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OPTIMAL CONTROL OF THREE-DIMENSIONAL
STATE-CONSTRAINED INDUCTION HEATING PROBLEMS WITH
NONLOCAL RADIATION EFFECTS*
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Abstract. The paper is concerned with a class of optimal heating problems in semiconductor
single crystal growth processes. To model the heating process, time-harmonic Maxwell equations are
considered in the system of the state. Due to the high temperatures characterizing crystal growth,
it is necessary to include nonlocal radiation boundary conditions and a temperature-dependent heat
conductivity in the description of the heat transfer process. The first goal of this paper is to prove
existence and uniqueness of the state. The regularity analysis associated with the time-harmonic
Maxwell equations is also studied. In the second part of the paper, existence and uniqueness of
the solution of the corresponding linearized equation are shown. With this result at hand, the
differentiability of the control-to-state operator is derived. Finally, based on the theoretical results,
first order necessary optimality conditions for an associated optimal control problem are established.
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1. Introduction. In this paper, a class of optimal control problems arising
in the context of crystal growth of semiconductor single crystals is studied. Heat
transfer problems in crystal growth are mathematically challenging. Optimizing the
temperature—the state of the system—is one of the important goals in crystal growth.
Due to the high temperatures and the complex geometries involved, heat radiation
has to be included in the model. This leads to a class of nonlinear and nonlocal
boundary conditions (cf. [Voi01, Tii97, KPS04]). Such problems have not yet been
widely studied from a mathematical point of view. Moreover, as inductive heating is
used in crystal growth, Maxwell’s equations have to be taken into account.

In a fairly simplified setting, the study of optimal control problems involving
nonlocal boundary conditions was initiated in [MPTO06]. Further contributions toward
similar models including pointwise control and state constraints were made in [MY09a,
MYO09b]. In the aforementioned articles Maxwell’s equations were not considered
in the system of the state. In addition, the temperature dependence of the heat
conductivity that becomes significant at high temperatures was not included in the
model. The present paper is aimed at the analysis of a more realistic model: First,
Maxwell’s equations are included. Second, we consider a temperature-dependent heat
conductivity, and so the temperature distribution is governed by a quasi-linear elliptic
equation.

*Received by the editors June 1, 2009; accepted for publication (in revised form) April 26, 2011;
published electronically August 4, 2011. This work was supported by DFG Research Center “Math-
ematics for Key Technologies” Matheon (FZT 86) in Berlin.

http://www.siam.org/journals/sicon/49-4/76054.html

TWeierstrass Institute for Applied Analysis and Stochastics, Mohrenstrafie 39, D-10117 Berlin,
Germany (druet@wias-berlin.de, klein@wias-berlin.de, sprekels@wias-berlin.de).

HInstitut fiir Mathematik, Technische Universitit Berlin, Strafie des 17. Juni 136, D-10623 Berlin,
Germany (troeltzsch@math.tu-berlin.de, yousept@math.tu-berlin.de).

1707

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1708 DRUET, KLEIN, SPREKELS, TROLTZSCH, AND YOUSEPT

Our focus is set on a quasi-static description of induction heating [KPS04]. The
model is based on the assumption that all electromagnetic quantities are harmonic in
time and given as the imaginary part of a complex extension, according to the usual
ansatz

H(z,t) = Im(Heomp(z) exp(iwt)), E(z,t) =Im(Epomp(x) exp(iwt)),

where H denotes the magnetic field intensity, and F the electric field strength. Similar
representations are assumed for the remaining electromagnetic fields. Notice that
Heomp, Ecomp denote the complex-valued amplitude of the complex extension of the
vector fields H, E with a fixed angular frequency w > 0. We assume that the period
27 /w of oscillation of the electromagnetic fields is much smaller than the time for
heat diffusion. In this way, the Joule heat source density can be approximated by its
averaged value over a period according to

flat) = o /OT £t dt.

Thus, assuming a stationary temperature distribution in the furnace, we attain a time-
independent description of the problem, which allows us to work with the complex
amplitudes instead of the electromagnetic fields themselves.

Problem formulation. Let Q C R3 with I' := 9 be a bounded domain repre-
senting a crystal growth furnace. The global temperature distribution in €2 is governed
by the following stationary heat equation with radiation boundary conditions:

1
—div(k(z,y) Vy) = 2—5|curl H)? inQ,
dy 3
—k(z,y)==| =G(o on X,
. w2 | = Gl )

] =0 on X,

0
wla.y) g +eo lyl*y = <oy} onT,

on

where y denotes the absolute temperature and yo is a given external temperature.
Further, o denotes the Boltzmann radiation constant, € the emissivity, x the ther-
mal conductivity, and s the electrical conductivity. The jump of a quantity across
boundaries is denoted by [-], and 7 is the outward unit normal to the corresponding
surface.

The surface ¥ and the nonlocal radiation operator G are related to the modeling
of the radiative heat transfer. Heat radiation is incoming and outgoing at the surface
of each body located next to a transparent medium. To describe this phenomenon, we
assume that a part of the region Qransparent C 2 is occupied by transparent materials.
We set ¥ 1= 0Qransparent- A schematic geometrical example is given in Figure 1.1.
The operator G in (1.1) is a linear and continuous operator (see, e.g., [LT01, KPS04]
for in-depth discussions on G and its physical background). For the convenience of
the reader, we recall the definition of G and its essential properties in Appendix B.

We assume that the domain €2 is convex. In this case, the local Stefan—Boltzmann
radiation condition assumed on the outer boundary I' is an exact model of the real
situation. It should be emphasized that the convexity assumption on € is related
to modeling issues, and not to the regularity results on the state and the magnetic
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Fia. 1.1. Two-dimensional schematic cut of the domain 2. Left: The furnace components and
the outer boundary T' (thick black line). Right: Description of Q from the point of view of heat
radiation, with the transparent cavity Qiransparent (White), its boundary ¥ (thick black line), and the
opaque materials Qopaque (9ray).

field. If Q were nonconvex, then a nonlocal Stefan-Boltzmann condition would be
more adequate to model the radiation at the outer boundary I'. This is due to the
fact that, in the nonconvex case, different parts of I' can interact with radiation. In
particular, this is important for a high boundary temperature. Details on the modeling
of such situations can be found, e.g., in [KPS04] or in section 2.3 of [KP05]. The
mathematical analysis for the model including nonlocal radiation boundary condition
on I' is very similar to our case, where nonlocal radiation is only considered on .

It is not to be expected that the electromagnetic fields generated to heat the
region ) will be confined to it. We therefore introduce a bounded “hold all domain”
O C R3?, which contains Q and is typically much larger,’ to represent the region
in which the electromagnetic fields are acting. To adequately describe the electro-
magnetic phenomena taking place in the larger region O, we denote by O, C O the
region occupied by electrically conducting materials. We set O, := O \ O, for the
nonconductors.

The complex-valued magnetic field intensity H appearing in (1.1) is given by the
solution to a time-harmonic Maxwell system posed in O:

iwB+curl E=0 in O,
curl H =J in O,
J=sFE+ Xoeg in O,
(1.2) div D=0 in Oy,
B=puH, D=¢E, divB=0 in O,
B-ii=0, Exn=0 on 00,
[Hxfl;; =0, [B-1;; =0, [Ex];;=0 ondO,;Nao0,.

Here B denotes the magnetic induction, D the electric displacement, and J the cur-
rent density. All of these three-dimensional vector functions are complex valued. The
real-valued functions e, u, and s denote the electric permittivity, the magnetic per-
meability, and the electrical conductivity, respectively. We assume the decomposition

Hn fact, the electromagnetic fields extend to the entire space, but at a certain distance from the
region of interest, they become negligible. The auxiliary domain O has to reflect this property.
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1710 DRUET, KLEIN, SPREKELS, TROLTZSCH, AND YOUSEPT

0 =", O; with disjoint domains O; representing different material subdomains fill-
ing the region 0.2 As before, [-]; ; denotes the jump of a quantity across the interface
80i080j, 1,7 =0,...,m, i # j.

The three-dimensional vector function j, is an applied current generated by some
voltages acting in a set O., C O, (see (M3) below). Typically O, represents an
induction coil or a system of coils (see the examples in [KLDP+]).

S S Ry
SIS Ry
®§\§® Ry

@)

F1c. 1.2. Two-dimensional cut of the Mazwell “hold all domain” O, with the electrical conduc-
tors Oc (gray), the nonconductors One (white), and the coil rings R, ..., R3 indicated by arrows.

Optimal control problem. It is not realistic to assume that we can control the
density of the current at each point of space. Therefore, we consider the following
assumptions:

(M1) We make the customary idealization that the coil system O, can be repre-
sented as O, = U?:l R; (n > 1), where Ry,...,R,, are disjoint bounded
domains a positive distance from each other. For every j = 1,...,n, R; is
assumed to be a ring (see Figure 1.2).3 Here each ring represents one coil.*

(M2) The controlled voltages u; € Rt in each coil ring R; € O, (j = 1,...,n)
can be maintained constant. In other words, coupling effects on the voltages
u; can be neglected. Notice that we do not directly control the total current
density J in (1.2), since J depends also on the term sE that is added to j,
in O.. This term models coupling effects on the current.

(M3) The applied current j, in each induction coil R; (j = 1,...,n) is obtained
from Ohm’s law by the associated electrical resistance as the voltage u; is
applied.

Due to the hypotheses (M2) and (M3), the current j, is given by the ansatz j, =
Z?:l ujv;, where u € R”, and {v1,...,v,} is a given system of vector fields such

2This means that for each i = 0, ..., m, the set O; is a domain (a connected open set), in which
the material properties are uniformly continuous. Observe that in this way, several domains O; can
consist of the same material, provided that they are a positive distance from each other.

3For each j € {1,...,n}, there exist numbers ;1 > r;2 > 0 and a fixed vector z; € R3, such
that the set R; is the torus

(rj,1 + s cos @) cos @
Rj =< zj + (rj1 + s cos¢) sin@ is €10, r52], ¢, 0€]0, 27 » .

s sin ¢

4This is different from [KPS04], since therein each ring represents just one loop of the considered
single induction coil.
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that v; : O — R3 and v; = 0 on O \ R;. Notice that since the density j, in the
conductor O, represents a current, we have to make the consistency assumption

(1.3) divj, =0 in Ou, g+ =0on 0,
Thus, the vector fields {v;};=1,.. » in turn must satisfy
div v; =0 in Ry, vj -1t =0 on OR; forj=1,...,n.

Under the simplifying assumption (M1), and assuming a constant electrical conduc-
tivity in R;, we can set

—2/(af + 23)
(1.4) vi=s5 | x1/(z}+23)
0

For more general forms of the inductor O, , we construct a particular system {v; } ;=1
in Remark 2.2 below.

Given fixed data z € L?(Q)3, Hq € L?(0;C)3, p >0, and 8 > 0, we focus on the
following optimal control problem:

geeey

1
(P) minimize J(u, H,y) := 5/ |Vy — 2|? + g/ |H — Hy* + §|u|2 :
Q o

where (H,y,u) solves (1.1)—(1.2). In addition, the optimization problem (P) is subject
to the following state and control constraints:

(1.5) Yao(x) < yl(z) < yp(x) for a.a. z € Q,

) Ug Su; < up for all j € {1,...,n}.
Notice that including the state constraints (1.5) into the model is necessary. They
are assigned to avoid melting of the apparatus and to keep the crystallization pro-
cess within a desirable temperature range. Let us also remark that Hy is a desired
magnetic field which is included in the objective functional of (P) for mathematical
generalization. The term fo |H — Hy|? can be dropped by setting p = 0. However, it
can also be important in certain applications such as the control of MHD (cf. Griesse
and Kunisch [GK06]).

The analysis of the control problem (P) turns out to be delicate in some aspects.
First, we are confronted here with a state equation of quasi-linear type with source
terms generated by the Maxwell equations. Second, the pointwise state constraints in
the set of explicit constraints (1.5) considerably complicate the analysis. In addition,
the nonlocal radiation operator G and the heat conductivity x in the state equation
(1.1) are not monotone with respect to y so that the existence and uniqueness theory
based on monotone operators is not applicable.

The first contribution of the present paper is the regularity analysis for the state
of the system (1.1)—(1.2). The regularity result relies on recent advances in regularity
theory [ERS07, HDMRO0S] and may interest the reader in its own right. The second
part of the paper is concerned with the linearized equation of (1.1)-(1.2). Our main
goal is to prove the existence and uniqueness result of the corresponding linearized
system which leads mainly to the differentiability of the control-to-state operator
associated with (1.1)—(1.2). To the best of our knowledge, no study on these topics
has been carried out so far. The optimization theory for (P), on the other hand,
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1712 DRUET, KLEIN, SPREKELS, TROLTZSCH, AND YOUSEPT

is devised based on the mentioned theoretical results and provides a basis for our
forthcoming paper on the numerical computation of (P).

The rest of the paper is organized as follows: We begin by introducing our main
assumptions and notation. In the section 3, we conduct a study concerning existence
and uniqueness of the weak solution to (1.1)—(1.2). Higher regularity of the solution
will also be discussed. Section 4 is devoted to the linearized equation of (1.1)—(1.2).
Based on the theoretical results in sections 3 and 4, we derive the first order optimality
conditions for (P) in section 5.

2. General assumptions and notation.

2.1. Notation. We first introduce some spaces that will be needed for the anal-
ysis of the state equation. For 1 < ¢ < oo, we denote by ¢’ := ¢q/(¢—1) the conjugated
exponent to g. We define

L (0) = {¥ € [LUO) | ewl v € [L7(0)*}

L3,(0) = {0 € [LNO) | dives € L7(0) } .

where the differential operators curl and div are intended in the weak (distributional)
sense. The spaces LY | (O) and LY; (O) are Banach spaces with respect to the graph

curl

norm. The linear operator 7, : L%, (0) — W14 (0)*, given by

(2.1) (18, 6) ::/Odivw¢+/ow-w v o e W (0),

is a generalization of the trace v - 7l (7 = outward unit normal to JO), which is well

defined for ¢ € LY, (O). Analogously, the linear operator v, : LY, (O) — Lg;rl (0)*,
given by

(2.2) (e (), @) := /01/) -curl ¢ — /O ¢-curlyp Voc LZ;H (0),

generalizes the trace —i x 7i for ¢ € LY, (O).

curl
In order to represent current vectors, we need the space

(2.3) HI(O) = {H e LY

curl

(O)} curl H =01in Onc} ,

and we set H(O) := H?*(O).
The spaces of complex-valued vector fields associated with L? . (O) and H4(O)

curl
are denoted by L | (O; C?) and H?(O; C?), respectively. The linear constraints
characterizing these spaces are then intended to hold for both real and imaginary
parts of the vector field.

The inner product on the Hilbert space L2, (O; C?) is given by

curl
(2.4) (Hy, Hg)Lzuﬂ(O) = / (curl Hy - curl Hy + Hy E) ,
o

where @ denotes the complex conjugate of a € C3.

2.2. Main assumptions on the data. The data of the problem are the geom-
etry, the coefficients «, €, u, ¢, s, the vector fields v;, and the external temperature
yo. We summarize the corresponding assumptions in the following.
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(A1) Assumption on the geometry. In order to describe complex electro-
magnetic and thermodynamical phenomena, we have to account for the multimaterial
structure of the domains O and Q: A decomposition O := [J;~, O; is assumed with
disjoint open sets O; that represent the different material subdomains (see footnote
2) that fill the “hold all” region O. We define Q; := O; N such that Q= U?io Q.
Here each §; represents a different material subdomain that fills the region Q (see
Figures 1.1 and 1.2).

For simplicity, we assume that there is only one connected transparent cavity in
Q which is denoted by €. Therefore, the boundary X of the transparent materials is
simply given by X := 0. The enclosure property has to be satisfied:

(2.5) Every z € ¥ is an interior point of €.

In other words, the cavity Qo is enclosed by the remaining (opaque) materials (Qopaque
= J;i~, Q). We further assume that the domain O is simply connected and Lipschitz.
In order to obtain regular magnetic fields, the main geometrical restriction considered
throughout the paper is the following:

(2.6) 20;eCt fori=0,...,m, 00 ecC".
From (2.6), it also follows that
(2.7) o ect fori=0,...,m,

since Q; = O;NQ. The assumption (2.7) is important in order to obtain a temperature
field in W14(Q) for some ¢ > 3. Finally, for simplicity (cf. Remark 2.1), we make the
assumption that each conductor is isolated:

(28) diSt(Oi,Oj) >0 VO, Oj C O, with j 75 1.

(A2) Assumption on the source fields and coefficients. As mentioned in
the introduction, the applied current j, is given by the ansatz

(2.9) Jo =Y ujvy.
j=1

Further we assume that there exists a real number g > 3 such that v; € [L9(O)]? and

(2.10)
v; =0in O\ Ry, divv;=0in R;, v;-7=00ndR; forj=1,...,n.

Throughout the paper, we assume that there exist positive constants s;, s,, 1,
such that

2.11) 0<s5, <s<s,<+400 ae. inO., 0<puy <pu<p,<-4o0o ae. inO.
< p<p

Note that, since O, is nonconducting, we have s = 0 in O,,.. For the boundary data
Yo, We assume that

(2.12) yo € L>=(1), essrinf yo > 0.

We recall that the surface ¥ U T is an interface between transparent and opaque
material: ¥ is the boundary of a transparent cavity located in the furnace €2, whereas

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1714 DRUET, KLEIN, SPREKELS, TROLTZSCH, AND YOUSEPT

I" denotes the boundary of €2, which is surrounded by air in the “hold all” region O.
Thus, heat radiation has to be modeled at the surface XUT", and we have to introduce
the emissivity parameter on X UT'. The emissivity denoted by ¢ is a function of the
position. We assume that € : X UT' — R is measurable and satisfies

(2.13) Je; € Rsuch that 0 < g, <eg; <1 ond;NY fori=1,...,m.

The above condition ensures in particular that the operator G is well defined (see
Appendix B).

(A3) Assumption on the continuity. There exist continuous functions &; €
C(0Q; NX) such that e = ¢; in 9Q; NX for all ¢ = 1,...,m. In addition, we require
the continuity of the coefficients in each material,

where s;, p; are the restrictions of s, u to the set O;. We now formulate assumptions
for the heat conductivity: Let x :  x R — R be measurable and satisfy
(2.15)

k=r; in Q; x R, with continuous functions x; : &; x R >R Yi=0,...,m,

Jky, ki € R with 0 < k7 < K, such that x; < k(x,y) < kK, for a.a. 2 € Q and Vy € R,
VM > 0,3Cy > 0 such that |x;(x,y1) — ki(z,y2)] < Carlyr — yal,
Yy, ys € [-M,M],Vie€ {0,...,m}, and for a.a. x € €.

Remark 2.1. The geometrical assumption (2.6) is too restrictive when dealing
with realistic geometries in industrial crystal growth. As a matter of fact, jumps of
the material properties are allowed only between at most two materials. In order to
deal with more general junctions, we rely on continuous approximations of the ma-
terial parameters. It is therefore particularly important to consider space-dependent
coefficients s, &, 1 (cf. the assumptions (2.14), (2.15)). The simplifying assumption
(2.8) is also to be understood in this context: we could allow for the junction of
two conductors, provided that one of them is embedded in the second and has a C!
boundary. This would, however, increase the technicality without being an essential
progress.

Remark 2.2. 1f R; is an arbitrary 2-connected Lipschitz domain, and the electrical
conductivity s is constant in R;, the field v; can also be computed in advance and
satisfy (2.10). Denote by P C R; a hypersurface that cuts the ring R; transversally,
such that the domain R; := R; \ P is simply connected.” Under the assumptions

5To help the representation, let us note that if R is the torus characterized by the radiirj 1 > 7j,,
then the surface P is any of the disks

(74,1 + s cos ¢g) cos O
P=z+ (rj,1 + s cos o) sin@ 1s€[0,7r52], 0€]0,2n] 5,

s sin¢

with ¢ €]0, 27] and z; € R3.
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M2) and (M3), we have v; = s V. in R;, where p; is the solution to the problem
j j j j

Ap; =0 in Ry,

Op; >

9% _ () ondR;\ P,
(2.16) 7 n R\

[8—5}:0 on P,

pjl=1 onP,

where [-] denotes the jump of a quantity across the surface P. It is well known (cf.
[FT78]) that (2.16) admits a unique solution p; € W12(R;), and v; = s Vp; satisfies

div v; =0 in R;, vj -7 =0 on OR;.

Furthermore, v; = 5 Vj; belongs to [LI(R;)]? for some g > 3 (see [Mon03, Theorem
3.50]).

3. State equation. Let t refer to the function of electric resistivity in the con-
ducting material O, i.e., v := 1/s in O,.. In order to improve the readability, we write
all integrals related to (1.2) as integrals over the whole domain O. For this purpose,
we define

(3.1) ri= {t on O, r=syt, Ty =8,
1 on O,

with s, 6, from (2.11). In the upcoming definition, we introduce the notion of weak
solution to the system (1.1)—(1.2).

DEFINITION 3.1 (weak solution to (1.1)—(1.2)). Let 3 < ¢ < oo and let ¢' be the
conjugate index of q.

(i) We introduce an operator A, : H1(O; C3)xWhHe(Q) — HI (O; C3)* x W4 (Q)*,

defined by

(Ag(H,y), (,)) = i /

(@]

3 3 1 2
+ / k(- y)Vy - VE+ / GlolyPy)e + / colylye — 5 / rleurl HJ ¢

w,uH-E—I—/ r curl H - curl ¢
o

for all (1,€) € HT (0;C3) x Wha'(Q).
(i) We further introduce an operator Ey : R™ — HY (0;C3)* x W4 (Q)*, defined
by

T ¢+/F coyte ¥ (1,€) € HY (0;CHx W ().

co  j=1

(B, (0.8 5= [

o

(iii) For given u € R™, we call a pair (H,y) € HI(O;C3) x WH4(Q) the weak
solution to (1.1)—(1.2) if

(3.2) A (H,y) = Equ in HT (0;C)* x WHa' (Q)*.
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1716 DRUET, KLEIN, SPREKELS, TROLTZSCH, AND YOUSEPT

Remark 3.2.

(1) Let (H, y) be a weak solution in the sense of Definition 3.1. For every ¢ €
W' (O; C3), the vector field V¢ belongs to H9 (O; C?). Taking in (3.2) the
pair (V¢,0) as a test function, and observing that curl V¢ = 0, we have

2/ pwH-Vo=0.
o

Therefore, every weak solution H € H9(O;C3) in the sense of Definition 3.1
satisfies the conditions div(u H) = 0 and v, (1 H) = 0 in the weak sense.
(2) Let (H, y) be a weak solution in the sense of Definition 3.1. The continuous

embedding W14 () < L*() is valid for all 1 < s < 22 Since L < 2L,

we can apply Holder’s inequality and Sobolev’s embedding theorem to verify
that

<y Jlewrl H|1Z 00,0y 1€l Lasa-2 (0

/ r|curl H|?¢
Q

< 7Ty o [|curl H||[2L<I(O;C)]3 HfHWLq/(Q) :

Analogously, since the embedding W9(Q) < C(Q) is continuous, we can
verify that under the assumptions (2.11), (2.15), (2.13), and (3.1), the oper-
ator A, is well defined. Due to the validity of (2.10) with ¢ > 3 and Holder’s
inequality, the operator E, is well defined for ¢ < g.

(3) Let us also note that the embedding W14(Q) — C(Q) particularly implies
the continuity of the state across the interface 3.

THEOREM 3.3. Let (A1)-(A3) be satisfied. Then there exists 3 < q < q such that,
for all uw € R™, the problem (1.1)—(1.2) possesses a unique weak solution (H,y) €
HI(O;C3) x WH4(Q) satisfying y > essinfr yo > 0. In particular, thanks to the
embedding W11(Q) — C(Q), the solution y is continuous.

We split the proof of Theorem 3.3 into the following two lemmas.

LEMMA 3.4. Let O C R3 satisfy (A1). Assume further that the functions s;, ji; €
C(O;) satisfy (2.11). Let j, € [LY(O¢y; C)]> with ¢ > 3. Then there exist a 3 < q¢ < q
and a unique H € H(O;C?) such that div(u H) = 0, v, (u H) = 0 in the weak sense,
and

(3.3) iw/uH-&—l—/rcurlH-curlJJ:/rjg-curl@
o o 0

for all ¢ € HT (0;C?).
Proof. Introducing the abbreviations H(") := Re H and H® := Im H, we first
observe that (3.3) is equivalent to the validity of the system

(3.4) —w//J,H(z)"l/l-f—/T‘CUI‘IH(l)-Cuﬂ’t/J:/ r Rejg - curl ¢,
o o O¢,

(3.5) w/uH(l)-z/J—i—/rcurlH(2)-curlz/J:/ r Im j, - curl ¢
o o O¢, A

for all real-valued ¢ € H(O). To obtain (3.4) and (3.5), we simply have inserted the
field ¢ + 04, ¢ € H(O), in the relation (3.3), and we have then equated the real and
imaginary parts, respectively.
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We consider the linear subspace of H(O)

H,(0) == {4 € H(0) | div(uv) = 0, 3(uv) =0},

where the constraints on div and ~, are intended in the weak sense of these operators,
explained in section 2. The space #H,(O) is a Hilbert space if endowed with the inner
product (2.4). Moreover, there exists a constant C' > 0 such that for all ) € H,(O)
it holds that

[]liz20y < Clleurl ¥|liL20y) »

so that the space H,(O) is equivalently normed by the expression |lcurl - [[{z2(0)s-
This fact is widely known, and a proof is given, for example, in [Dru07].

With the standard isomorphism C = R?, we can identify H € H,(0; C3) with
the pair (H, H®) € H,(0) x H,(0). On the Hilbert space H,,(0) x H,(O), we
introduce the bilinear form

a(H, ¢) :==—w / pH® . M +/ reurl HY - curl ¢
o o)

(3.6) +w / pHY . 2 —|—/ reurl H® - curl ¢ |
o) o

which is continuous and bounded in view of (2.11). On the other hand, the bilinear
form a satisfies

a(H, H) :/ r(leurl HOP? 4 |eurl HD1?) > 7y | HI3,, 0y %1, 0) -
¢
The functional
F(¢) = / r Re jg - curl oM —|—/ r Im jg - curl o
¢ o

is clearly a well-defined element of [H,(0) x H,(0)]*, since j, € [L*(Og,)]*. The
Lax—Milgram lemma gives the existence of a unique H € H,(0O) x H,(O) such that
a(H, ¢) = F(¢) for all ¢ € H,(O) x H,(O).

Taking in (3.6) ¢(1) = ¢, with ¢ € H,.(O) arbitrary, and #? = 0, we obtain
(3.4). Taking ¢ = 0, ¢(®) = 1, we obtain (3.5). We thus easily verify that (3.4) and
(3.5) are valid for all ¢ € H,(O), and so we have also proved that (3.3) is valid for
all ¥ € H,(0; C3).

At last, we verify that (3.3) is even valid for all ¢ € H(O;C?). As a matter of
fact, if ¢ € H(O;C?), then 1 :=1p — V¢ € H,(0;C3) if we take ¢ € W'2(O;C) as

the weak solution to

[ uve-vo= [ wu-vo
o) o
for all ¢ € W2(0;C). Tt follows that

iw/OuH-@[J—l—/OrcurlH-curlw:iw/OuH-(z/J—VC)—l—/OrcurlH-curl(z/J—VC)

/rjg-curl(d)—VC)z/Tjg-curl@.
o 0

(3.3)
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Here, in the first line, we used div(u H) = 0 and v, (1 H) = 0, which implies that
JonH -V{ = 0. In the second line, we used the validity of (3.3) for v — V( €
H,.(0;C3).

We now prove the existence of some ¢ > 3 such that H € LY . (O;C3). Applying

curl

at first the embedding result of Lemma A.2, it follows that H € [L*(O; C)]? for some
s > 3, and that

(3.7) [H (L 0; 0y < éllcurl H||z2(0:cy2 < clliglliz2o.,: 0 -
Next, we prove that curl H®) and curl H® belong to [LI(O)]? for ¢ := min{g, s}.

We consider an arbitrary f € [L?(0)]® with f = 0 a.e. in O,.. According to
Lemma A.4, we can decompose

1
f=curl A+ ; ~Vpixo,-
1ele

where A € H(O), i € I. if O; is a conductor, and p; € WH2(0O;). Thanks to the
equivalent formulation (3.4), we can write

/rcurlH(l)-f:/rcurlH(l)-curlA—i—Z
o o

/ curl HW . Vpi
iel. YO

(3.8) 2/ TRejg-curlA+w/uH(2)~A.
34 Jo., o

Here, we used the fact that A € H(O) can be inserted in (3.4). In order to verify that
the terms involving the p; vanish, we have used Lemma A.3, which implies that

/ curl HY . vp; = (yn(curl H(l))7 piYoo, = 0.
O;

Due to (3.8) and the continuity estimate (A.6) associated with the decomposition of
Lemma A.4, we then have

/Ocuﬂ HY. f‘ < (I Rejgllizacone + I iz o) 1Al o o, cs)

< c(|IRejgllzaoyz + IHPzoy2) Il pe oy

Consider now the functional
F(f) ::/ rearl HY - f, f e [L2(O0)]?, f =0 ae. in O,
0

With the Hahn-Banach theorem, we can extend the functional F to the whole space
[Lq/ (O)]? by preserving its norm. Still denoting the extension F, we apply the well-
known representation theorem for L? (O)*, ¢’ > 1, to find some ® € [L9(0)]* such
that F(f) = [, ® - f for all f € [L9(0)]°. But then

/ (reurl HY —®). f =0 V f e [L*O)?, f=0ae. in Op..
o)
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We conclude that rcurl HY — & = 0 a.e. in O.. Thus, we see that curl H) €
[L9(0)]3, and due to (3.7), we have

leurl HO|zaoy2 < e (ldgllizacocys + liglrzoscy2) -

We obtain the result for curl H® in exactly the same way. The lemma is proved. d
We now prove the second lemma. For the heat equation with radiation terms, we
introduce the space

V25(Q) = {u e Wh2(Q) | rru € L3(D), meu e L5(E)} ,

where the operators 7 and 75 denote the trace operators on I and X, respectively.

LEMMA 3.5. Let H € H(O;C3?) satisfy (3.3) with q given by Lemma 3.4. Then
for some v > 0, there exists a unique y € V*°(Q) N CY () such that y > essinfryo
a.e. in  and such that

) ) oyt — 4 oyHe= [ r/2|curl H|?
(3.9) Lémngny+Aa<y ywayéa<y>s A /2 eurl HP? ¢

for all £ € VZ5(Q). Assuming that the domain Q satisfies (2.7), we even obtain that
y € WH4(Q), with the q of Lemma 3.4.

Proof. The existence of y in the class V*%(Q) N L*°()) was proved in [LT01]
for cavities with the smoothness ¥ € C®, a > 0. Notice that the boundedness has
also been shown in [MPTO06] by invoking the truncation method of Kinderlehrer and
Stampacchia (see [KS80]). The existence result has been extended in [Dru09] to the
case of a temperature-dependent heat conductivity and piecewise smooth surfaces.
From the aforementioned references, we derive the estimate

(3.10) Iyl Loy < lyollLeery + C llewr] HI[P .05

where ¢ is given by Lemma 3.4. The uniqueness has been proved in [LT01], using an
interesting comparison principle for the case that x; is a positive constant in €2; for
all i € {0,...,m}. Here we have to extend the result to the case of a temperature-
dependent heat conductivity. This can be done with a comparison technique analogous
to the one in the proof of Theorem 4.3.

Let us now justify that y € C(2). Observe that under the assumption (2.15), the
coefficient k = k(z,y) belongs to L>(€2). The function y solves the problem

(3.11) —div(k(-, y) Vy) =F in ),

where F' is the functional
F© = [eot'—u)e~ [ Gy [ r/2lomt HPE.
r ) Q

Let ¢ > 3 be the exponent obtained in Lemma 3.4. Invoking Hélder’s inequality,
observe that

(3.12)

/ r/2|curl H|* ¢
Q

< (ru/2) llewrl H|Loqco) 1€l para-2 (s -

We now look for the minimal 1 < p’ < 3 such that the continuous embedding
WP (Q) < L9/(4=2)(Q) is valid. Short computations give p’ := 3¢/(4q — 6). Using
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in particular (3.12) combined with Sobolev’s embedding theorems, we now obtain the
estimate

IF©] < ey’ = volle=) + o Iyl () +rullewrl Hl[Zoquen) 1€lwir @)

which proves that F € W' (Q)*.

The conjugate exponent to p’ is p := 63—:1(1, and we observe that p > 3, since ¢ > 3.
In view of Theorem 3.3 in [HDMROS8], we thus obtain the Holder continuity of y in €.

It remains to prove that y € W19(Q) under the assumption (2.7). Thanks to the
hypothesis (2.15) and to the fact that y € C(Q2), we now see that x(-, y) € C(Q;)
for all subdomains ;, ¢ = 0,...,m. Observe on the other hand that 9€; € C*,
1=0,...,m, in view of (2.7). Thus, the coefficient « is uniformly continuous on both
sides of the surfaces 0%2; for i = 0,...,m.

Using again the fact that y is a solution to (3.11), we can apply Remark 3.18
of paper [ERS07] to find the existence of q¢; > 3 such that y € W14(Q) for all
3 < ¢ < min{p, ¢1}. Assuming without loss of generality that the exponent ¢ given in
Lemma 3.4 satisfies ¢ < ¢1, and observing that min{p, ¢; } < min{q, ¢}, we find that
the choice ¢ = ¢ is possible. O

Theorem 3.3 is an immediate consequence of Lemmas 3.4 and 3.5.

COROLLARY 3.6 (control-to-state operator). Let (A1)—(A3) be satisfied and let
q > 3 as in Theorem 3.3. Then the solution operator

S:R" = HU(O;C?) x Wh1(Q),

which assigns to every control u € R™ the weak solution (H,y) € H1(O;C?) x Wh4(Q)
of (1.1)~(1.2), is well defined and continuous.

4. Linearized equation. Our goal in this section is to establish the differen-
tiability of the control-to-state operator & : R" — H4(0;C?) x W14(Q). For the
remainder of the presentation, let ¢ € R with 3 < ¢ < ¢ be the exponent obtained in
Theorem 3.3. We decompose the control-to-state operator into § = (81, S2), where

S1 :R™ = HI(0; C?), Si:u— H,

(4.1) .
Sy R - WH9(Q), So tu s y.

Let us recall that S;(u) = H € H9(O; C?) is given by the unique solution to
(4.2)
iw / /LH"(L‘F/ reurl H -curl ¢ = / rZujvj ceurly Vi e ’Hq,(O; C?).
0 o Oey

Jj=1

Further, Ss(u) =y € Wh4(Q) is given by the unique solution to
[ sty ver [ Glone+ [ olybue
Q by r
1 /
= 5/ rlcurl Sy (u)|? € + / coyat VEe WhHT(Q).
Q r

Note that, thanks to the linearity of Sy, we can simplify &3 by making use of the
following vector fields.
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DEFINITION 4.1. For every j = 1,...,n, let H; € HI(O; C3) be defined as the
unique solution to

(4.3) iw/Oqu-E—F/OT curlHj~curl¢:/O ru; -curl ¥ Vi € HY (0; C3).
o

According to Lemma 3.4, (4.3) for every j € {1,...,n} admits a unique solution
Hj € H1(O; C3). Therefore, by a superposition principle,

Sl(u) = Z UjHj.
j=1

Consequently, for every u € R™, So(u) =y is given by the unique solution to

(4.4)

(X (), E) i (e i 1) = / k(o y)Vy - VE+ / GlolyPy)e + / colylPye

2
1 - ,
— 5/ r Zujcurl H; §+/aay§§ VEEe W (Q).
Q . T
j=1

Note that &7 is a bounded linear operator, and hence it is continuously differentiable.
Its derivative at an arbitrary point v* € R™ in an arbitrary direction v € R™ is given
by

(4.5) Si(u)u =Y u;H;.
j=1

To show the continuous differentiability of Sy : R™ — W9(Q), we need to establish
the differentiability of X, : W9(Q) — W4 (Q)*. For this purpose, we impose
further assumptions on the heat conductivity.

(A4) Assumption on the differentiability. The function x : Q x R — R is of
class C! with respect to the second variable. Further, for every positive real number
K, there exists a constant Cx > 0 such that

8_y ($, y) <Ck
for a.a. z € Qand all y € [ K, K].

Notice that the mapping y — o|y|>y is continuously differentiable from L>(T) to
L>(T) (cf. [AZ90]). Since G : L*(X) — L°°(X) is linear and continuous (Lemma
B.2), a similar result applies also to the term containing the nonlocal radiation. There-
fore, (A4) implies that the operator X, : Wh4(Q) — W (Q)* is continuously differ-
entiable. Its derivative at an arbitrary point y* € W9(Q) in an arbitrary direction
y € Whe(Q) is given by

<X;(y*)y,€>=/Qf€(-,y*)Vy-V£+/QZ—Z(-7@/*)yVy*-VE

(4.6) /
+4/G<o|y*|3y>s+4/sa|y*|3y5 vE € W ().
> I
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In the following, we prove that X/ (y*) : W14(Q) — W14 (Q)* is an isomorphism. In
other words, we should demonstrate that, for every given F € W4 (Q)*, the operator
equation

(4.7) X, (y*)y=F inWhe(Q)*

admits a unique solution y € Wh4((Q).
Remark 4.2. Notice that (4.7) corresponds to the following (strong) PDE formu-
lation:

—diV(H(x,y*)Vy + g—;(ﬂs,y*)y : Vy*) =Flo inQ,
0 0 ay*
(4.8) /i(x,y*)—z{, + —H( U )y +4G(oly*)’y) = Fis on X,
on - Oy on
dy 0Ok oy*
K(T,y )?4'8—( Z/)Z/a_,+4€0'|y|y_]:\r on I,

where F|q, F|s, F|r are the corresponding restriction of F to Q,%, and I, respec-
tively.

THEOREM 4.3. Let (A1)—(A4) be satisfied. Suppose further that u* € R™, and
let (H*,y*) = S(u*). Then, for every F € Wh9 (Q)*, the variational problem

(4.9) (XL (y )y, €) = (F,&) Vee Whi ()

admits a unique solution y € W14(Q). Moreover, there is a constant ¢ > 0 indepen-
dent of F such that

(4.10) yllwra) < el Fllwra - -

Proof. First of all, let us introduce the following operators:

By(y™) - WH(Q) = W ()%, (By(y*)z.€) = /Q (") V- VE + 4 / eoly" P,

Qulr): 1) = W (@), Qo)== [ Floy) =V - Ve,
Fyly) : 19(S) = W (@), (Fy(y)€) =4 / Gloly P 2)¢

for all £ € W4 (Q). Recall that, by virtue of Theorem 3.3 and (2.12), we have

(4.11) y* > esspinf Yo := By > 0.

Therefore, as shown in [MY09a, Lemma 2.1], which is based on the result of [ERS07],
there exists some gg > 3 such that, for all G € (3, go], the operator Bs(y*) : W14(Q) —
Wt (©2)* is continuously invertible. Without loss of generality, we may assume that
the exponent ¢ > 3 of Theorem 3.3 satisfies ¢ < qq.

Now, the operator X/ (y*) : Wh4(Q) — W4 (Q)* as given in (4.6) can be de-
composed into

(4.12) XoW") = Ba(y") + QoW E, . + Fo(y")7s,
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where the operator E, _ denotes the continuous injection Wh4(Q) — L>(Q) and,
as previously mentioned, the operator 7, : WH4(Q) — L°°(X) is the trace operator.
Consequently, (4.9) can equivalently be written as the following operator equation:

By(y" )y + Quy")E, Ly + Fyly)rey = F  in WH(Q)".
Thus, we arrive at
(I+ By(y") " (Qq(W)E, . + Fyy")m))y = By(y") ' F  in WH(Q),

Since ¢ > 3, the embedding operator E, _ : W4(Q) < L>(£) and the trace operator
7. : Whe(Q) — L>(X) are compact. Therefore, by Fredholm’s theorem, the assertion
will be proven once we are able to show that the equation

(4.13) (I + By(y") " (Qq(y")E, . + Fyly") )y =0

admits only the trivial solution y = 0. Let y € WH%(Q) be a solution to (4.13).
Applying the operator By (y*) to (4.13) and taking (4.12) into consideration, we infer
that y satisfies

X, (y" )y =0.

According to (4.6), the above equality is equivalent to
(4.14)

. * . *|3 — * |3 _ % * *
/QK:(,y)Vy V€+4/F60|y| yé 4/ZG(U|y I”y) € /Qay(,y)yvy \%3

for all £ € W' (Q).

We are now about to show that y = 0. To this aim, we follow the comparison
principle of Casas and Troltzsch [CT09], which is an extension result of Kiizek and Liu
[KL96]. In combination with this technique, we utilize some well-known properties
of the nonlocal radiation operator G. For every 6 > 0, let us introduce the following
sets:

(4.15) Qs :={z e Q| y(x) > d}, Qo :={z € Q| ylx) >0},
Ssi={zeX | (ryy)(x) >6}, Zo:={zeX|(ryy)(z) >0}

Notice that, in order to improve the readability, we will neglect the trace operator in
the arguments of boundary integrals; i.e., we always write 7,y = y on X. Further, we
define the function

(4.16) ys = min{d,y "},

where y* = max(0,y). For all § > 0, ys belongs to W4(Q2). Further, notice that
Vys = 0 a.e. in Q5. Setting £ = y5 in (4.14) and then using the fact that G is
self-adjoint (see Lemma B.2 in the appendices) leads to

/H(-,y*)Vy-Vys+4/€0|y*|3yya
Q r

a’% * * *
(4.17) = —/ 2008y Vy -Vy5—4/ Galy*>y) ys
Q0\Qs 9Y by

ok N X *
:_/ 5o (4 YV ~Vy5—4/0'|2/ 1> yG(e)-
2\ 9Y =
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Let us investigate the second term on the right-hand side, which involves the nonlocal
radiation operator G. To this aim, consider now the decomposition

2= (%0 \ Z5) U(T\ Zo) U

The surface integral associated with the operator G is investigated in the following
steps.

Step (i). Let us consider the set £\ 5. Since 0 < y < ¢ a.e. on 3¢ \ X5, Holder’s
inequality implies that

4 / o1y %y Glys) < 4 60y [ sy / 1Glys)|
2o\Zs So\Xs

4.18 "
(4.18) <460 51 ) meas(To \ Ta) /2 Gys) | 2wy

< cdmeas(So \ 2s)"2 [|ys|| m1 (0

with a constant ¢ > 0 independent of §. Note that, in the latter inequality, we also
made use of the continuity of G : L?(X) — L?(X) and the continuity of the trace
operator from H'(Q) to L(%).

Step (ii). Let us consider the set X\ 3. According to Lemma B.2 (4), we can
write G = I — H with a positive operator H : L?(X) — L?(X) in the sense that if
v > 0 a.e. on X, then H(v) > 0 a.e. on 3. Moreover, the operator H is self-adjoint.
According to (4.15)—(4.16), it holds that ys > 0 a.e. on X, ys = 0 a.e. on X\ 3o, and
y <0 a.e. on X\ Xg. These facts, along with the positivity of H, lead to

(4.19) —4/ aly* [’y Glys) = —4/ aly Py ys +4/ aly I’y H(ys) < 0.
' S\3o T\Zo —— E\Ep —~— —~—~

=0 <0 >0

Step (iil). Finally, let us consider the set ¥s5. By Lemma B.2, the operator H also
belongs to L(L>(%), L>°(X)) and satisfies ||H||z(ze(x), L~(z)) < 1. Consequently

G(ys) = ys —H(ys) > ys — [Hll £z (x), L (m)) 195l L (z) = ys — 0 = 0 on Xs.

The above inequality, together with the fact that y > 6 > 0 a.e. on Y4, implies
immediately that

(120) ~4 [ ol Py Glum) <o
s
Now applying the inequalities (4.18)—(4.20) to (4.17) yields
/fo(wy*)vy-Vys+4/recf|y*|3yya
< _ % Lok * 5 1/2
< 5, (¥ )y VY Vys + cdmeas(Zo \ Ts) lysll e (-
Q0\Qs Y

Since yys > y3, y Vys = ys Vys, and Vy - Vys = [Vys|?, it follows that

/ K y*) Vsl + 4 / coly*[Py2
Q T
Ok
(4.21) < / 2 y") V' ys Vs + comeas(So \ £5)2 [|ys|m o
Q0\Qs dy

< c(IVY | L2@0\0) | Vsl L2 (00\025) + meas(Xo \ £5) 2 [lys ]l 1 (),
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with a constant ¢ independent of d. Notice that, in the latter inequality, we have also
used (A4) together with the facts that y* € C(Q) and ys < 0 (see (4.16)). Hence,
along with (2.15)—(2.13) and (4.11), Friedrich’s inequality applied to (4.21) yields that

min{y, 421005 }H|ysl 7 ) < 0 (VY[ 2000 I Vs | 22 (00\0)
+meas(30 \ $5) " lysll ()
with a constant ¢ > 0 independent of §. This implies that
lysllz2() < 8 (VY [l L2(00\0s) + meas(So \ T5)'/?)

holds with a constant ¢ > 0 independent of §. Based on the latter estimate, we arrive
at

1 1 .
(4:22) meas() = 3z [ 8 < 55 [ 4 QI urconrag +meas(0\ Ep) 2.
S5

On the other hand, in view of (4.15),
(4.23) meas(20 \ 25) = 0 and meas(Xo \ X5) — 0, as 0 — 0.
Thus, by (4.22)-(4.23), we conclude that

meas() = %i\l% meas(€25) < gi\r"% c(IVY* 1l L2 (o\0s) + meas(Xo \ 2532 =0.

The latter equality implies that y < 0 holds a.e. in Q. Applying the same procedure
to the solution —y of (4.13), we obtain y > 0. In conclusion y = 0. This completes
the proof. O

THEOREM 4.4. Let (A1)—~(A4) be satisfied. Then the operator S : R™ — H1(O; C3)x
Wh4(Q) is continuously differentiable. Its derivative at u* € R™ in an arbitrary di-
rection u € R™ is given by 8’ (u*)u = (Z?Zl u;H;, Sy (u*)u), where Hj is as defined
in Definition 4.1 and Sh(u*)u =y € WH4(Q) is given by the unique solution to

Ok
. * . v, * * 4 3 4 *|3
| re Vo ver [ Fewuvy - vera [ Gollne+a [ ol o

= ZUJ/ r(Re curl H* - Re curl H; +Im curl H* -Im curl H;)§ V¢ € wha' (),
=1 79
(4.24)
with (H*,y*) = S(u*).
Proof. Tt suffices to prove that Sy : R — W14(Q) is continuously differentiable.
Let us introduce the operator T : Wh4(Q) x R"® — W14 (Q)* by

<T(yaU)a@Wla%Q)*leq’(Q) = <Xq(y)7€>W1v4'(9)*W1’q/(Q)
2
1 - ,
—~ 5/97“ j;ujcurl Hj| € VeEewh1(Q),

where X, is as defined in (4.4). Note that T is well defined since |curl H,|?> € L3 (Q) «
W' (Q)* (see Remark 3.2). For an arbitrarily fixed u* € R™, we set y* = Sy(u*),
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and hence T(y*,u*) = 0 (cf. (4.4)). Furthermore, T is continuously differentiable
with 9,T(y*,u*) = X, (y*). Consequently, Theorem 4.3 implies that 9,7 (y*,u") :
Wha(Q) — Whe' (Q)* is an isomorphism. Thus, by the implicit function theorem, Sy
is continuously differentiable at v*, and its derivative is given by

(4.25) Sy(u*)u = =0, T(y*,u*) 0T (y*, u*)u = =X (y*) 0T (y*, u*)u.

The derivative 9,7 (y*, u*)u € W4 (Q)* on the other hand is given by

(4.26)

(OuT (Y u")u, E) o ()W’ () Z / <Re curl <Zu;HJ> -Re curl H;
=1 j=1

+ Im curl <Zu3HJ) -Tm curl Hj)g vE e Wh'(Q).
j=1
Using the expression H* = S;(u*) = E?:l uiHj, (4.25)-(4.26) immediately imply
that S5(u*)u = y is given by the unique solution to (4.24). Hence, the assertion is
valid. d
Remark 4.5. Note that, since X;(y*) is an isomorphism (Theorem 4.3), we also
conclude from (4.24) that

n

(4.27) Shuyu =Y u; X)(y") " K,;(H"),

j=1

where K;(H*) € Wh' (Q)*, j =1,...,n, is defined by
(4.28)

<Kj (I:[*)7 5>W1"1/ Q)WL (9)

= / r(Re curl H* - Re curl H; +Im curl H* -Im curl H;){ V¢ € whd Q).

Q

5. Optimal control problem. We now focus on the control of the solution to

(1.1)—(1.2), which shall be established based on the theoretical results presented in

the previous sections. Given fixed data z € L?(Q)3, Hy € L*(O;C)3, p > 0, and
B > 0, we look for solutions of the following control problem:

(P) minimize J(u, H,y) /|Vy — 22+ /O|H — Hy)* + §|u|2
subject to
(5.1) Ay(H,y) = Equ
and
(5.2) Yo(z) < y(z) <yp(x) foraa. z e,
’ Ug <uj < up for all j € {1,...,n}.

Through the use of the control-to-state operator S, the control problem (P) can be
reduced to

) { mp S = I Siw), S )

subject to  yq(x) < (Sa(u))(z) < yp(x) for a.a. € Q,
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where the admissible set is defined by
Uog ={u € R | uy <uj <up Vje{l,...,n}}.

In what follows, a control u € R"™ is said to be feasible if and only if u € U,q and
Ya(x) < (S2(w)) () < yp(x) holds for a.a. z € Q.

THEOREM 5.1. Let (A1)-(A3) be satisfied and assume that there exists a feasible
control of (P). Then the optimal control problem (P) admits a solution.

Proof. The assertion follows from the Weierstrass theorem since the set of all
feasible controls is compact and the objective functional f is continuous. d

Notice that the solution to (P) is not necessarily unique due to the nonlinearities
involved in the state equation. We therefore concentrate in our analysis on local
solutions in the following sense: A feasible control u* € R™ is called a local solution
to (P) with respect to the R™-topology if there exists some r > 0 such that

holds for all feasible controls u satisfying |u — u*| < r. Next, by M(Q), we denote the
space of all regular Borel measures on the compact set . According to the Riesz—
Radon theorem, the space M(2) can be isometrically identified with the dual space

C(Q)* with respect to the duality pairing

{1 Py c@) = /ﬁ@du, @ €C(Q), pe MQ).

Let us now introduce the notion of the Lagrange functional associated with (P).
DEFINITION 5.2 (Lagrange functional associated with (P)). The Lagrange func-
tional associated with (P) is defined by £ : R™ x M(2) x M(Q2) — R,

(Sa(u) — yp) dp.

Q

L) = £+ [ (o= S20)) da+ [

Q

In what follows, let u* stand for a local solution to (P) and y* = Sy(u*). Thanks
to the continuous differentiability of the solution operator S, the objective functional
f:R™ — R given by

F) =5 [ 198:00) =P+ 5 [ 18100 = Bl + G

is continuously Fréchet differentiable. Its first derivative at u* in the direction u € R™
is given by

Fryu= [ (V9 = 2)- VS +p [ Re (1= Ho) - Re (S{(u)u)
+p/ohn (H* — Hy) - Im (S{(u*)u) + Bu* - u,

where H* = S1(u*) and y* = Sa(u*). We now recall from (4.5) that Sj(u*)u =
> j—y ujHj, where the vector fields H; € H(O; C3) are as defined in Definition 4.1.
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Consequently
Fyu= [ (V=2
+pzuj(/ Re (H* — Hy) - Re Hj+/
j=1 o

Im (H* — Hy) - Im Hj> + Bu* -u
o

- /Q(Vy* —2) - V(S3(u)u) + (ph™ + pu”) - u,
with

h; ::/ORe (H*—Hg)-Re Hj +1Im (H* — Hy) - Im Hj, j=1,...,n.

Further, let us introduce the linear and continuous operator L : WH4(Q) — WhHa(Q)*
defined by

(53) <Ly,U>W1,q(Q)*7wl,q(Q) = /(Vy - Z) - Vo Yu € Wl’q(Q).
Q
Using this operator, we arrive at

(5.4) fu)u = (Ly", Sy (u") uhywra(e)- wia(e) + (ph" + Bu”) - u.

Notice that, since f and Sy are continuously Fréchet differentiable, .Z is continuously
Fréchet differentiable, so that the following definition makes sense.

DEFINITION 5.3 (Lagrange multiplier associated with (P)). Let u* € R™ be a
local solution to (P). Then (pia, ) € M(Q) x M(Q) is said to be a pair of Lagrange
multipliers associated with the state constraints of (P) if and only if

(5.5) 0L (U, pray ip)(u — u™) >0 Yu € Uy,
(5.6) Pa =0, pp >0,
(5.7) /5 (Yo — S2(u")) dpa = /ﬁ (S2(u*) —y) duy = 0.

To establish the existence of Lagrange multipliers, we apply the Karush-Kuhn—
Tucker theorem (cf. Zowe and Kurcyusz [ZK79]). More precisely, we rely on a Slater-
type constraint qualification with respect to the state constraints in (P). This assump-
tion is referred to as the linearized Slater condition.

DEFINITION 5.4 (linearized Slater condition for (P)). A control u* € U,q satisfies
the linearized Slater condition for (P) if there exist some ug € Uyq and some constant
¢ > 0 such that

Ya(x) + ¢ < (Sg(u*))(a:) + (Sé(u*)(uo — u*))(a:) <yp(z) —c Vo e Q.

The formula for the derivative Sh(u*)(ug — u*) reads as in (4.24).

THEOREM 5.5 (first order necessary optimality conditions for (P)). Let (Al)-
(A4) be satisfied. Moreover, let u* be a local solution to (P) satisfying the linearized
Slater condition and (H*,y*) = S(u*). Then there exist Lagrange multipliers piq, i €
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M(ﬁ) and an adjoint state p* € W4 (Q) (here ¢ is the conjugate of q and hence
q < 3) such that

5
—div(k(z,y") Vp*) + g;( Y)Y - Vp' = —Ay* +div 2 + (i — pa)jo in Q,
nlo) B | + ol G07) = -5 (0~ el on %,
K(z,y )aaﬂ + deoly*’p* = (o — pa)ir onT,
(5.9) fa >0, gy >0,
(5.10) /ﬁ (Ya — S2(u™)) dpa = /ﬁ (Sa(u*) — yp) dpp = 0,
(5.11) ' =Py, ) (—%(v* + ph*)) ,
(5.12)

v;f:/ﬂp*r(Re curl H* - Re curl H; +1Im curl H* -Im curl H;) Vj e {l,...,n},

(5.13) h; ::/ORe(H*—Hd)-ReHj—l—Im(H*—Hd)-ImHj Vie{l,...,n},

where Hj is defined as in Definition 4.1 and P, ) denotes the standard projection
from R™ onto [ug,up)]™.

Proof. Since u* satisfies the linearized Slater assumption, there exist Lagrange
multipliers g,y € M(Q) satisfying (5.5)-(5.7) (cf. [ZK79]). Let us demonstrate
now that (5.5) is equivalent to the existence of p* € W4 (Q) with 1 < ¢/ < 3 and
h*,v* € R™ satisfying (5.8) and (5.11)—(5.13). In view of Remark 4.5, the derivative
of Sy at u* in the direction u € R™ is given by

(5.14) Syuyu=y =7y u;X(y") " K;(H").
j=1
Taking (5.4) and (5.14) into account, we find that

auf(u*,ua,ub)(u—u*):f’(u*)(u—u*)—/ﬁSé(u* u—u*)dp, + /82 (u—u™)dpp
Z )

j=1

WLy = fia+ v, X (y*) K (H*))wa ) wrago)+(ph* + Bu®) - (u — u),
where fi,, and fi, denote the elements of W14(Q)* associated with pa, uy € C(Q)* —
Wa(Q)* (for ¢ > 3) in the following sense:

(5.15)

<ﬁa,v>w1~«<n>*,w1vq<m:/,vdua, <ﬁb,v>w1w«<m*,w1~q<n>ZLvdub Yo € WHI(Q).
Q Q
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Thus, by (4.28), we infer that

0L (" s i) (u — )

n

Z (y )71)*(Ly* — fia + fip), Kj(H*)>W1,q/(g),wl,q/(g)*
j=1

(5.16) + (ph* + Bu*) - (u — u*)
Z / ;(y*)*l)*(Ly* — g + fip)r(Re curl H* - Re curl H;

=1
+1Im curl H* - Im curl H;) + (ph™ + fu”) - (u — u™).

<.

On the other hand, the weak formulation of (5.8) is given by

(5.17)

* * 8/€ * * * * * *
[ rtey o [ vy Vitord ol Prye +4 [ ol Pre
Q QY = r

:/(vy*_z)'vv_/vdﬂfr/vdub Vv e WH(Q).

Recall that X/ (y*) : Wh(Q) — Wha' (Q)* is given by

(X070 Dy sy = [ #ley’) Vo VE+ / o) 0V e

+4/G(0|y*|3v)§+4/80|y*|3v§ VE e WH(Q), Vo € WHI(Q).
¥ I

Since the operator G is self-adjoint, the adjoint operator X/ (y*)* : wha'(Q) —
Wha(Q)* associated with X/ (y*) is given by

(Xo(y™) & v)wiays wiaq) = /Q/i('ay*)vf'VU‘F/QZ—Z('W*)VQ*'V§U

—|—4/0|y*|3G(§)U+4/£U|y*|3§U VE e W (Q), Yo € WH(Q).
b r

Altogether, we can write the weak formulation (5.17) as the following operator equa-
tion:

(5.18) X, () p* =Ly — fia+juw in WH(Q)*.

In view of Theorem 4.3, the operator X/ (y*) : W'4(Q) — Wha'(Q)* is an isomor-
phism such that the adjoint operator X (y*)* : Wha' (Q) — WhHe(Q)* is in turn an
isomorphism. Thus, (5.18) admits a unique solution p* € W1 (Q) with 1 < ¢ < 3
given by

P = (X0 (LY = fra+ ) = (X)) (Ly” = fia + fin)-
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Applying p* to (5.16), we have

OuL(U" sy fhas pin) (U — u™) = Z(uj —uj) / p*r(Re curl H* - Re curl H;
Q

j=1

+1Im curl H* - Im curl H;) + (ph™ + pu*) - (u — u™)

= (v" + ph" + Bu*) - (u—u"),

where v* € R™ is specified by

vi = /Qp*r(Re curl H* - Re curl H; +Im curl H* - Im curl Hj) Vi=1,...,n.

Consequently, the variational inequality (5.5) implies that
0 < 0uZL(u", s, fras o) (u — u*) = (V* + ph* 4+ Bu*) - (u — u*) Yu € Uygq.

By classical arguments, a pointwise evaluation of the above variational inequality
yields the desired projection formula,

* 1 * *
u = ]P)[umub] (_E(U +,Oh )) .

This completes the proof. a

Appendix A. Tools for the Maxwell equations. Throughout this section,
we consider a simply connected, bounded Lipschitz domain O C R? such that

Al O:=|]0;, (m>1), Op,...,0,€C, 0,N0;=0,i#7.
J

Let I. C {0,...,m} be the index set of the conducting materials, and denote O, :=
Uier, Oi, Ope := O\ O...

We assume that
(A.2) dist(O;, Oj) >0 ford,jel.,i#j.

A.1. Embedding results. In order to deal with the weak formulation of the
Maxwell equations, embedding results for vector fields that satisfy a curl, a div, and
a vy or v constraint are very important.

For 1 < p, a < oo, we introduce

WE(0) = {y e L , (O)NLE (O) : v, (¥) € LY00)},

curl

(A:3) Wi (0) = Ay € L (0) N L (0) = 7(¢) € L*(00)} -

curl

In simply connected domains O, these are Banach spaces with respect to the graph
norms

]lwe= oy = lleurl Yl[izeoys + || dived|lLooy + 17n ()l L (00 ;

9]z 0y := lleurl ¥lliLeoys + | div bl Loy + 17 (¥) L0y -
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The following result has been proved in [Dru07].

LEMMA A.1. Let O C R? be a simply connected, bounded Lipschitz domain.
Then there exists some q1 > 3 such that for all p € [q], ¢1], we have WE*(O)
[L%(0))? with continuous embedding, s :== min{q:, p*, 3a/2} (p* = Sobolev embedding
exponent). If 00 € CL, then one can choose q1 = +oo. The same is valid for the
space WP*(0).

We also need embedding results for the case that one of the constraints is per-
turbed by a measurable coefficient. For a function u satisfying (2.11), we introduce

(A.4)
Vu(0) i= {v € [L2(O) |ewrl v € [LX(O), div(u ) € L(0), yu(uth) =0 on 00} .

We endow V,,(O) with the graph norm

1¥1lv,,0) := IYlliL2(0y3 + llcurl 220y + || div(e )| z2(0) -

Obviously, V,,(O) is a Hilbert space in this topology.

LEMMA A.2. Let O be a simply connected Lipschitz domain. Assume that p
satisfies (2.11) and that the domain O satisfies (2.6). Then there exists a number
s > 3 such that V,,(O) < [L*(0)]® with continuous embedding. If 0O € C', then one
can choose s = 6. The embedding V,,(O) = [LP(O)]3 is compact for all 1 < p < s.

The following property of the spaces H(O) (cf. (2.3)) is easy to derive (see, for
example, [Dru07] for a proof).

LEMMA A.3. Let O C R? have the structure (A.1) considered throughout the
paper and satisfy (A.2). Then if H € HY(O), we have y,(curl H) = 0 on 00;,
i € I,..

A.2. A decomposition lemma.

LEMMA A.4. Let O C R3 be a simply connected, bounded Lipschitz domain with
the property (A.2). Let r satisfy, in addition to (3.1), the condition v € C(O;) for
i € I,..

Then there exists a q1 > 3 such that for all q € [q}, q1] and for all f € [L1(0)]?
such that f =0 a.e. in Oy, there exist unique A € {H?(O) : divA =0, v+(A) = 0}
and p; € W,;9(0;) (subscript M = mean-value zero), i € I.., such that

1
A. =curl A+ = i YO, -
(A.5) f=curl A+ " ZGXI: Vpi xo,

In addition, we can find a positive constant ¢ = ¢(O, ¢, r) such that

(A.6) 1Al L

curl

)+ > IIpillwracon < el fllizaoye -
i€l

Proof. For each i € I.., we have O; € C%', and 1/r € C(0O;) is bounded away from
zero and from above.

According to the main result of the paper [ERS07] (cf. also Remark 3.18 of
[ERS07]) there exists ¢; > 3 such that for i € I. and for all ¢ € [q}, ¢1], there is
a unique p; € ij(Oi) satisfying

(A7) /Oi%wi-v&:/@f-vg
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for all £ € W]b’q/ (0;), and the estimate

Ipllwao,) < e(q, O, 1) || fllizao:) -

Define

(A.8)

w=f—1/rVp, in0O;,ié€l,
0 elsewhere.

Then w € [L9(0)]3, and in view of (A.7), divw = 0 in O, and 7, (w) = 0 on JO in
the weak sense.

We now prove that we can find A € {L{ , (O) : divA =0, v (A) = 0} such that
curl A = w.

We at first prove that

(A.9)
{yp € [L*(O)]? : divep =0, v, (¢) =0} = {curl A : A€ L2, (0), v:(A) = 0}.

To verify the last identity, consider first ¢ := curl A, where A € L2 _, (O) satisfies

curl

v (A) = 0. It is readily verified that diviy = 0, v, (%) = 0 in the weak sense. Thus

(A.10)
{¢p € [L*(0) : divep =0, yn(¥) =0} D {cwl A : A€ L2, (0), %(A) =0}.

Consider now ¢ € [L?(0)]* with divy) = 0, v, (¢) = 0, and assume that
/ Yocurl A=0 VAecL? ,(0),v(A)=0.
o

Then, by definition, curl ¢ = 0 in the weak sense. Since also divy = 0, v, (¢) = 0,
and since O is simply connected, it follows that ¢y = 0. We deduce that

{Y e [L*O) : divey =0, v () =0} N{curl A : A e L2, (0), (A =0}*-=0.

This, combined with (A.10), proves (A.9).
We can further show that
(A.11)
{curl A : Ac L%, (0), v%(A) =0} ={curl A : Ac L? , (0), div(A) =0, v (A) = 0}.

curl curl

As a matter of fact, given A € L2, (O), v,(A) = 0, one finds a unique a € W,*(0)
such that

/OVa-vgz/OA-vg

for all £ € W, %(0). Define the vector field A := A — Va. Then curl A = curl A4,
showing that

{eurl A : A€ L2, (0), v(A) =0} C{curl A : Ac L2, (0), div(A) =0, 1:(A) =0}.

curl curl

In view of (A.9) and (A.11), there exists A € LZ , (O) such that div A = 0, 11 (A4) = 0,
and w = curl A.
From the definition (A.8) of w, we deduce that curl A belongs to [L7(0O)]3.
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Using the notation (A.3), we can write that A € W/°°(O). Thus, by the embed-
ding result of Lemma A.1, A € [L9(0O)]?, and

[A[l Lo

curl

©0) < clg; O, ) | fllizscoye »

proving the estimate.

Finally, we easily verify from (A.8) that curl A = 0 in O \ O, which leads to
A€ HIO). O

Appendix B. Essential properties of the radiation operators. Let Q C R3
be a bounded Lipschitz domain, Q = U, Q;, m > 1, where {Q; }i—0...m is a family
of bounded Lipschitz domains such that Q; N Q; = 0 for ¢ # j. Assume that Qg is
enclosed in  in the sense that every x € 0€) is an interior point of Q. Set ¥ := 0
and ' = 09).

We introduce the linear integral operator K defined by

(B.1) (K(R))(2) == /Ew(z,y) R(y)dS, forzeX,

where the kernel w : ¥ x ¥ — R, called the view factor in the context of radiation
theory, is given by

ii(z) - (y — 2) iy) - (= — y) £
(B.2) w(z,y) == Tly — 2|4 O(z,y) fz#y,
0 if z=1y,

where O is the visibility function that penalizes the presence of opaque obstacles

1 if ]z,y[C Qo,

O(z,y) =
(z:9) { 0 else.
With the symbol ]z, y[, we denote the set conv{z,y} \ {z,y}, and 7 is a unit normal
to X.

Under mild assumptions on the geometry and on the emissivity ¢ (cf. Lemma B.2
(3)), the solution operator of the radiosity equation (I — (1 —¢) K)~! is well defined.
We can then define another linear operator,

(B.3) G=(I-K)I-(1—-¢g)K) e

We recall some basics about the nonlocal radiation operators K, G. For Banach
spaces X, Y, we denote by L£(X, Y') the set of all linear bounded operators from X
into Y. The following lemma has been proved in [Han02] for polyhedral surfaces, and
in [Tii97] for piecewise C! boundaries.

LEMMA B.1. Let ¥ € C' piecewise. Let w: ¥ x ¥ — R denote the view factor
(B.2). Then, for a.a. z€ X%,

/ w(z, y)dS, <1.
b

In addition, equality is valid if and only if the enclosure condition (2.5) is satisfied.
The following lemma states easily derived, but essential, consequences of Lemma
B.1.
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LEMMA B.2. Let the hypotheses of Lemma B.1 be valid.

For each 1 < p < oo the operator K extends to a bounded linear operator from
LP(X) into itself, and the norm estimate || K| zor(s), r(s)) < 1 is valid.

The operator K is positive, in the sense that K(f) > 0 a.e. on X, whenever f >0
a.e. on ¥3. Moreover, K is positive semidefinite and self-adjoint in L*(X).

If e : ¥ — R is such that

0<eg<e(z)<1 onX,

then the operator [I — (1 — ¢)K] has an inverse in L(LP(X), LP(X)).

The operator G is positive semidefinite and self-adjoint in L*(X). The operator
H := I — G is positive, self-adjoint in L*(X), and satisfies for all 1 < p < oo the
norm estimate |H|| 25y, Loy <1 -

Assume that (2.5) is valid. Then the kernel of the operator G consists of the
functions constant a.e. on X.. The range of G consists of functions with mean-
value zero over X.
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