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Abstract. We consider the problem of cooling milled steel profiles at a maximum rate subject to
given bounds on the difference of temperatures in prescribed points of the steel profile. This leads to
a nonlinear parabolic control problem with state constraints in a 2D domain. The controls can admit
values from continuous or discrete sets. A method of instantaneous control is applied to establish a fast
solution technique. Moreover, continuous and discrete control strategies are compared, and conclusions
are given from an applicational point of view.

Keywords: Cooling steel, nonlinear heat equation, optimal control, pointwise
state constraints, instantaneous control, linear integer programming
AMS subject classification: 49M35, 90C10, 65K05, 93C20, 93C95

1 Introduction

The selective cooling of steel profiles is an important part of the production pro-
cess in steel mills. Intelligent future strategies aim to combine a reduction of
temperature in the rolled profile with an equalization of its interior temperature
distribution. An accelerated optimal cooling will reduce the amount of invest-
ment in cooling sections. Moreover, it is able to stabilize the interior structure
of the steel during phase transitions. Reducing the temperature in the profile as
uniformly as possible leads to a higher quality of the steel.

We believe that the intuition of engineers alone is not able to control this
process. The mathematical tools of optimal control theory will be helpful to find
optimal cooling strategies.

We have reported on this issue in a number of mathematical papers, for in-
stance in Krengel et.al. [7] or Lezius and Troltzsch [11], where a method of feasi-
ble directions was developed to solve the optimal control problem. The numerical
tests confirmed the stability and reliability of the method. However, the comput-
ing time was high. Therefore, Tréltzsch and Unger [14] dealed with a very fast and
precise suboptimal solution method, where, after discretization, the optimization
is reduced to a sequence of low-dimensional linear programming problems. A sim-
ilar problem was discussed by Landl and Engl [9]. In contrast to the setting in
[14], where the intensity of the cooling spray nozzles can be chosen continuously,
in [9] the cooling is controlled by switching on and off the nozzles. This discrete
strategy seems to be more adequate for the technical process.



In this paper we investigate the application of continuous as well as of discrete
control strategies to the model discussed in [14]. It is not realistic to solve the
associated large scale mixed integer programming problem up to the optimal
solution in the discrete case. This refers also to the continuous problem. Therefore,
we decided to extend the suboptimal method of instantaneous control type from
the case of continuously controllable nozzles to discrete 0-1-controls. We will show
that the extension can be done in a quite simple and straightforward way:

The core of the suboptimal method of [14] consists of small scale linear pro-
gramming problems, which have been solved by the simplex method. Here, we
arrive at small scale linear integer programming problems, which are solved by
appropriate methods. Combining this main idea with some special techniques to
make the method work, we finally achieved computing times of the same order
as for the continuous control strategies. This is important to allow interactive
work of the engineer and - at least in principle - an online-control of the cooling
process.

Obviously, the restriction to discrete strategies shrinks the set of feasible con-
trols. It is quite natural that integer controls are less flexible than continuous
ones. Therefore, in our numerical tests, we increased the number of spray nozzles
to compensate for this. However, the numerical experience shows that increasing
the number of nozzles alone is not the best solution. Using nozzles of smaller size
turned out to be more helpful.

The selective cooling of steel profiles is only one of various applications of
control theory in metallurgy. Other important issues are the continuous casting
of steel, Engl, Langthaler and Mansellio[2], Grever [4], Laitinen and Neittaanmaki
(8], Neittaanmaki [12], the firing of kilns, Leibfritz and Sachs[10], or the Laser
hardening of steel, Homberg and Sokotowski [6].

2 The optimal control problem and iterative solution

A cooling line consists of a certain number of cooling segments, where water is
sprayed on the surface of the hot steel profile. Each cooling segment is followed
by a zone of air cooling equalizing the developed temperature differences. The
basic scheme is shown in Figure 1.

In the cooling segments, a certain fixed number of spray nozzles is located
in groups around the profile. There can be a sequence of groups in each cooling
segment. To explain the mathematical model, let us regard one fixed cross section
2 C R? of the steel profile. We follow its run through the whole cooling line. This
causes an internal time scheme for the reference domain (2. The cross section 2
enters the first nozzle group of the first cooling segment at time ¢ty = 0. Now the
surface is sprayed on by the p nozzles of the first nozzle group. After leaving this
group, {2 reaches the second one at time ¢;. (Note that there is a small difference
to the notation in [7], therein #; denotes the time for passing the first cooling
segment.) After r steps, {2 has passed the first cooling segment. Now an area of



air cooling follows. At time t; the next cooling segment is entered. Finally, the
cross section reaches the end of the last air cooling area at time tx = T, where
the profile has passed M zones of water or air cooling.
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Figure 1: Scheme of a cooling section

To shorten the presentation, we rely on the following simplifications: All cool-
ing segments contain the same number 7 of nozzle groups with the same number
p of nozzles. The time for passing any single nozzle group is equal along the whole
cooling line. Moreover, the lengths of all cooling segments and air cooling areas
are assumed to be equal. Therefore, the time to pass an arbitrary segment is
constant. These restrictions are not necessary for the computational technique
to work. We adopt them only here to simplify the notation. The resulting dis-
cretization of the internal time is given by

O=to<tr<--<tp=rt1 < -+ <tg=2, <---<tg=Mt.=T. (1)

The heat conduction in axial direction is dominated by the heat exchange in
(2. Moreover, the steel profiles are very long, so that we can view them to be
endless. This justifies to neglect the heat conduction in axial direction and to
regard a 2D heat equation in our reference domain (2. Related to this and to
the real technical situation, we can assume that the intensity of any single spray
nozzle is constant i.e. stationary with respect to the (outer) time.

We associate to each nozzle one part of the boundary I' = 9f2 standing for
its zone of influence. This leads to a partition of I" into disjoint subdomains I3,
i = 1(1)p. Denote by uy; the cooling intensity of nozzle i in the group k, k =
1(1)rM, i = 1(1)p. Notice that this numbering covers some ”phantom” nozzles
in the air cooling areas. The numbers u; will be our control variables. In the case
of continuously controllable nozzles we assume that the constraints 0 < ug; <1
are imposed for all £ and ¢. The value 0 stands for an inactive nozzle, while 1
characterizes a nozzle spraying with maximal intensity. This implies ux; € {0, 1}
as the set of admissible controls, if the nozzles can be only switched in (1) or off

(0).



Adopting these notations, the mathematical model for the evolution of the
temperature admits the following form, which is equivalent to that introduced
in [7]: The temperature ¢ in the profile is obtained from the nonlinear heat
conduction problem

c(y)p(y) ye = div (A(y) grad y) in Q,
AMY) Ony = > ki X(Zki) a(-y)(yp—y) in X, 2)
y(z,0) = yo(z) in 0,

where @ = 2 x (0,7), ¥ =TI x (0,T), Xyi = I} x (tg—1,t), and x(Xy;) is
the characteristic function of Xy;. In this setting, y; and 0,y denote the deriva-
tives Qy/0t and Oy/0n with respect to the time and the outer normal n at I,
respectively. Moreover, the following quantities are used:

— y = y(z,t) denotes the temperature at ¢t € [0,7] and x € £2. T stands for the
fixed terminal time. {2 is a two—dimensional domain, and y, is the temperature
of the cooling fluid.

— ug; € IR are the control variables mentioned above. Outside the cooling seg-
ments the controls u; are taken zero to model heat isolation in the areas
of air cooling. This is expressed by the characteristic function x(Xy;) in the
boundary condition of (2).

— The coefficients ¢, p, and X are functions of y denoting heat capacity, specific
gravity, and heat conductivity, respectively. The function o = «(z, y) models
the heat exchange coefficient. To find a good model for « is a nontrivial task.
In a simplified setting for cooling of cylindrical rods of steel, this issue was
investigated by Zurdel and Brennecke [15]. Moreover, we refer to Rosch, [13].

— Our cooling process starts with the entrance temperature yo = yo(z).

The coefficients ¢, p, A do not have appropriate properties of smoothness and
monotonicity to show the unique solvability of the heat conduction problem.
Moreover, the modelling of material changes during the subsequent heating and
cooling of the steel is still partially open. The form (2) of the heat equation seems
to give only an approximate picture of the temperature changes. Therefore, we
do not discuss the question of existence and uniqueness of a solution to (2).
Moreover, our computational method will mainly work with linearized versions.
For these problems, the existence of a unique solution corresponding to a given
vector of controls u = (uy;) is clear.
The restrictions on the control variables uy; are alternatively given by

0<up <ug or ug € {0,u}, (3)

k=1(1)rM, i = 1(1)p, depending on wether we assume a continuous or discrete
control strategy. Here, uy = 0 holds for £ = (25 — 1)r(1)2jr with j = 1(1)M/2
(air cooling) and u; = 1 otherwise (cooling segment).



The main aim of the cooling process is to reduce the temperature in the
domain. Certainly, this can be expressed in various ways. In our model, the tem-
perature should be minimized in a selection of points P, € {2, n = 1(1)N, which
characterize the hottest regions. In this way, the objective F' is defined by the
linear functional

Fy)=> any(P,,T) (4)

n=1

with some positive weighting constants a,,.

In the model developed so far, most likely full intensity of all spray nozzles is
optimal. However, this strategy is certainly wrong, since very large temperature
differences would develop in (2. This would amount to a low quality of steel and
possibly lead to large deformations of the profile. Therefore, we include a finite
number of pointwise state constraints in the optimal control problem to bound
the temperature differences in (2. Following [7], these constraints are given by

YRy, t) = y(Qu, )| < Oy, = 1(1)Ng, v =1(1)Nog. (5)

In this setting, R, and (), denote points from the closure of (2. For instance,
the minimization points R, := P, can be chosen together with some comparison
points @,. The situation of our test example is shown in Figure 2, where the
points P, and (), are numbered as follows: ); coincides with the origin. Following
the boundary of the domain in mathematical positive sense, the next points are
Q2,---,Q9, P53, Py, P;. In this way, @)y is located at the top, and P; is the lowest
among the P;.
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Figure 2: Points of Minimization and of Comparison



Now the definition of the control problem (P) is complete. For the continuous
case, it reads as

(P) min F(y) = Z:l an y(Pp,T)

subject to the state equation

c(y)p(y) ye = div (A(y) grad y) in Q,
Ay) Opy = %uki X(Zki) o, y)(yp —y) in X,
y(x,0) = yo(z) in £2,

and subject to the constraints on control and state

‘y(Ru,t) - y(Qllat)| < @uua M= 1(1)NRa V= 1(1)NQa
0<um<1, i=11)p, k=1(1)K.

A more detailed motivation can be found, for instance, in [7], [11]. We refer also
to these papers for details of the numerical solution of the nonlinear parabolic
initial-boundary value problem (2) by a finite-element-multigrid method. Let
us briefly recall for convenience the main ideas characterizing the optimization
technique of [7], [11].

The optimal control problem is difficult in several respects. The state equation
is nonlinear, pointwise constraints on the state are given along with constraints on
the controls, and the domain 2 has a curved boundary. Besides the fact that the
theory of optimal control problems for nonlinear distributed parameter systems
with state-constraints is still far from being complete, the numerical solution
is complicated. Readers interested in optimality conditions of first and second
order for associated semilinear optimal control problems with state constraints
are referred to our first paper in this volume.

Solving the heat equation by a sufficiently precise finite element multigrid
method, a huge number of state variables appears in the discretized optimal
control problem. However, compared with more academic problems discussed in
literature, the technical circumstances of the cooling section show an essential
advantage: The number of control variables is very low in comparison with the
huge number of state variables. Therefore, we decided to use a direct method,
where the controls appear as optimization variables, while the state equation is
solved only for a certain number of basis controls. In [7], [11] an iterative method
of feasible direction is developed. This algorithm proceeds as follows (below, the
control u stands for the vector (uy;) of control variables):

1. Choose an admissible starting control vector u° and compute the associated
state 4°, put n = 0. Determine the active state constraints.

2. Linearize the state equation at y™ and u”", solve it for each standard basis
vector of controls. Then the state associated to an arbitrary admissible control
can be obtained by superposition, see also the explanations in our first paper
of this volume.



3. Express the state in the linearized optimal control problem as a linear image
of the standard basis vectors using the results of step 2. Solve the associated
linear optimization problem with respect to u by the Simplex method. Only
active restrictions are considered in the optimization. The result is a new
direction of descent .

4. Put v = u"™ + v(@ — u™) and perform a line search with respect to v while
considering all state constraints. Define n =n + 1 and go to 2.

This method of feasible direction is of gradient type. Computational tests
have shown a quite robust behaviour. We stopped the iteration when the change
of the controls was sufficiently small. The convergence rate is quite low. This is
the characteristic behaviour of gradient methods. Moreover, the computing time
to perform one step of the iteration was very high. Notice that linear partial
differential equations are to be solved for each basis vector in step 2. Moreover,
we have to solve some nonlinear equations arising from the line search.

Therefore, we propose a suboptimal strategy of instantaneous control type
for approximately solving the problem (P). A comparison to the results of the
iterative solution method shows a very fast and surprisingly exact behaviour. Fur-
thermore, the method can be easily extended to the case of discrete 0-1 controls.

3 Suboptimal continuous and discrete methods

Let us first explain, how to accelerate the optimization procedure in the case of
continuous controls. The main idea is of instantaneous control type and in some
sense similar to the method, developed by Choi [1] and Hinze and Kunisch [5].

The first simplification is to linearize the state equation during certain intervals
of time. Nevertheless, the resulting optimal control problem is still nonlinear. The
point is the bilinear coupling of state and control in the boundary condition.

Therefore, we introduce the heat flur v := A 0,y on the boundary as a new
auziliary control vector. After having determined the optimal heat flux, we derive
an associated original control u by some heuristic formula. Notice that the heat
flux has to be nonpositive during a cooling process.

Remark: This approach makes the optimization independent from the working
hypothesis on the form of the boundary condition.

Introducing the heat flux as auxiliary control is combined with the idea to
shorten the time horizon for minimizing the objective functional. This is the
core of the instantaneous control technique. In the original formulation of the
control problem, we have to achieve the minimal temperature at the final time
T. Now we reduce the time horizon to certain small time intervals. The controls
associated to the short interval under consideration are chosen to minimize the
objective functional at the end of the time interval. In this way, we compute
the (sub)optimal solution with respect to a short time horizon regardless of its



influence on future times. As a byproduct of linearization, we shall have to solve
the state equation only on the associated short time intervals.

Next we shall explain the idea of instantaneous control in more detail. Select
anindex k € {1, ..., K'} standing for a nozzle group. Suppose that the optimization
process has already been performed for the nozzle groups 1, ...,k —1, that is up to
the time ;1. Let yx_1 := y(z,1x_1) denote the temperature distribution obtained
at time 7;_;. Freeze the coefficients of the heat equation at y,_; on the whole time
interval (tlc—h tk],

¢ =c(x) = c(ye(2),  p=p) = plye-1(2)), A= A) = A(yr-1(2)).

The associated time interval [t;_1,%] is divided in L computational intervals Iy,
of length 7 = (ty —tg—1)/L, Iy = [tx—1+ (I —1)7,tx_1 +17], | = 1(1) L. We require
constant heat fluxes on Ij; and denote them by vy, 4 = 1(1)p. The situation is
shown in Figure 3.

T to tE

tk—l tk—l + (l - 1)7’ tk—l + It tk
Figure 3: Partition of [tx_1, k]

Now we solve a finite sequence of linear optimization problems (Py;) associated
to the small subintervals Iy, [ = 1(1)L:

Having k —1 fixed, regard now the partition of [tx_1, tx] for { = 1(1) L. Assume
that the optimization has already delivered the solution up to the subinterval
Ii;-1) and regard the next subinterval I};. Denote by y£(1_1) the initial tempera-
ture computed at the time # := t;, ;1 + (I — 1)7 (we put yzo := yx_1) and solve
the following optimal control problem up to the time #z 1= t;,_, + I7:

(Pr) Minimize

F(y(te)) = >_ any(Pn 1)

n=1

subject to the state equation
c(x)p(x) yp = div (A(z) grad y) in 2
p
AMz) Ohy = ; vi x(13) on I (6)
y(z, %) = yig 1y (2) in (2,



t € (to, 1g], subject to the state constraints

(R te) — y(Qu, te)| < O, (7)
pu=1(1)Ng, v = 1(1)Ng, and to the restrictions on the control vector v = (v;)
Qrii < v < 0.

The choice of the bounds g¢x; will be explained later. To unify the notation, let
us consider air cooling areas as cooling segments as well. Here, the restriction
ug; = 0 should imply gx;; = 0. We assume this. Then the only admissible control
vector v = 0 is optimal in air-cooling areas. This convention also holds for discrete
strategies. We denote the obtained optimal solution by @;, i = 1(1)p, and put
Vgii = U5, © = 1(1)p, to keep the index &l underlying the definition of (Pg;).

The solution of the optimal control problems (Py;) is the core of our subopti-
mal strategy. However, some further ideas are needed to make this strategy work
effectively. The following points are still open: In the continuous case, we have
to compute the original control vector u = (ug;) from the knowledge of the heat
fluxes vgy, | = 1(1)L, which served as auxiliary variables. Further, the initial
temperatures y,ﬁ(l_l) (z) must be computed in an appropriate way. In particular,
we have to control the error caused by the effects of linearization. The bounds
qr;; must be chosen.

Remark: The state constraints might be required at further instants of time.
We check them only at the times ¢z. Owing to this, small violations of the state
constraints may occur inside the cooling areas.

(i) Computation of auziliary controls wg;:

Given the optimal heat fluxes vy;;, we define auxiliary controls wuy; as follows:
Select some computational points z; € I';. Take the mean value of

g = vk /[y (i, %0)) (W — y(i, L))

and
upy = v/ [a(y(@i, te)) (yp — y(2i, te))],
that is .
Upr; + U
Uppi = % (8)

(ii) Computation of initial temperatures for Iy q):

The initial temperature for the next optimization step can be determined on
two ways: Solve the heat equation up to time ¢z using the linear or nonlinear
equation with boundary conditions of third kind inserting the computed controls
ug;. We preferred the nonlinear version. After having determined the auxiliary
controls uy;, we solve the nonlinear heat conduction problem

c(y)p(y) ye = dpiv (A(y) grad y) in 2
AY) Ony = 221 uki X(L)e(, y)(yp —y) on I’ (9)

y(z, %0) = ?/iz(lfl)(l') in 2



on [ty,tg]. Then we put y},(z) := y(z,g). In other words, updating of tempera-
tures is performed nonlinearly, while the optimization is done linearly.
(iii) Choice of the bounds qy;:

The background to define q; is the relation

Vkli = Ukl 04(35; y(m,t))(yﬂ - y(x,t)).

In view of this, inserting the upper bound 1 for u we define

gri = 1 - oz, y/ﬁ(zq)(ﬂﬁi))(yﬂ - y/ﬁ(zq)(wi)) (10)

as the lower bound for vyy;.
(iv) Definition of original controls (continuous case):

The optimal control problems (Py;) are solved for & = 1(1)K (outer loop)
and [ = 1(1)L (inner loop). For each fixed index k, the problems (Py;) deliver
the solutions wuy;, | = 1(1)L, ¢ = 1(1)p, on the time intervals Iy;. Notice that,
according to the given technical construction, only one control vector uy = (ug;)
has to be defined on [tx_1,tx]. This is done by the following heuristic formula,
which turned out to be very useful:

L

> L up
S
=1

This rule says that a change in the first small intervals of time can be compensated
on the last intervals.

Now we explain the modifications of the continuous control strategy to the dis-
crete counterpart. First of all, we have to increase the number of spray nozzles.
This is to compensate for the loss of flexibility caused by restricting the controls
to {0,1}. We assume that each short time interval [tx_; + (I — 1)7,t,—1 + I7] cor-
responds to p spray nozzles located around the profile (= 1 nozzle group). In this
way, L - p spray nozzles are associated with the cooling segment passed during
[tk_1, k], i.e., flexibility w. r. t. the value is substituted by flexibility in time. The
corresponding spray intensities are ug;, [ = 1(1)L, i = 1(1)p. The heat fluxes v;
(auxiliary variables) and the spray intensities uy; are connected by the boundary
condition (see (8)). As y varies in time and space, we cannot assume that u; and
vgy; are constant on I X (tg_1+ (I —1)7,t, 1 +17) at the same time. However, if 7
is small we are justified to consider y to be almost constant. This also motivates
the choice of the bounds g; (see (10)) as well as the synthesis rule (8), (11) in the
continuous case. Moreover, in the discrete case the choice u € {0, 1} corresponds
directly to v € {gki,0} so that a synthesis rule is not needed.

By (i)—(iv), the whole interval [t;_1,%x] is processed. Now we proceed with
the next interval [tg,%xy1]. In this way, we arrive after finitely many steps at



the final time 7. Obviously, this procedure requires the numerical solution of
many linear and nonlinear partial differential equations. On using the principle
of superposition, we are able to considerably reduce the associated numerical
effort. These details are explained in the next section.

4 Processing the subproblems

In each nozzle group, the number of controls is very low in comparison with the
number of state variables arising from the finite element discretization. In our test
example, we have p = 9 control variables per nozzle group (there are 16 nozzles in
each nozzle group, see Fig. 6, hence, by symmetry, the number of control variables
is 9 in each group). In contrast to this, the number of state variables is some
thousands. Therefore, in the optimization the state is eliminated by precomputing
the response to each standard basis vector for the control, obtained from the linear
equation: Regard, for k fixed, the interval [tx_1, tx]. For all i = 1(1)p, on [0, 7] the
response function yg; = yxi(x,t) is determined by

c(z)p(z) yr = div (A(z) grad y)
A(z) Ony = x(I7)
y(z,0) = 0.

These p systems have to be solved only once for the whole interval [tx_1,%]. On
the small subintervals I, = (tx—1 + ({ — 1)7,tx—1 +(7), the temperature y is given
by superposition,

Ve t) = 4" (@,1) + 30 vl — (1= 1)),

Here, y!(x,t) is the fixed part, associated to the initial temperature and homo-
geneous boundary conditions. It is defined by

c(x)p(z) yy = div (A(z) grad y)
Az) Oy =0

y(z,0) = y/ﬁ(z—l) (2).

The second part represents the contribution associated to the controls v;. During
the optimization process, only the fixed part has to be updated from one subin-
terval to the next one. Then the optimization problem on I;; reads for the case
of continuously controllable nozzles
(Pr) Minimize

N p

Z Z Cin Vj

n=11:=1



subject to
p
Zl (% aiuu S Quu - b;w
1=

p
- 2:1 Vi Qipy S Qp,u + b;u/
1=
¢ <v; <0,

i = 1(1)p, where

Cin = Ckin = ykz’(Pm T)
Qipy = Qkipy = yki(Ruaj—) - yki(Qua 7:)
buv = b = Y (R, te) — v (Qu, tr)-

The bounds ¢; = g are defined according to (10). This linear programming
problem is solved by the Simplex method. Its optimal solution & = (7;) is denoted
by ki, @ = 1(1)p, to preserve the index kl. Notice that the numbers ¢;,, a;,, have
to be computed only once on [t;_1,¢], while the b,, and ¢; depend on [, hence
they must be updated on all subintervals.

For discrete strategies, we arrive at linear integer programming problems of
the same structure like above, which have to be solved by appropriate methods.

N p
min Z Z Cin Ui,
n=11:=1
subject to

p
Z Vi Qipw S @/uz - b/u/

=1

p
- Z Vi Qipy S 9;“/ + b;u/
i=1

UZ'E{L]Z’,O}, 1=1,...,p.

Strictly speaking, this is not a binary problem, since ¢, # 1 in general. If partic-
ular discrete optimization methods are based on a binary structure, the problem
must be transformed appropriately. Since g, is updated after each time step T,
this means changing the matrix of constraints and the coefficients of the objective
in each step. If the discrete method needs a special preprocessing of these data,
this has to be repeated for each subproblem.

During the computations we observed effects of ill-posedness for small values of
7 close to the time step for solving the PDEs. For instance, even in the continuous
case, we observed that some controls were switching from 0.4 to 1.0 and reverse
by changing the discretization of time. To overcome this problem, instead of using
the original linear objective functional given above, we minimized in all cases the
linearly regularized objective

N »p )
Min Y ) cnvi+e). v
i=1

n=1:=1



subject to the constraints given above. This trick stabilized the computed optimal
controls.

5 Numerical results

5.1 The test example

One of our standard test examples is the cooling of rail profiles. Following [7], [11],
we consider the domain shown in Figure 5 with a moderate discretization. The
concrete formulas for the coefficients ¢, p, A, « are adopted from these papers.
All other data were transmitted by the Mannesmann-Demag-Sack GmbH.

We restrict ourselves to the situation of [7]. That is, we consider 3 minimiza-
tion points P, on the axis of symmetry and take them as comparison points too,
that is R, := P,. 9 points of comparison are chosen on the boundary. Their lo-
cation is shown in Figure 2. The temperature at these points is compared with
the temperature at the minimization points according to the table below.

Point|compared with
Py Q1 Qo @3, Q4
Py |Qu, Qs, Qs,

P |Qs, Q7, Qs, Qo

Table 1: Comparison points

In the test example, we regard a cooling line composed of one cooling segment
followed by one air cooling area both with length equivalent to 15 seconds. Hence
our cross section {2 passes the whole plant in 30 seconds. The cooling segment
contains two blocks. In the continuous case, each block is identified with one
nozzle group, whereas in the discrete case we have essentially more nozzle groups
and each block corresponds to the time interval for freezing the coefficients ¢, p
and A. Each nozzle group consists of 16 spray nozzles, hence by symmetry we
have 9 control variables, see Fig. 6. Following the notation of Section 2 we have
m =2, r =2, p=9. The geometry is shown in Figure 4. According to the
general setting, for ¢, we get the value 7.5 seconds.

to tl t2 t3 t4

Figure 4: Test geometry



The partition of the boundary I" into parts I; is roughly indicated in Figure
6. For the exact geometry of the rail profile we refer to Figure 2.
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Figure 5: The rail profile Figure 6: Partition of I"

The parabolic state equation was solved by a Crank-Nicholson scheme in time
and a 3-step FEM multigrid algorithm for the elliptic subproblems. The initial
value is chosen as in [7] assuming constant temperatures in 3 areas.

For presenting test results, we proceed as follows: In a first part we compare
the suboptimal strategy with the method of feasible directions in the case of
continuous controls. In a second part we compare between continuous and discrete
cooling strategies, in particular we discuss the lack of efficiency using discrete 0-1
nozzles. Moreover, we present results for improving efficiency of discrete strategies
by applying nozzles of lower size, i.e. of lower maximal cooling intensity.

5.2 Feasible directions versus suboptimal strategy

According to subsection 5.1, we consider the following test problem (E):

min  F(y) = i an y(Pp,T) (12)

subject to

c(y)p(y) ye = div (A(y) grad y)
AW) Oy =i uri X(5 T7) a(y)(yp —y) (13)
y(xa 0) = yO(x)a
to the control constraints
0< uy <1, (14)



k=1,2, i=1(1)9, (cooling segment), uy; = 0, k = 3,4, i =1(1)9 (air cooling
area), and subject to the state constraints

y(Put) = y(Qu, )| < Oy, p=1(1)3, v =1(1)9, (15)

where T' = 30 sec, and we have 18 = 2 -9 controls acting for 7.5 seconds on
different time intervals and on different boundary parts. We have chosen the
values @, = |P, — Q,| - 8000 K/m, if the point P, is compared with the point
(), according to Table 1, and @,, = oo otherwise. In the computations we omit
the constraints, where ©,, = oco. Furthermore, we take the weights a; = a3 = 3
and ag = 1.

In the test runs of this subsection we worked with a time step of 0.75 seconds
to solve the PDE. Therefore, we splitted each interval [tx_i,%x] into 10 parts
having just this length 7 = 0.75 sec. Obviously, this is the smallest length we can
use for computational intervals in our case. In this way, we got the discretization
oftme 0 =ty <tp+7< - <tg+10r =t <--- <t +10r =ty < --- < T,
where 7' = 30sec and 7 = 0.75 sec.

The fast suboptimal strategy determines the solution in a very short time.
Moreover, it is a direct method. In particular, no admissible initial control u is
needed. We list the computational results for the values L = 1, 5, 10 in Table
2. The CPU time was about 2 minutes on a workstation HP Apollo 9000. Table
2 contains the computed controls and the corresponding values of the cost func-
tional together with the temperature in the minimization points. Our suboptimal
method was applied for different numbers of computational intervals. Our values
show the surprising effect that more (but smaller) computational intervals in-
crease the precision of our method while decreasing the computational time. The
reason for the gain of speed is that computing the response functions is cheaper
on shorter intervals.

The results are compared with those obtained by the method of feasible di-
rections in [7]. To that aim this slow iterative method was started at controls
computed by our suboptimal method for the largest number of computational
intervals. Nevertheless, to get the marginal improved ”optimal” values in the last
column of the table, the iterative method required 177 iteration steps. Hence we
needed 2.5 days to get this slightly better result. One iteration by the method of
[7] needs a between five and ten times longer computational time than our whole
method. Altogether, accuracy and running time of the fast method of instanta-
neous control are very convincing.



Te 1 5 10  |Method of [7]
U11]0.351402|0.354894|0.357386| 0.361015
U12(1.000000|0.798217|1.000000{ 1.000000
U13(0.118034(0.588312|0.462750| 0.510719
U14(1.000000{1.000000{1.000000| 1.000000
U15(1.000000|1.000000{1.000000{ 1.000000
U16|0.336405|0.368480(0.376729| 0.383220
U17(0.562985|0.606946|0.612365| 0.644712
U15(0.572915|0.661840|0.686257| 0.720357
U19(0.434374(0.458182|0.454216| 0.488881
U»1]0.398711|0.407742|0.413433|  0.422056
U»2(1.000000{0.896221|0.927565| 0.935165
U»3(0.114328|0.079897|0.036162| 0.077026
U24(1.000000{0.957728|0.977744| 0.982834
U»5|1.000000|1.000000{1.000000{ 1.000000
U6 |0.378044|0.387829|0.386588| 0.384954
U»7(0.581319(0.569530(0.565634| 0.578580
U»s|0.516497|0.456389|0.449471|  0.469555
U29(0.437347|0.429484|0.428212| 0.436120

y(T, P1)| 781.909 | 781.855 | 781.055 |  780.630

y(T, P2)| 755.870 | 752.048 | 751.399 750.944

y(T, P3)| 854.393 | 853.167 | 853.106 851.579
F(y)|5664.776|5657.115/5653.881| 5647.572
CPU| 208 sec | 106 sec | 100 sec {1200 sec / It.

Table 2: Performance of the suboptimal strategy

However, there appear small problems with violating the state constraints.
Therefore, after the first iterations the method of [7] still delivered a solution
with considerably larger value than that of our fast approximate solution. The
level of violation is low (0.3 K at most). In our opinion, this is sufficiently small
to accept the computed control. Nevertheless, one should carefully observe this
problem in more complicated situations. For more details we refer to [14].

5.3 Continuous versus discrete suboptimal strategies

In the continuous case, [t 1, tx] contains one nozzle group, where the nozzles can
admit all intensities in [0, 1]. The interval [tx_1, tx] was splitted into L subintervals
of length 7, which served as auxiliary subintervals. Now we compare the results
with the following discrete situation: To each subinterval we associate one nozzle
group, i.e. we have L = 10 times more nozzles in [ty 1,tx]. In other words, 18
continuously controllable nozzles are replaced by 180 nozzles. However, these
nozzles can only admit the intensities 0 (off) and 1 (on), and they influence the
profile for a shorter time, i.e. only for 7 = (tx — tx_1)/10.

The integer programming subproblems were solved by complete enumeration.
The size of the subproblems is so small that this method was faster than standard
branch and bound algorithms. We obtained computational times close to the ones
for the continuous case. This shows that the solution of the integer problem needs
approximately the same time as the simplex method, essentially faster than the




time needed by the method of feasible directions. Optimal values and computing
times are compared in Table 3. We observed that data generation, in particular
computation of response functions, is stronger sensitive with respect to the length
of time step than the solution of the state equation. We had to find a reasonable
compromise between accuracy and computing time. In Table 3, different choices
of time steps are compared for solving the instantaneous control problem:

In all cases I-IIT (dis=discrete, con=continuous), the optimization subproblems
are solved on time horizons of length 7. However, we do not update all coefficients
of the problem after each time step 7. The coefficients c;, of the objective and
the matrix A = (a;,,) of the constraints are updated only after larger intervals
of time (in our test example after 107), while the right hand sides @, + b, of
the constraints are updated after each time step 7. In case I, 7 is used as the step
length to solve the parabolic equation for updating the state and the b,, as well
as for the generation of the optimization data c;,, a;, via response functions.
In case IT we used a smaller time step 7;; = 7/5 for all computations. Case III
proceeds as case I with respect to the update of the state, but the coeflicients
of the matrix and the objective are computed with higher precision by the time
step 7/5.

Idis |IIdis [III dis| I con |II con |III con|Method of [7]
F(y)| 5841.1 | 5848.8 | 5853.2 | 5641.8 | 5643.3 | 5653.7 5647.6
CPU|122. sec|431 sec|177 sec|124 sec|433 sec|180 sec|59 h (177 It.)

Table 3: Optimal values and computing times

Table 4 contains the associated optimal controls. In the continuous cases I-
III con, the values wuy;, k = 1,2, i = 1(1)9, express the intensity of nozzle i in
group k. In the discrete cases, the reader would expect K -p-L = 2-9-10
values ug; € {0,1}. To avoid the associated large table and to make the results
comparable with the continuous case, the columns I dis - III dis contain the mean
values, defined by formula (11),

10
REIT
=

>l

=1



rol Idis | IIdis [IIIdis| I con |II con |III con
U11(0.14545|0.18182(0.18182{0.35739|0.35719|0.34315
Ui2|0.74545|0.78182|0.78182|1.00000{1.00000{1.00000
U13(0.45454(0.32727(0.32727|0.46275|0.41935|0.39777
U14(1.00000{1.00000{1.00000{1.00000{1.00000{1.00000
U15(1.00000{1.00000{1.00000{1.00000{1.00000|1.00000
U16(0.00000{0.00000{0.00000{0.37673|0.36948|0.35291
U17(0.47273|0.34545(0.40000{0.61237|0.60966|0.58313
U15(0.61818(0.43636(0.43636|0.68626|0.67156|0.66524
U19(0.27273/0.20000{0.20000{0.45422|0.45254|0.43632
U21(0.18182|0.23636(0.25455|0.41343|0.41091|0.39926
U»2(0.98182(0.80000{0.80000{0.92756|0.91320|0.91700
U23(0.01818|0.01818(0.01818|0.03616|0.03209|0.02941
U24(1.00000(0.81818{0.81812{0.97774|0.96000|0.96622
U»5(1.00000(1.00000{1.00000{1.00000{1.00000|1.00000
Us6(0.00000(0.00000{0.00000{0.38659|0.38420|0.36980
U27(0.54545(0.45455(0.54545|0.56569|0.56630(0.55394
U»5(0.38182(0.30909{0.41818|0.44947|0.44810(0.44394
U20(0.29091(0.27273(0.27273|0.42821|0.42644|0.42035

Table 4: Optimal controls (all variants)

It is quite natural that integer controls are not so flexible as the continuous
ones. Even by using ten times more nozzles as in the continuous case, there is
an essential lack of efficiency causing a temperature difference of almost 30 K
in every ”"hot spot” P, selected for the objective. Due to the state constraints,
some of the nozzles (u16, ug) must kept switched off during the whole process,
which is the main reason for the gap. Nevertheless, using the same number of
nozzles of lower size can improve the efficiency of discrete cooling. A careful
comparison of the optimal controls in Table 4 shows the main reason for the
lack of efficiency in the discrete case: In particular, nozzle 6 is never active in all
variants, while in the continuous case a moderate and almost uniform cooling
takes place. This can be observed from the solution of the subproblems, because
it holds 0.365 < uy;6 < 0.375, and 0.38 < ug < 0.39 for all I = 1(1)10. Obviously,
the constraints for nozzle 6 are too strong for cooling with intensity 1, even if
the time of cooling is very short. Consequently, no cooling is the only admissible
control. This seems to be a typical difficulty for discrete strategies. However,
the comparison with the continuous problem shows the possibility of an almost
uniform cooling, if the maximal intensity of the nozzle is reduced to i = 0.35.
In Table 5 we present two different cases (data generation and update by refined
stepsize 7/3): The first column contains the results, where the maximal cooling
intensity of nozzle 6 was reduced to 0.35, while the others still had the size 1.0
as before. The values in the second column correspond to the following maximal
cooling intensities i1, . . ., ig for the nozzle 1(1)9: 4; = 0.5, i, = 0.8, i3 = 0.4, iy =
1, 5 = 1, ig = 0.35, iy = 13 = ig = 0.5. This version is called the refined
strategy. Notice that these intensities are fixed in advance by our experience
from the continuous case. The last two columns are added for a comparison with
the standard choice of maximal intensity 1.0 for all nozzles.



16 = 0.35| refined | con dis
U11] 0.18182 |0.30175(0.35733|0.18182
U12| 0.78182 |0.80000{1.00000(0.78182
Uis| 0.32727 |0.40000{0.42245|0.32727
U14| 1.00000 |1.00000{1.00000|1.00000
Uis| 1.00000 {1.00000{1.00000{1.00000
Uie| 0.35000 |0.35000{0.36983|0.00000
Uiz| 0.40000 [0.50000{0.60945|0.34544
Uig| 0.43636 |0.50000{0.67217|0.43636
U1g| 0.18182 |0.43778(0.45205|0.18182
Uz 0.21818 [0.36526(0.41118(0.21818
Us2| 0.80000 |0.80000{0.91482|0.80000
Uss3| 0.01818 [0.10964(0.03246|0.01818
Us4| 1.00000 |1.00000{0.96173|0.81818
Uss| 1.00000 |1.00000{1.00000|1.00000
Use| 0.35000 [0.35000{0.38444|0.00000
Uaz7| 0.36364 |0.50000{0.56625|0.45454
Uag| 0.49091 |0.50000{0.44818|0.49091
Uzl 0.27273 [0.35566(0.42653|0.27273

F(y)| 5746.41 |5689.95|5642.87|5847.74

Table 5: Optimal controls for the refined strategy

The refined strategy essentially improves the standard discrete method, al-
though the efficiency of the continuous strategy cannot be reached completely.
Moreover, we observed the following: Nozzles with reduced intensities prevent the
controls from chattering - the number of switches between consecutive nozzles is
reduced. Some of the nozzles were active all the time. For some more details,
including resulting different temperature distributions of the profile, we refer to
(3]

Conclusions: The instantaneous control technique is successful for continu-
ous and discrete control strategies. In our example, it is able to deal with discrete
cooling strategies in almost the same time as for the continuous method. The
application of fixed maximum intensity 1.0 turned out to be insufficient: Even es-
sentially more nozzles cannot deliver the same final temperature as the continous
strategy. Using nozzles of lower size can overcome this problem. The solution of
the continuous problem is helpful to design the size of nozzles.
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