s,1) — q(s)]ds. (3.2)

It 1s easy to show that this equation has a unique solution at x=1. On account of
this, the existence of a unique weak solution to (3.1) is an immediate consequence.
The following result is known.

Theorem 3.1 Let u, be optimal for (P) with associated state 0, and adjoint state
y,. Then

/OTWOG) +90(t, 1)) (u(t) — uo(t)) di = 0 (3.3)
for all u € [ed,

For the proof, which can be carried out by the integral equation method, we refer
to [5], [13]. Formally, we are able to derive this result by means of the Lagrange
function

LO,u,y) = f(0,u) = fg (0u(t) = Oua(t); y (1)) dt

00 1)) + u(t) — 0.(8, 1)}y (0, 1) . (34)

The adjoint system (3.1) follows from Lg(0,,u,,y) = 0 V0 € W(0,T) after an
integration by parts. L, (0,, uo,y)(u — u,) > 0 Yu € U gives the variational
inequality (3.3). This is very formal, since the differentiability of the mapping
6(-,1) — b(0(-,1)) is quite delicate. Moreover, 8, would need a further explanation.
However, this formal use of L is a reliable guide to establish our SQP method.
Performing an integration by parts we shall later make this well defined.

In addition to the first order necessary optimality conditions (3.1), (3.3) we
suppose the following second order sufficient optimality condition.

(SSC)  There is a 6 > 0 such that
T
[0 )V 1))}000 1) M >

for all u € Ly and § € W(0,T) satisfying the linearized equation

O,(t,x) = 0,.(t,2)

0(0,z) = 0

ei(t,o)) = 0 (3:5)
0u(11) = V(O,(1)0(t1) + u(t)



Formally, the left hand side of (SSC) is the second derivative of the Lagrange function
with respect to v = (6, u). This derivative can be given a precise meaning as follows.
Integrating by parts in (3.4) we obtain L = £, where

L= f(0,u)— [ 1(0:(2);9(t) + (VO(L); Vy(1))] dt
+ Jo (b(O(2, 1)) + u(t))y(t, 1) dt
= [f—Li+ L,

In what follows, we shall define the Lagrange function in this way. The quadratic
functional f is twice continuously Fréchet differentiable on W (0,7T) x Ly, and

f”(907 UO>[U1, UQ] = /OT{gl(t, 1)02(t, 1) + )\ul(t)uQ(t)} dt,

v1 = (61,u1), va = (02,uz). Ly is linear and continuous with respect to 6, hence
twice continuously differentiable on W(0,7T) x L,, too (with vanishing second order
derivative). In Ly, we shall regard 6(¢,1) as function of C'[0,T]. In this sense, £, is
twice continuously differentiable on €' x Ly, where

Lown(0,u,y)[or,vs] = /T B(0(1,1))0:(t, 1)0,(2, 1) dt.

0

Therefore, we define

Lop(0,u,y)[v1,ve] = f”(ﬁ,u)[vl,vg] + L2400, u, y)[v1, va]. (3.6)

In this way we are able to expand £ into a Taylor series up to the order 2 with
increments belonging to C[0, 7] with respect to 6(¢,1) .

Corollary 3.2 [t holds
uo(t) = P {—A""wo(t, 1)}, (3.7)
where Pi_y 1] denoles the projection operator from IR onto [—1,1].

(This result is obtained after a standard discussion of (3.3).)

To finish this section we establish an estimate for solutions of the system

0:(t,x) = 0,.(t,2)

0(0,z) = 0

ai(t,o)) =0 (33)
0:(1,1) = B(1)O(, 1)+ u(t)

on [0,77] x [0,1].
Lemma 3.3 Let § € Loo(0,T) be given fized and 0 be the weak solution of (3.8)

associated to u € Lo(0,T). There exist constants ¢, 5 and ¢y, depending only on r
and || 3]s but not on u € Lo, such that

I70]l- < eralull2 Vr € [2,00)
78]l < oo [lull+ Vr € (2,00].



Proof: According to Lemma 2.2, z(t) = (¢, 1) is the solution of

A(t) = /Ot k(L — )3(s)2(s) ds + /Ot k(L — s)u(s) ds, (3.9)
hence
2O < [kt = ) Bllclz()lds + [ E(t = s)[u(s)ds. (3.10)

This is a weakly singular integral inequality for |z(¢)| with positive kernel k. There-
fore, it holds |z(t)| < ¢(¢), where ¢ is the unique solution of the associated integral
equation. Let K denote the weakly singular integral operator generated by k(t — s).
K (having the order of singularity 1/2) is known to transform continuously L, into
L, provided that 1/r' > 1/r—1/2. Thus K : Ly — L,,r < o0, and L, — Loo, 7 > 2
(we refer to Krasnoselskii and others [8]). ¢ satisfies

¢ =|Blc K¢+ K |ul.
The assertion of the Lemma follows now easily. For instance,

1zl < Ngll- < N = 1Bl K) ™

< clul

K|r,-r,

L,.—L,

ull (3.11)

O

4 SQP method and Holder estimate

Initiating from a starting point (61, uq,y1) in W(0,7T) x Lo, x W(0,T') the (full) SQP
method generates sequences {0, }, {u,}, {yn} by solving certain quadratic programs.
Adopting the notation used by Alt [1], one step of the method can be described as
follows:

Let w := (0, u, y) be the result of the last iteration, serving as a starting point. To
indicate this, we write w = (0, ty, Y ). As before, we put v = (0, u), v, = (0, uy).
The next iterate v, = (0, 1y,) is obtained as the solution of the problem

(QP),, Minimize
1
F(v,w) = f'(vw)(v—vw)+§ﬁvv(9w,uw,yw)[v—vw,v—vw] (4.1)

subject to the linearized equation

0:(t,x) = Ou(t,2)

(0,z) = 0

9£(t,0>) ~ 0 (+2)
0.(t,1) = b(0,(t, 1))+ 0 (0,(t,1))(0 —0,)(t,1) + u(t)

for z € (0,1), t € (0,T], and subject to the constraint u € U,



In what follows, the bar indicates solutions of (QP),. In detail, F(v,w) is

F(o,w) = Jo {00 — q)(0 = 0u) + Aty (u — uy)
H1/20"(0,,) (0 — 0,,)? (4.3)
F1/2((0 = 0.,)" + Mu — w,)?)} d,

where y,,, 6, and §,, are to be taken at z = 1. (QP),, is a linear-quadratic parabolic
boundary control problem. The corresponding theory of optimality conditions is

standard. We refer to Lions [11] . The Lagrange function £ of (QP),, is

Llv,y) = LOuy) = Flo,w) = [{0:(1);9(1) + (VO(1); Vy(1))} di
Ty (4, 1){b(0,) + V' (80) (0 — 0.,)) (2, 1) + (1)} di.

From Ly = 0 we get the adjoint system

y(T,x =0
zx(t,o) i 7 7 (4.4)
yo(1,1) = [0'(0w)y 4 8" (0w) Yo (O — 0,)](L, 1) + 0,,(2, 1) — g(2)

for the adjoint state y = g, of (QP),. Completely analogous to (3.7) the relation
t(t) = Poaa{=A""gu(t, 1)} (4.5)
is derived from £, (u — @) > 0. Moreover, the following relation for F' is useful:
F(v,wo) 2 8]lu— uoll; = F(vo, wo) + 6]|u — us|f5. (4.6)

(F(vy,w,) = 0 is trivial. The inequality follows from the first order condition and
(SSC).)

It is important to note that (SSC) is not stable with respect to Ly-perturbations
of the optimal triplet (6,,u,,y,). However, it remains stable under L.,-perturba-
tions.

For the following statements it is convenient to introduce the trace of w by
Tw(t) = (0(t,1),u(t),y(t, 1)), thus 7w = (70, u, 7y).

Lemma 4.1 There is a constant ¢, > 0 such that
19lle0 < < (4.7)

Jor all @ € W(0,T) satisfying the state-equation (4.2) of (QP)., independently of
how 6, with ||0y]|~ < p and u € U are chosen.

Proof: Let @ satisfy (4.2). Then
0(1,1) = B(1)O(t, 1) = b(0,(t, 1)) = B(1)0u(t, 1) + u(?),
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where 3(t) = 0'(0,(1,1)). We have ||||cc < . Moreover, the right hand side is
bounded. From Lemma 3.3 we obtain ||70||. < ¢. (4.7) follows from Lemma 2.1
with ¢ := (6 — 0,,) + b(8,,) + u. O

In the sequel, the following auxiliary system of equations is frequently referred
to.

0:(t,x) = 0.:(t,2), 6(0,2)=0, 6,(¢,0)=0. (4.8)

Lemma 4.2 There is a C X Lo X C-neighbourhood Nyi(Tw,) such that for all w =
(O Uy Yop) € W(0,T) X Lo x W(0,T) with Tw € Ni(7w,)

Lou(vyu)[v, 0] = 8/2]full? (4.9)
provided that v = (0,u) salisfies (4.8) logether with the boundary condition
0,(1,1) — B(0,(,1))0(t,1) = u(1). (4.10)
Proof: From Lemma 3.3, the assumption (1.4) on boundedness, and (4.10) we infer
176]1> < cllull.. (4.11)
(4.10) is equivalent with,
0, —b(0,)0 = (1(.,,) — (0,))0 + u.
Let ¢ be the solution of (4.8) together with the boundary condition
¢ — b'(0,)¢ = u.

Then at = =1
(6 = ¢)a — b'(60,)(0 — ¢) = ('(6) — b'(6,))0.
Applying (1.4) and Lemma 3.3 again,

170 = @)z < [I7(0 = D)ool 702 (4.12)
Re-writing L,

LoV, )0, 0] = [ ("(0,)y.0% + 6%)dt + AJul|}
+ [T (0.)y — b"(0,)y,)0%dt (4.13)
= Low(vo,yo)[v,v] + R.

In contrary to 6, ¢ satisfies the linearized equation (3.5), where (SSC) holds. Inser-
ting § = ¢ + (0 — ¢) in (4.13), (4.9) is easy to show by means of (4.11) and (4.12)
for sufficiently small ||7(0 — 6,)||c0 < ||7(w — w,)]|co - O

Corollary 4.3 F(v,w) is strictly convex with respect to v on the feasible set of
(QP)wy, if w satisfies the assumptions of Lemma 4.2.
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Proof: The feasible pairs (6,u) for (QP), satisfy u € U, (4.8), and
0,(8,1) — B (B,,(£,1))0(t, 1) — u(t) = b(0,(1,1)) — B (0.,,(,1))0,(t, 1).
Let 6 be the solution of (4.8) subject to
0,(t,1) — b (0,,(t,1)0(1,1) = b(0,,(1,1)) = b (0,,(2,1))0,(1,1).

All feasible states § can be represented in the form 6 = 6, + QN, where 6, fulfils
the boundary condition (4.10). Owing to the last result, F' is strictly convex with
respect to (61, u). This strict convexity is preserved under the shift 6. O

Lemma 4.4 (Holder estimate) There is a C' X Ly, X C'-neighbourhood Ny (7w,) with
the following properties: (QP), admils a unique solution v, = (0y,1u,) for all
w € W(0,T) X Lo x W(0,T) having boundary data 7w in Ny(tw,). Moreover,

there is a constant ¢y > 0 not depending on w such that

enr(w — wo)||y (4.14)

Hz_)w - UOHW(O,T)XLQ

<
ITgulleo <

for all w mentioned above.

Proof: a) Existence and uniqueness of 9, follow by standard methods from Corollary
4.3. Therefore we confine ourselves to showing (4.14), (4.15).

b) Upper estimate: We write for short F/(v,w) =: F(v). Obviously, F(uv,) < F(v),
where v is taken as v = (6, u,,), and 8 is the state associated to u = u,,. 0 is defined
by (4.2) for u = w,,, hence @ solves (4.8) subject to the boundary condition

0, = b(0,,) + b(0,,)(6 — 0,) + .,
while 8, satisfies the same system with
(0,)0 = b(6,) + u,
at = = 1. Subtraction yields
(6= 0,)s — H(0,)(0 = 0,) = b(8,,) — b(8,) + H(0,) (6, — 0.) + ttay — 1.

The Ly-norm of the right hand side of this equation is less or equal than ¢ ||7(w —
w,)||2. Lemma 3.3 applies again together with (4.1) to show

[7(0 = 05|z < c|7(w — w,)]|2,
hence
[7(0 = 0u)ll2 < N7(0 = 0o)ll2 + [|7(0o — Ou)l2 < 7 (w — w,)l|2,
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too. From (4.3) with u = u,, it is easy to see that

F(ow) < Fv) < allm(0 = 0wl + el 7(0 = 6.)]15

<
< allr(w = wo)llz + e[ (w — w,)|[3 (4.16)
< eflr(w = wo)ll2

provided that ||7(w — w,)|[2 < 1.

¢) Lower estimale: Initiating from (4.1) we write
F(0y) = ['(00) (0w —00) + [/ (vi) (06 — i) + 1/ 2L (Vipy Y ) [Da TF Vo — Vagy Dap F 05 — Uy
Simple calculations yield

F(0y) > ["(00) (0w — o) + 1/2L (0w, Yo ) [ — Vo Doy — 0] — € ||7(w — w,) ||z (4.17)

for sufficiently small ||7(w — w,)||2 < 1.

First, we show
Loy (Vs Yo ) [Onp — Vo Oy — 0] = 6/2]|t0y, — uoﬂg —c||7(0y — 6,)||2- (4.18)

To see this, we subtract the equations defining 0, and 0,. 0, — 0, satisfies (4.8)
together with

(gw —0,), — b'(@w)(gw —0,) — (U —u,) = b(0,)(0,—0,)+b(0,)—b(0,) = A. (4.19)
We have ||Allz < ¢||7(0y — 6,)]]2- Now let ¢ denote the solution of (4.8) subject to
Gp — b'(04)0 — (U —u,) =0,

hence ¢ solves (4.19) for A = (0. By Lemma 3.3,

I7(6w — b0 — @)z < c[|Aflz < ¢ [|7(6w — 0o)l2-

Loy (0w, Yu) is coercive with respect to (¢, iy, — u,) (Lemma 4.2). Therefore, (4.18)
is an easy conclusion ( note that o,, — v, is bounded by Lemma 4.1).

Second, we have
F(00) (B = 00) = —¢||7(00y — 0,)]]- (4.20)
In fact,
(f
(

Fou)Fu—10) = F(02)(F0 = v0) + ((00) = F(00)) (50 — 0.
> f’(Uo)(lN)w — Vo + (U — {)w)) — HT(gw _ 90)”2, (421)
where 0,, = (éw; Uy), and 0, — 0, is the solution of (4.8) subject to

(0 — 0,)0 — V' (0,)(0 — 0,) — (@, — u,) = 0. (4.22)
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By means of the same techniques as before, the Ly-norm of ,,— 0, can be estimated
by ¢||[7(0y — 0,)||2 (compare (4.19) with (4.22)). Moreover, f'(v,)(0y — v,) > 0 is
known from the theory of first order necessary conditions. Thus, (4.20) is a simple

conclusion of (4.21). (4.16), (4.17), and (4.20) imply

[0 — woll2 < el (w0 — w,)][y*.
(4.14) is an immediate consequence. (4.15) follows from (4.4), Lemma 3.3, and
Lemma 4.1 formulated for equations backward in time. a

Corollary 4.5 For p > 2 it holds
50 — welle < il — w07 (123
Jor all w having traces 7w in Nj(Tw,) C Na(rw,).

12"

Proof: (4.14) implies in particular ||u,,—u,||; < ey ||7(w—w,) . From |u,,—u,| <2

it is easy to conclude

it = tollp < et — o[y < elr(w — w,) |y < elr(w— w7, (4.24)

6., — 0, solves (4.8) together with

(G — 0.)0 — B'(0.)(0 — 0,) = (T — o) + 0 (0.)(8, — 0.) + b(0) — b(6,).

at « = 1. The L,-norm of the right hand side is less or equal than ||, — u,|, +
c||7(0 — 0,)]|s- Invoking Lemma 3.3 and (4.24),

170w = Oo)lloo < elttn — ol + [|7(0 = 5) oo

< cllr(w —wo)|[LP,

(4.25)

if additionally ||[7(w — w,)|lcs < 1. In the same way we arrive from the adjoint
equation (4.4) at

17 (7 = yo)lloo < cll7(w — wo )|, (4.26)
if ||7(w — w,)|lee < 1. Now we apply the optimality conditions (4.5), (3.7). Thus

U, (1) — uo(t)] < |Poan{=2"0u(t, 1)} — P {=2A"y.(¢, 1)}
o < A—[llgi(t,l) —yyo((t,l))l- o e (4.27)

Thus we infer from (4.26) that ||, — u,||« satisfies the same estimate as HT(Q% —
0,) |00 in (4.25). (4.23) is now obvious (apply Lemma 2.1 to extend the estimate for
6, — 0, from z =1 to [0,1]). O

The previous investigations show that w,, 8., Yo, Uy, 0, and 7, are continuous
on their domains. On account of this, the strong distinction between 8, y, and their
traces 76, Ty is no longer necessary.

In what follows let p > 2 be a fixed real number. By means of Corollary 4.5 we
finally arrive at

13



Theorem 4.6 There is a sufficiently small C(Q) x C[0,T] x C(Q)-neighbourhood
Ns(wg) and a constant ¢y > 0 such that

150 — volloo < ¢ llw — w2 Vaw € Na(w,). (4.28)

We recall that |[v, — v,|[ee = ng — Os]|o0 + ||t — o |loo, || — wol|so = ||0u — b5 |00 +
Huw - uo”oo + Hyw - yoHoo
An analogous result is true for the adjoint state:

Corollary 4.7 [t holds
ng - yoHoo S Cy Hw - wg“iép \V/w € Ng(wo) (429)

with a certain constant ¢, not depending on w.

Proof: From the adjoint equations (3.1) and (4.4) defining y, and y,, we get

(G = Yo)o = U'(0) (Y = yo) = (1t — o) + (V'(0) = 8(00)) 5 + (00 — b,)

(0,090~ 0,) + (B — 0.)) = R

The L.,-norm of R is less or equal than ¢;||v, —v,]| s + €2]|00 — V5 || o0, hence Theorem
4.6 yields
[Rlloo < el — w,]| L7

As before, (4.29) is obtained now by the backward variant of Lemma 3.3. O

5 Right hand side perturbations, Lipschitz esti-
mate

Following Alt [1] we consider in this section the close relationship between the sta-
bility of (QP),, and certain perturbations of (QP),,. We discuss the perturbed

problem
(QS)r Minimize the functional
F(v,w,) —d(v —v,) (5.1)

subject to the perturbed initial-boundary value problem

0:(t,2) = O(t,2)

(0,z) = 0

9£(t,o)) _— (5:2)
0u11) = (B0,) + V(0,)(0 — 0,))(1, 1)+ u(t) + €(0),

for z € (0,1), t € (0, T], and subject to the constraint u € U"?,

14



where F(v,w,) is defined by (4.1) taken at (v,, y,) substituted for (v, y,). Moreover,

d(v) := /OT(dg(t)G(t,l) +dy (tu(l)) d, (5.3)

is a linear and continuous functional on W(0,T)x L,. We regard 8 € W(0,T),u € L,
(although feasible u are automatically bounded and measurable). The perturbation
is the vector-function 7 = (dg, dy, €) € Lo(0,T)%. Later we shall recognize that d,
can be taken as zero. In the case # = 0 we verify by means of (4.6) that v, = (6,, u,)
is the unique solution of ().S)o. It should be underlined that neither d nor e destroy
the strict convexity of the functional (5.1) on the feasible domain of (@ S)-. Owing
to this, for each = € L2  the linear-quadratic boundary control problem (QS), has
a unique solution. We shall denote it by v, = (0, u,) with associated adjoint state
Y-

The adjoint equation defining y = y, is

_yt(ta :C) - yxa:(ta .I)
y(Tyz) =0
(1,0) = 0 (5.4)
yo(t, 1) = [0(0o)y +b"(0:)yo(0r — 05) + 02)(£, 1) — q(t) — dy(1),
while the necessary conditions for u, admit the form
ur(t) = Poaa{=A""(y=(1,1) = du(t))}. (5.5)

The system u € U, (5.2), (5.4), (5.5) forms the set of necessary and sufficient
optimality conditions for (0, ur,yr).

It can be shown along the lines of the preceding section that there is a L..°-
neighbourhood N4(0) and a constant ¢, > 0 such that problem (Q.5), admits for all
7 € N4(0) a unique solution vy = (05, u,), and

lox = vollworyxza < callw]ly’”. (5.6)

However, we shall considerably improve this estimate in Theorem 5.2. At first we
state the following counterpart of Corollary 4.7.

Lemma 5.1 There is a constant ¢, = ¢(r) > 0, such that for all 2 <r < oo
[7(yr = yo)llr < e ([|7(0r — o) + ||7][+)- (5.7)

Proof: Subtraction of the adjoint equations (5.4) and (3.1) shows that y, —y, satisfies
the first three equations of (5.4) together with

(yﬂ’ - yo)x - bl(eo)(yr - yo) = 97‘r - 90 - dé’ + b”(eo)yo(efr - 90)

at x = 1. Applying Lemma 3.3 in its backward version,
I7(ym = yo)llr < ¢ ll7(0x = 05) = doll, < c([[7(0x = Oo)I» + [I=]l+)- O

One of the decisive steps for showing local quadratic convergence of the SQP
method is to establish the following Lipschitz estimate.
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Theorem 5.2 (Lipschilz estimate) There is constant ¢, > 0 such that

[vr — vollwo,mxr, < crlmll2 (5.8)
forall me L2,.

Proof: The Lagrange function for (Q95), is

L(v,y:) = F(v,w,) —d(v—u,)— fOT{(Gt; yr) + (VO; Vy,)} di
A0 + 90,00~ 0,) 0+ ehysle, ) i

= f(vo)(v —v,) + 1/2L4 (00, yo)[v — o, v — v,] — d(v — v,)
— o {85 y2) + (V0; Vy,)} di
IO + 0,00~ 0) +ut ehye(t,1)dr

The first order necessary conditions for v, = (6,u,) are Ev(vw,yr)(v —vg) >0,
hence

0 < f(vo)(vo—vr) —d(vy —vr) + Low(Vo, Yo )[Ur — Vo V5 — U]
+ Jo A= = 02)i5yx) = (V(0, = 6:); Vyx) (5.9)
+(6'(0,)(0, — 0,) + uy — ur)y-(t, 1)} dt.

0, — 0, satisfies
(8 — 0.)s39) + (V(0r — 0,); V) = (0'(0:)(0x — 0,) + tr —up +€)y.  (5.10)

Thus the part in the curled brackets equals ey, and

T
Loy (Vs Yo)[Ur — Vo, 07 — 1] < f’(vo)(vo —vg) —d(v, —vg) + /0 eyrdt. (5.11)

On the other hand, v, = (0,,u,) fulfils the first order necessary conditions for (P),
in particular £,(v,, y,)(vr — v,) > 0:

f,(vo)(vﬂ’ - UO) + fO { ((071’ - go)t; yo) - (V(Qﬂ' - 00); Vyo)
+(6'(0,) (05 — 0,) + wr — u,)yo(t, 1)} dt > 0.

Owing to (5.10), the integral part is — fOT ey, dt. Thus f'(v,)(v,—v,) < — foT ey, di.
Inserting this in (5.11),

—d(vo — 'Uﬂ-) — foT e (yo — yr) dt
[d][2][7(vo — vr)]]2 + HfszHTQ(yo —yo)ll2 (5.12)
cl|mll2l|7(vo — vx)ll2 + |7 ]|3

EUU(’”O) yo)[vﬂ’ — Vpy U — 'Uo]

VANIVANIVAY

by Lemma 5.1. According to the definition,

(0r — 0,)e — V(0.)(05 — 0,) — (ur —u,) = € (5.13)
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at x = 1, hence v = (0, — 0,,u; — u,) does not satisfy the linearized system (3.5),
where (SSC) applies. Define ¢ as solution of (4.8) subject to

br — b,(90>¢ - (uﬂ' - uo) =0. (514)

Repeating our standard estimation technique we obtain by means of Lemma 3.3
that
[All2 = lI7(07 = b5) = 7ll2 < ¢llel2 < ¢[x]]2-

As (SSC) holds true for & = (¢, uy —u,), we have Ly, (vo, Yo )[0, 0] > 8||tur — u,l|3. We
write 7¢ = 7(0, — 0, +(¢— (0. —6,))) = 7(0, —0,) — A. After a simple computation,

Loo(00, Yo)[0r = vo, 07 = vo] 2 8|tr — uo|ly = e1l|T(0r = 0)[[2)IAl2 = 2| A3
Owing to ||All2 < ¢||x||2 and (5.12),
lur = wollz < cll7 )z + 17|l (vr — vo)|l2) (5.15)

is obtained. Moreover, ||7(0, — 0,)||2 < c(||ur — uol|2 + ||¢]|2) follows from (5.13) by
Lemma 3.3. Inserting this into (5.15) we arrive at

lur — w3 < c(llmll5 + 17 ll2llur — woll2)

(note that |le]lz < ||7||2). Therefore, ||u, — w2 < ¢||x|[2, if ||7]|]2 < ||tr — ts]|2- In
the opposite case, |[ur — uo||2 < 1+ ||7]|2. Thus

= tolla < maa(e, D7l (5.16)
(5.8) follows from ||0, — 0.||lwo,r) < €||tr — o2 O
Theorem 5.3 There is a constant ¢§ > 0 such that
lon = vllee < el (517
forall e L2, .

Proof: 6, — 6, satisfies (4.8) together with the boundary condition (5.13). Making

use of Lemma 3.3,

I7(6x = bo)llp < cpalllux —uoll2 + [lell2)

cpallun — wollz + ¢l
clill,

<
< (5.18)

by (5.8), where p > 2 is taken fixed. From Lemma 5.1

I7(yr = wo)llp < ellxll,

is found. Proceeding as in the proof of Corollary 4.5,
(1) = o (1) < AT yn(t 1) = yo(t, 1) + A7 |du (1)

17



follows from (3.7), (5.5). Thus

[er = ttollp < c(lI7(yr = yo)llp + 7o) < €llmll,- (5.19)
Now we repeat this procedure, beginning with the estimate
I7(0r = 0o)lloo < Coop(llur = uollp + ll€ll)
< cflxllp < el
instead of (5.18). We end up with (5.19) for p = oo. The final outcome is

[t = tolloo < €| |oos

The next statement links the problem (QS), with (QP),. It turns out that

Uy = (0, ty) 1s the solution of (QS), for an appropriate choice of =

implying |0 — 5]l < ¢||7]|s by Lemma 2.1. Therefore, (5.17) holds true. O

Lemma 5.4 For allw € W(0,7T) x Lo x W(0,T) with Tw € Ny(tw,) the following
equivalence holds true: The solution v, of (QP), is also the unique solution of
(QS)x for the following choice of 7 = (d,,dg,€): d,, =0,

dg = b(0,)y(00 — 0,) — b"(0.) Y (00 — 0.) — 5 (V' (0.) — b'(6,))  (5.20)

e = b(0y) —b(0,) +b'(0,)(0, — 0,) — (0,)(0, —0,). (5.21)

Proof: We know that (QS), has a unique solution satisfying the necessary and
sufficient conditions (5.2), (5.4), and (5.5). Thus it suffices to show that v,, fulfils

these relations for a suitable 7 and adjoint state y, := 4,. As regards 60, it 1s a
solution of (4.8) subject to the boundary conditions

(B)e — V'(0.)80 = b(0) — V(0,0 + 7.

In order to comply with the constraints of (QS), with control i, 8,, must satisfy

(0.)z = b(6,) + b'(0,) (8., — 0,) + t + €.
Comparing (.,,). in the last two equations,
b(0,) 4+ 8 (0,) (0. — 0,) + e = b(0,,)0,, + b(0.,) — b'(0.,)0.,
is obtained, being equivalent with (5.21).

7. satisfies the boundary condition
(Ju)z = 6 (00) s + Ouy — ¢+ 8" (0.) 9 (00 — 0.,).
To be the adjoint state for (QS), with optimal state 8, = 8, 7,, must solve
(§)e = ' (0)40 — do + 0. — g+ b"(05)y(0. — 6,).

Subtracting these equations, we obtain the form (5.20) for dy. Clearly, u,, satisfies
(5.5) together with (4.5) for y, = ¥y, iff d, = 0. O

The next result shows that e and d vanish of the order two.
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Lemma 5.5 Define d and e according to (5.20), (5.21). Then there exists a con-
stant ¢y > 0 such that

lelleo < ex(18u = Ool12, + 10 = bolloo| O — bolloc) (5.22)
ldllso < cr(llgmllocliOu = OollZ, + 1102 = Oolloc (100 = Oolloc + [l = yolleo)
0 = Ooloo ([0 = Yolloo + 15 — Yolleo)) (5.23)

for all w satisfying the assumptions of Lemma 5.4 .

Proof: (5.22) and (5.23) can be derived by simple estimates from (5.20), (5.21). We
show (5.23). Re-writing the expression for dj,

dg = yu(b(
(b

—0,))

0,) — V(0.,) + b"(0,)(0,,
0 —0,) + B (0.) (9 — ) (0 — 0o).

w)?/w - b"(00>yo>(eo
Therefore,

Idsllo < ellulloo 16 = Boll2, + e2(l16 = Bolloo + llg = Yolloo) 16 = bollo
+s][0w = Oolloo (50 = yolloo + 117w — ¥olleo)-

implying (5.23). (5.22) can be derived analogously. a

6 Quadratic convergence of the SQP—method

Theorem 6.1 There is a C(Q) x Lo, x C(Q)-neighbourhood Ns(w,) and a constant
v > 0 such that for allw € W(0,T) X Lo, x W(0,T) belonging to N5(w,) the solution

Uy of (QP)y salisfies together with the associated Lagrange multiplier §,
s 5) = (200l < w0 — ol (6.1)

Proof: We take N5(w,) C N3(w,) such that w € N5(w,) implies also 7w € Ny(7w,).
Moreover we assume the diameter of N5(w,) to be less than one. Let w € N5(w,) be
given. From Lemma 4.4 we obtain the existence of a unique solution v, of (QP),
with associated adjoint state y,. Define # = (d,e) according to (5.20), (5.21).
Owing to Theorem 4.6 and Corollary 4.7, |[0y, — v,|oc and |7y ||eo remain uniformly

bounded for all w € N5(w,). From (5.22), (5.23)

maz(|le]loos [[dlloc) < e(lfvw = voll% + [l = woloo)

< el —wl (62)
as the diameter of N;(w,) is less than one. Thus on N;(w,)
[7]loe < el — wol|so. (6.3)
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On the other hand, Lemma 5.4 ensures that v, is a solution of (S), with Lagrange
multiplier y, = ,,. Therefore, Theorem 5.3 and (6.3) yield

10w = volloo < €7 [loo < €l — 1wo[oo (6.4)

Analogously we find
15 = Yolloo < ¢lw —wol|oo (6.5)
by Lemma 5.1 and (6.3), (6.4). Note that an L.-estimate for 7(g,, — y,) implies an

estimate of y,, — y, in the norm of C'(Q) (cf. Lemma 2.1). Inserting (6.4), (6.5) in
(5.22), (5.23) we end up with

17llo0 = llelloo + lldlloe < ellw — woll%, (6.6)

implying together with (6.4), (6.5) the estimate (6.1). O
Now we reformulate the SQP method and state a result on its local convergence.

The SQP method runs as follows.

(SQP) Choose a starting point w; = (vq,y1). Having wy = (v, yx), compute
Wi41 = (Vk41, Yr41) to be the solution and the associated Lagrange multiplier of the
quadratic optimization problem (QP),, .

Using Theorem 6.1 it follows now by standard techniques that the SQP method
converges quadratically to w, = (0,,u,,y,), if the starting point wy = (61, uq,y1) is
choosen sufficiently close to w,:

Let v be defined by Theorem 6.1. Let B.,s(w,) denote the ball of C(Q) X Loy X
C(Q) with radius v6 around w,.

Theorem 6.2 Suppose that Assumptions (1.4) and (SSC) are satisfied. Let v > o
be such that 6 := vy < 1, and B.s(w,) C Ns(w,). Then for any starting point
wy € W(0,T) x Ly, x W(0,T) belonging to Bys(w,) the SQP method computes a
unique sequence wy with

lwe = w0 < 767,

wy € W(0,T) x Lyo x W(0,T), and wy, € Bys(w,) for k> 2.
Proof: We follow the proof by Alt [2]. Theorem 6.1 implies
s — woloe < wllwr — wo||%, < vy*6* = 48% = 76" ",

Since § < 1, we have wy; € Bys(w,). Thus the theorem holds true for & = 2. By
induction,

|wrs1 — Wolloo < v|lwr — w,|%, < P 2672 g2

Since §2"'-1 < 6, wy4+1 belongs to Bys(w,), too. This completes the proof. O

In this way, we have shown local quadratic convergence of the method.
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