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A-POSTERIORI ERROR ESTIMATION FOR SEMILINEAR PARABOLIC

OPTIMAL CONTROL PROBLEMS WITH APPLICATION TO MODEL

REDUCTION BY POD ∗

Eileen Kammann1, Fredi Tröltzsch1 and Stefan Volkwein2

Abstract. We consider the following problem of error estimation for the optimal control of nonlinear
parabolic partial differential equations: Let an arbitrary admissible control function be given. How
far is it from the next locally optimal control? Under natural assumptions including a second-order
sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance
between the two controls. To do this, we need some information on the lowest eigenvalue of the
reduced Hessian. We apply this technique to a model reduced optimal control problem obtained by
proper orthogonal decomposition (POD). The distance between a local solution of the reduced problem
to a local solution of the original problem is estimated.
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Introduction

In this paper, we focus on the following question for a class of optimal control problems for semilinear
parabolic equations: Suppose that a numerical approximation ũ for a locally optimal control is given. For
instance, it might have been obtained by a numerical optimization method or as the solution to some reduced
order optimization model. How far is this control from the nearest locally optimal control ū? Of course, we
have to assume that such a solution ū exists in a neighborhood of ũ. Moreover, ũ should already be sufficiently
close to ū. The question is to quantify the error ‖ũ− ū‖ in an appropriate norm.

In principle, this is not a paper on proper orthogonal decomposition (POD). Our estimation method is not
restricted to any specific method of numerical approximation for ũ. Our primary goal is a numerical application
of a perturbation method used by Arada et al. [2] in the context of FEM approximations of elliptic optimal
control problems. The main idea of this method goes back to Dontchev et al. [8] and Malanowski et al. [21],
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who introduced it for the a priori error analysis of optimal control problems governed by ordinary differential
equations.

However, we will apply our method to suboptimal controls ũ obtained by POD. Though POD is an excellent
method of model reduction for many time-varying or nonlinear differential equations, it lacks an a priori error
analysis that is in some sense uniform in the right-hand side of the underlying partial differential equation, say
with respect to the control function. Estimates of this type are known for the method of balanced truncation
(see, e.g. Benner et al. [4]) that is limited to linear and autonomous PDEs. There are results on a priori estimates
for POD that depend on certain assumptions on the orthogonal basis generated by the selected snapshots. We
refer to Kunisch and Volkwein [16], Sachs and Schu [25], or Tröltzsch and Volkwein [30]. However, such estimates
will in general depend on the control used for generating the snapshots. In Hinze and Volkwein [11] an a priori
error analysis is presented for linear-quadratic optimal control problems. If the POD basis is computed utilizing
the optimal state and associated adjoint variable, a convergence rate can be shown. But in real computation
we do not know the optimal solution in advance. In view of this, we are interested in a posteriori estimates
for assessing the precision of optimal controls for reduced control problems set up by POD. For the reduced-
basis method a posteriori error estimates for linear-quadratic optimal control problems we refer to Grepl and
Kärcher [9].

We extend a method suggested in [30] for linear equations to the case of semilinear equations. For this purpose,
we have to assume that ū satisfies a standard second-order sufficient optimality condition. The associated
coercivity constant of the reduced Hessian operator will be estimated numerically.

Let us explain our idea for the following two optimal control problems in a bounded Lipschitz domain Ω ⊂ Rn
with boundary Γ:

We consider the distributed optimal control problem

min J(y, u) :=
1

2

∫ T

0

∫
Ω

{
(y(x, t)− yd(x, t))2 + λu(x, t)2

}
dxdt (PD)

subject to the semilinear parabolic state equation

∂y

∂t
−∆y(x, t) + d(x, t, y(x, t)) = u(x, t) in Ω× (0, T )

y(x, t) = 0 in Γ× (0, T )

y(x, 0) = y0(x) in Ω

(0.1)

and to the pointwise control constraints

α ≤ u(x, t) ≤ β a.e. in Ω× (0, T ).

Moreover, we deal with the boundary control problem

min J(y, u) :=
1

2

∫ T

0

∫
Ω

(y(x, t)− yd(x, t))2 dxdt+
λ

2

∫ T

0

∫
Γ

u(x, t)2 ds(x)dt (PB)

subject to the parabolic state equation

∂y

∂t
−∆y(x, t) = 0 in Ω× (0, T )

∂y

∂ν
(x, t) + b(x, t, y(x, t)) = u(x, t) in Γ× (0, T )

y(x, 0) = y0(x) in Ω

(0.2)

and to the pointwise control constraints

α ≤ u(x, t) ≤ β a.e. in Γ× (0, T ).
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Here, and throughout the paper, ν ∈ Rn denotes the outward unit normal on Γ.
Our numerical analysis is based on the following assumptions:
(A1) Ω ⊂ Rn is a bounded domain with Lipschitz boundary Γ.
(A2) The functions d : Ω × [0, T ] × R → R and b : Γ × [0, T ] × R → R are measurable with respect to the

first two variables (x, t) and twice continuously differentiable with respect to the third variable y ∈ R.
The functions b and d are monotone non-decreasing with respect to the third variable y ∈ R for all fixed

(x, t) ∈ Γ× [0, T ] and Ω× [0, T ], respectively.
(A3) There is a constant C∞ > 0 such that

|d(x, t, 0)|+
∣∣∣∣∂d∂y (x, t, 0)

∣∣∣∣+

∣∣∣∣∂2d

∂y2
(x, t, 0)

∣∣∣∣ ≤ C∞ for a.a. (x, t) ∈ Ω× [0, T ]

and

|b(x, t, 0|+
∣∣∣∣ ∂b∂y (x, t, 0)

∣∣∣∣+

∣∣∣∣ ∂2b

∂y2
(x, t, 0)

∣∣∣∣ ≤ C∞ for a.a. (x, t) ∈ Γ× [0, T ].

Moreover, for all M > 0 there exists a constant LM > 0 such that∣∣∣∣∂2d

∂y2
(x, t, y1)− ∂2d

∂y2
(x, t, y2)

∣∣∣∣ ≤ LM |y1 − y2|

holds for a.a. (x, t) ∈ Ω× [0, T ] and all y1, y2 ∈ R satisfying |y1 − y2| < M . We require the same condition for
b for a.a. (x, t) ∈ Γ× [0, T ].

(A4) A desired state function yd ∈ L2(Ω × (0, T )), an initial function y0 ∈ L2(Ω), and real constants
λ > 0, α < β are given.

The paper is organized as follows: After this introduction, we explain the perturbation method and its use
for the simpler case of a linear equation in Section 1. In Section 2, we extend the perturbation idea to semilinear
equations. To make the paper also readable for readers being not familiar with POD, we briefly introduce the
main concept of POD in Section 3, and Section 4 is devoted to the numerical application of our method to
different nonlinear state equations.

1. A survey on the linear-quadratic case

1.1. The perturbation method for minimizing quadratic functionals

The perturbation method was introduced in [8, 21] in the context of optimal control of ordinary differential
equations, where it was used to derive a priori error estimates for associated numerical approximations. In a
different way, it was adapted in [2] to elliptic control problems. Let us explain this method for the following
situation:

We consider the quadratic optimization problem in Hilbert space

min
u∈C

f(u) :=
1

2
‖Su− yH‖2H +

λ

2
‖u‖2L2(D), (PQ)

where H is a real Hilbert space, D ⊂ Rm is a measurable bounded set, C ⊂ L2(D) is a nonempty, convex, closed
and bounded set, S : L2(D) → H a continuous linear operator, λ > 0 a fixed number, and yH ∈ H a fixed
element. In this form, optimal control problems with partial differential equations are very frequently discussed.
We refer only to the monography by Lions [18] or to the more recent books by Ito and Kunisch [14], Hinze et
al. [10] or to the textbook by Tröltzsch [29]. We will mainly refer to the last reference, since the discussion of
optimal control problems for semilinear parabolic equations in this book is very close to our notation.
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Theorem 1.1. Under the assumptions formulated above, (PQ) has a unique optimal solution ū ∈ C. It satisfies
the variational inequality∫

D

{(S∗(Sū− yH))(x) + λ ū(x)} (u(x)− ū(x)) dx ≥ 0 ∀ u ∈ C, (1.3)

where, S∗ : H → L2(D) denotes the adjoint operator to S.

This is a standard result of the optimization theory, we refer e.g. to [18] or to [29, Thm. 2.22]. Let now C be
the specific set C = {u ∈ L2(D) : α ≤ u(x) ≤ β for a.a. x ∈ D} with given real numbers α < β. We introduce
the adjoint state p̄ associated with ū by

p̄(x) := (S∗(Sū− yH))(x).

The variational inequality can be expressed equivalently in a pointwise way, namely

(p̄(x) + λū(x))ū(x) = min
v∈[α,β]

(p̄(x) + λū(x)) v (1.4)

for almost all x ∈ D. This has important consequences. We have for almost all x ∈ D

ū(x) =

 α, if p̄(x) + λū(x) > 0
−p̄(x)/λ, if p̄(x) + λū(x) = 0

β, if p̄(x) + λū(x) < 0.

While these inequalities show, how ū is determined by p̄ + λū, the implications below concern the opposite
direction; they follow directly from the discussion above. It must hold p̄(x) + λū(x) ≥ 0, if ū(x) = α

p̄(x) + λū(x) = 0, if α < ū(x) < β
p̄(x) + λū(x) ≤ 0, if ū(x) = β.

(1.5)

The last implications are essential for understanding the perturbation method. It is helpful to answer the
following question: Let ũ ∈ C be a function that need not be optimal for (PQ). Let p̃ be the associated adjoint
state.

If ũ were optimal, then p̃(x) + λũ(x) = 0 should be satisfied in almost all points x ∈ Ω, where α < ũ(x) < β
holds. If not, then p̃(x) + λũ(x) + ζ(x) = 0, if we define a perturbation function ζ in these points by

ζ(x) = −[p̃(x) + λũ(x)].

In the points, where ũ(x) = α holds, the inequality p̃(x) + λũ(x) ≥ 0 should be satisfied for optimality. If not,
then p̃(x) + λũ(x) + ζ(x) ≥ 0 is fulfilled with

ζ(x) = [p̃(x) + λũ(x)]−,

where [a]− is defined for a real number a by [a]− = (|a| − a)/2. Analogously, we define ζ in the points, where
ũ(x) = β. In this way, we obtain the following definition of ζ that is adopted from Arada et al. [2],

ζ(x) :=

 [p̃(x) + λũ(x)]−, if ũ(x) = α,
−[p̃(x) + λũ(x)], if α < ũ(x) < β,
−[p̃(x) + λũ(x)]+, if ũ(x) = β.

(1.6)
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The main idea behind the definition of ζ is the following: Although ũ will possibly not be optimal for (PQ), it
is optimal for the perturbed optimization problem

min
u∈C

f(u) :=
1

2
‖Su− yH‖2H +

λ

2
‖u‖2L2(D) +

∫
D

ζ(x)u(x) dx. (PQζ)

This follows from our construction, because ũ satisfies the associated variational inequality∫
D

(p̃(x) + λũ(x) + ζ(x))(u(x)− ũ(x)) dx ≥ 0 ∀u ∈ C.

By convexity, ũ is optimal for (PQζ). Now, it is easy to estimate the distance between ũ and ū.

Lemma 1.2. Suppose that ū is optimal for (PQ), ũ ∈ C is given arbitrarily, and ζ is defined by (1.6). Then
there holds

‖ũ− ū‖L2(D) ≤
1

λ
‖ζ‖L2(D).

Proof. We just write down the variational inequalities satisfied by ū and ũ, and insert the other function,
respectively. This yields

(S∗(Sū− yH) + λū, ũ− ū)L2(D) ≥ 0

(S∗(Sũ− yH) + λũ, ū− ũ)L2(D) + (ζ, ū− ũ)L2(D) ≥ 0.

Adding both inequalities, we arrive at

−‖S(ū− ũ)‖2L2(D) − λ ‖ū− ũ‖
2
L2(D) + (ζ, ū− ũ)L2(D) ≥ 0,

and hence, since ‖S(ū− ũ)‖2L2(D) ≥ 0,

λ ‖ū− ũ‖2L2(D) ≤ ‖ζ‖L2(D) ‖ũ− ū‖L2(D).

Now the claimed result follows immediately. �

Notice that, given ũ, ζ can be computed. It is determined by the adjoint state p̃ associated with ũ.

1.2. Application to a linear-quadratic control problem

As a simple application, we consider the following linear-quadratic version of (PD),

min J(y, u) :=
1

2

∫ T

0

∫
Ω

{
(y(x, t)− yd(x, t))2 + λu(x, t)2

}
dxdt (PL)

subject to
∂y

∂t
−∆y = u in Ω× (0, T )

y = 0 in Γ× (0, T )

y(·, 0) = 0 in Ω

(1.7)

and to the pointwise control constraints

α ≤ u(x, t) ≤ β a.e. in Ω× (0, T ).



6 TITLE WILL BE SET BY THE PUBLISHER

We consider y in the space

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) :
dy

dt
∈ L2(0, T ;H1(Ω)′)},

cf. [18]. For simplicity, we have assumed y0 = y(·, 0) = 0. The case y0 6= 0 is reduced to that with homogeneous
initial condition in a standard way: We shift the solution ŷ associated with homogeneous right-hand side u but
inhomogeneous initial data y0 to yd. Then we consider ŷd := yd − ŷ instead of ŷ.

We introduce the notation Q := Ω× (0, T ) and Σ := Γ× (0, T ) and define the set of admissible controls by

Uad = {u ∈ L2(Q) : α ≤ u(x, t) ≤ β a.e. in Q}.

We are going to apply Lemma 1.2 with the choice D := Q, C := Uad, yH := yd.
The adjoint state p ∈W (0, T ) associated with a control u is obtained from the adjoint equation

−∂p
∂t
−∆ p = yu − yd in Ω× (0, T )

p = 0 in Γ× (0, T )

p(·, T ) = 0 in Ω,

(1.8)

where yu denotes the state associated with u. It is a standard result that (PL) has a unique optimal control ū.
Let now ũ ∈ Uad be given. For instance, we might think of a control obtained as the solution to a model

reduced optimal control problem. In our numerical test case, the model reduced problem is defined upon POD.
To estimate the distance between ũ and the unknown exactly optimal control ū, we proceed as follows: First,

we determine the exact state ỹ := yũ by solving the state equation of (PL) with control u := ũ. Next, we insert
ỹ for yu in the adjoint equation (1.8) to obtain the associated adjoint state p̃ as solution.

Now we are able to determine the perturbation ζ ∈ L2(Q) by (1.6) (take x := (x, t) and D := Q). Finally,
we arrive at the estimate

‖ũ− ū‖L2(Q) ≤
1

λ
‖ζ‖L2(Q).

In Studinger and Volkwein [27] and [30], this method of estimation was successfully applied to different
optimal control problems with quadratic objective functional and linear state equation. It is also successfully
applied for other reduced-basis approximations, see Tonn et al. [28]. For recent extension to nonlinear problems
we refer to Kahlbacher and Volkwein [15], where the presented error estimates are utilized in a multilevel SQP
algorithm. Notice that we tacitly assume to solve the state and adjoint equation for ỹ and p̃ exactly, i.e. we
neglect associated discretization errors. The inclusion of such errors is subject of ongoing research.

2. The nonlinear case

2.1. The perturbation method for nonconvex functionals

We consider now the nonconvex but smooth optimization problem

min
u∈C

f(u) :=
1

2
‖G(u)− yH‖2H +

λ

2
‖u‖2L2(D), (P)

where G : L∞(D) → H is a twice continuously Fréchet differentiable operator and all other quantities are
defined as in (PQ). We assume that, for all u ∈ C, the first- and second-order derivatives G′(u) : L∞(D)→ H
and G′′(u) : L∞(D)× L∞(D) → H can be continuously extended to L2(D): There exists some constant c > 0



TITLE WILL BE SET BY THE PUBLISHER 7

not depending on u and v such that

‖G′(u)v‖H ≤ c ‖v‖L2(D) ∀u ∈ C, ∀v ∈ L∞(D) (2.9)

‖G′′(u)(v1, v2)‖H ≤ c ‖v1‖L2(D)‖v2‖L2(D) ∀u ∈ C, ∀v1, v2 ∈ L∞(D) (2.10)

with some constant c > 0. Then the operators G′(u) and G′′(u) can also be applied to increments v, v1, v2

in L2(D). Therefore, we can view G′(u) as continuous linear operator from L2(D) to H so that its adjoint
operator maps continuously H to L2(D). We should mention that the uniformity with respect to u in (2.9),
(2.10) requires usually the boundedness of C in L∞(D).

Remark 2.1. This is the typical way to deal with the well-known two-norm discrepancy that usually occurs
in nonlinear parabolic control problems. Here, G is not differentiable in L2(D), but in L∞(D). On the other
hand, f ′′(u) is coercive in L2(D)2 but not in L∞(D)2. This genuine difficulty was addressed first by Ioffe [13]
and discussed later by Malanowski [20] in the context of optimal control of ordinary differential equations. The
treatment of this problem in second-order sufficient optimality conditions for the control of semilinear parabolic
PDEs is explained in [29, Sections 4.10 and 5.7].

The derivative f ′(u) is given by

f ′(u) v = (G(u)− yH , G′(u) v)H + λ(u, v)L2(D)

= (G′(u)∗(G(u)− yH) + λu, v)L2(D).
(2.11)

The L2(D)-function
pu := G′(u)∗(G(u)− yH) (2.12)

is the adjoint state associated with u.
Let us determine for convenience also the second-order derivative of f : L∞(D) → R. Thanks to the

assumptions on G, this derivative exists. To determine it, we consider the expression for f ′ with fixed increment
v := v1 ∈ L∞(D) and differentiate again in the direction v2. We find by the chain and product rule

f ′′(u)(v1, v2) = (G′(u) v2, G
′(u) v1)H

+ (G(u)− yH , G′′(u)(v2, v1))H + λ(v2, v1)L2(D).
(2.13)

By our assumptions on G, also f ′′(u) can be continuously extended to a bilinear form on L2(D)× L2(D) and

|f ′′(u)(v1, v2)| ≤ c ‖v1‖L2(D)‖v2‖L2(D) ∀u ∈ C, ∀v1, v2 ∈ L∞(D).

Let us now assume that ū ∈ C is a locally optimal solution to (P) in the sense of L∞(D), i.e. there is some
ρ > 0 such that

f(u) ≥ f(ū) ∀u ∈ C with ‖u− ū‖L∞(D) ≤ ρ.
We obtain the following extension of Theorem 1.1:

Theorem 2.2. If ū ∈ C is a locally optimal solution of (P) in the sense of L∞(D), then it obeys the variational
inequality ∫

D

{(G′(ū)∗(G(ū)− yH))(x) + λ ū(x)} (u(x)− ū(x)) dx ≥ 0 ∀ u ∈ C. (2.14)

This result follows from the variational inequality

f ′(ū)(u− ū) ≥ 0 ∀u ∈ C,

cf. e.g. Lemma 4.18 in [29]. Here, we use the representation (2.11) of f ′(ū).
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Let now p̄ := pū be the adjoint state defined in (2.12) and again C = {u ∈ L2(D) : α ≤ u(x) ≤ β a.e. in D}
with real numbers α < β. Analogously to the quadratic problem (PQ), the variational inequality can be
expressed in a pointwise form,

(p̄(x) + λū(x))ū(x) = min
v∈[α,β]

(p̄(x) + λū(x)) v for a.a. x ∈ D. (2.15)

This is identical with (1.4), hence we can draw the same conclusions from (2.15) as in the linear case. Therefore,
the perturbation ζ is defined exactly as in (1.6).

Let now be ũ ∈ C sufficiently close to ū. We pose the same question as for (PQ): Can we quantify the
distance ‖ũ − ū‖? Now, however, the situation is more complicated. We need some second-order information
on ū. Assume that there exists some δ > 0 such that the coercivity condition

f ′′(ū)(v, v) ≥ δ ‖v‖2L2(D) ∀v ∈ L2(D) (2.16)

is satisfied. Then for any 0 < δ′ < δ there exists a radius r(δ′) > 0 such that

f ′′(u)(v, v) ≥ δ′ ‖v‖2L2(D) ∀u with ‖u− ū‖L∞(D) ≤ r(δ
′), ∀v ∈ L2(D). (2.17)

If ũ belongs to this neighborhood, then we are able to estimate the distance.

Remark 2.3. To be on the safe side, we might select δ′ := δ/2 and set r := r(δ/2). This can be too pessimistic.
In the application to POD we are mainly interested in the order of the error so that the factor 1/2 is not that
important. We use δ′ := δ, although this can be slightly too optimistic. ♦

Theorem 2.4. Let ū be locally optimal for (P) and assume that ū satisfies the second-order condition (2.16).
If ũ ∈ C is given such that ‖ũ − ū‖L∞(D) ≤ r, where r is the radius introduced in (2.17) for δ′ := δ/2, then it
holds

‖ũ− ū‖L2(D) ≤
2

δ
‖ζ‖L2(D),

where ζ is defined as in (1.6).

Proof. As in the convex quadratic case, ũ satisfies the first-order necessary optimality conditions for the per-
turbed optimization problem

min
u∈C

f(u) + (ζ, u)L2(D). (Pζ)

We insert ū in the variational inequality for ũ and ũ in the one for ū and obtain

(f ′(ũ) + ζ, ū− ũ)L2(D) ≥ 0

(f ′(ū), ũ− ū)L2(D) ≥ 0.

We add both inequalities and find

(f ′(ũ)− f ′(ū), ū− ũ)L2(D) + (ζ, ū− ũ)L2(D) ≥ 0.

The mean value theorem implies

−f ′′(û)(ū− ũ)2 + (ζ, ū− ũ)L2(D) ≥ 0

with some û ∈ {v ∈ L2(D) | v = sū + (1 − s)ũ with s ∈ (0, 1)}. Now we apply (2.17) and the Cauchy-Schwarz
inequality to deduce

δ

2
‖ũ− ū‖2L2(D) ≤ ‖ζ‖L2(D)‖ũ− ū‖L2(D).

¿From this inequality, the assertion of the theorem follows in turn. �
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2.2. Application to the parabolic boundary control problem (PB)

Our general result can be applied in various ways. Let us explain its use for the parabolic boundary control
problem (PB). From the theoretical point of view, (PB) is more difficult than the distributed problem (PD).
For (PB), the control-to-state mapping G is not differentiable from L2(Σ) to C(Q̄). Here, the two-norm
discrepancy, mentioned in Section 2.1, is a genuine issue. We refer, for instance, to the extensive discussion of
this issue in [29] and to the paper by Casas et al. [5] that shows in particular, how the two-norm discrepancy
can be overcome in problems with control and state constraints. In (PD), this difficulty does not occur for the
spatial dimension n = 1, while it also arises for all n ≥ 2. Therefore, we selected (PB) for our analysis.

We define
Uad = {u ∈ L∞(Σ) : α ≤ u(x, t) ≤ β for a.a. (x, t) ∈ Σ}. (2.18)

The following result is known on the solvability of the state equation:

Theorem 2.5. For all u ∈ Uad, the state equation (0.2) has a unique solution yu ∈ Y := W (0, T )∩C(Q̄). The
mapping G : u 7→ yu is twice continuously differentiable from L∞(Σ) to Y . In particular, it is twice continuously
differentiable from L∞(Σ) to H := L2(Q). The first- and second-order derivatives G′ and G′′ obey the extension
conditions (2.9), (2.10) for the choice D := Q, C = Uad.

We refer to [29, Theorems 5.9 and 5.16]. The extension conditions follow immediately from the representation
formulas for these derivatives stated in these theorems. The same theorems include also the result for the problem
(PD). Here, the reduced functional is given by

f(u) :=
1

2

∫ T

0

∫
Ω

(yu(x, t)− yd(x, t))2 dxdt+
λ

2

∫ T

0

∫
Γ

u(x, t)2 ds(x)dt.

Analogously to (2.11) and (2.12), the first derivative of the reduced functional can be expressed in the form

f ′(u) v =

∫ T

0

∫
Γ

(pu(x, t) + λu(x, t))v(x, t) ds(x)dt, (2.19)

where pu is the adjoint state associated with u. It is the unique solution to the adjoint equation

−∂p
∂t
−∆p = yu − yd in Ω× (0, T )

∂p

∂ν
+
∂b

∂y
(x, t, yu) p = 0 in Γ× (0, T )

p(x, T ) = 0 in Ω.

(2.20)

In view of our Theorem 2.2, any locally optimal control ū of (PB) has to obey the following variational
inequality: ∫ T

0

∫
Γ

(p̄(x, t) + λū(x, t))(u(x, t)− ū(x, t)) ds(x)dt ≥ 0 ∀u ∈ Uad, (2.21)

where p̄ := pū.
The general form of the second derivative of the reduced functional was determined in (2.13). In this

representation, terms of the form G′(u)v appeared. For given v ∈ L2(Σ), the function y = G′(u)v is the unique
solution of the linearized parabolic equation

∂y

∂t
−∆y = 0 in Ω× (0, T )

∂y

∂ν
+
∂b

∂y
(x, t, yu) y = v in Γ× (0, T )

y(x, 0) = 0 in Ω,

(2.22)
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where yu = G(u) is the state associated with u, cf. [29, Theorem 5.9]. Therefore, the mapping v 7→ y is
continuous from L2(Σ) to W (0, T ), in particular to L2(Q); this yields the first condition of continuous extension
(2.9).

The second derivative z = G′′(u)(v1, v2) is the unique solution to the same equation with v substituted by

v := − ∂
2b

∂y2
(x, t, yu)y1y2, where yi = G′(u)vi, i = 1, 2, and

∂z

∂t
−∆z = 0 in Ω× (0, T )

∂z

∂ν
+
∂b

∂z
(x, t, yu) z = − ∂

2b

∂y2
(x, t, yu)y1y2 in Γ× (0, T )

z(x, 0) = 0 in Ω.

(2.23)

This is a linear equation with ”control” − ∂
2b

∂y2
(x, t, yu)y1y2. Therefore, it is not difficult to see that the second

term in the representation (2.13) for f ′′(u) can be re-written in terms of the adjoint state. Namely, it holds

f ′′(u)v2 = J ′′(yu, u)(y, v)2 −
∫ T

0

∫
Ω

pu
∂2b

∂y2
(x, t, yu) y2 ds(x)dt,

=

∫ T

0

∫
Ω

y2 dxdt+ λ

∫ T

0

∫
Γ

v2 ds(x)dt−
∫ T

0

∫
Γ

pu
∂2b

∂y2
(x, t, yu) y2 ds(x)dt.

(2.24)

We refer, for instance to [29, Section 5.7] or to the recent paper by Casas and Tröltzsch [6], where second-order
derivatives are determined for more general quasilinear equations. The second extension condition (2.10) follows
immediately from (2.23).

In (2.24), y is the solution to the linearized equation (2.22). The expression above is just the second-order
derivative of the Lagrangian function defined upon the adjoint state pu associated with u. Therefore, the
second-order sufficient optimality condition (2.16) means that∫ T

0

∫
Ω

y2 dxdt+

∫ T

0

∫
Γ

{
λ v2 − pu

∂2b

∂y2
(x, t, yu) y2

}
ds(x)dt

≥ δ
∫ T

0

∫
Γ

v2ds(x)dt ∀ v ∈ L2(Σ).

(2.25)

Since y is the solution of the linearized equation that is associated to v and the left-hand side of this equation
is the second derivative of the Lagrangian function, this expresses a well known formulation of the (strong)
second-order condition: The second derivative of the Lagrangian function is assumed to be coercive on the
subspace defined by the linearized equation.

2.3. Application of the perturbation method

Let now ũ ∈ Uad be an arbitrary control that is close to a locally optimal control ū of (PB). We assume that
ū satisfies the sufficient second-order optimality condition with some δ > 0. In other words, the coercivity con-
dition (2.25) is fulfilled for u := ū. Since the second-order condition is stable with respect to L∞-perturbations
of ū, we are justified to assume that there exists some ρ > 0 such that

f ′′(u)v2 ≥ δ

2

∫ T

0

∫
Γ

v2ds(x)dt ∀ v ∈ L2(Σ),∀u ∈ Bρ(ū), (2.26)

where Bρ(ū) =
{
v ∈ L2(Σ) : ‖ū− v‖L∞(Σ) < ρ

}
. We assume that ũ belongs to Bρ(ū). Now we define the

perturbation function ζ as in (1.6), where (x, t) ∈ Ω × [0, T ] is substituted for x. Thanks to Theorem 2.4, we
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obtain

‖ũ− ū‖L2(Σ) ≤
2

δ
‖ζ‖L2(Σ). (2.27)

We should mention already here a serious theoretical obstacle that can hardly be rigorously overcome. To
apply our method of a posteriori estimation, we need the numbers ρ and δ. As ρ is concerned, we can only
assume that the method of determining the (suboptimal) control ũ was sufficiently precise so that ‖ũ− ū‖ < ρ.

There exists a method by Rösch and Wachsmuth [23, 24] to verify if there exists a locally optimal control
ū in a certain neighborhood of a given ũ. However, this tool is difficult to apply. It will work only for fairly
special problems.

In addition, we must determine the coercivity constant δ. In computations, we deal with a finite-dimensional
approximation of the control problem and determine the smallest eigenvalue of the reduced Hessian. In general,
this way is not reliable in estimating the coercivity constant δ for the infinite-dimensional undiscretized optimal
control problem: In [24], a discouraging example is constructed, where computations with very small mesh
size indicate a sufficient second-order condition for a point, which is a saddle point. In special cases, the ideas
of [23,24] might be applied that rely on deep analytical estimations.

Summarizing this issue, we must confess that there is no reliable and at the same time practicable method to
verify our assumptions absolutely certain. We have to trust that our problem behaves well in a neighborhood
of the unknown solution ū. This is similar to problems of nonlinear programming, where optimization routines
are started without evidence whether a constraint qualification is satisfied at the unknown solution or not.

We assume in the sequel that our computed suboptimal control belongs to a neighborhood of a locally optimal
solution ū that satisfies a second-order sufficient optimality condition. Moreover, we assume that we are able
to determine the order of the coercivity constant δ by the lowest eigenvalue of the Hessian matrix associated
with the suboptimal control.

3. Model reduction by POD

In this section, we give a very brief survey on how to establish a reduced order model of the parabolic
boundary control problem (PB) by applying standard POD. For more information and proofs we refer the
reader to [16] or Volkwein [32], for instance. A survey on methods of model reduction and a comparison of
different reduction methods is contained in Antoulas [1].

3.1. The discrete POD method

Define H = L2(Ω) and let us ∈ L2(Σ) be an arbitrary control with associated state ys = G(us) ∈ Y ⊂
L2(0, T ;H). Since we cannot compute the whole trajectory ys(t) for all t ∈ [0, T ], we define a partition
0 = t0 < t1 < . . . < tnt = T of the time interval [0, T ] and take snapshots ysi := ys(ti) ∈ H, i = 0, . . . , nt, of the
state ys at the given time instances t0, . . . , tnt .

Our goal is to find a small Galerkin basis that well expresses the main properties of the PDE in the finite
dimensional subspace Hnt defined by

Hnt = span {ysi | i = 0, . . . , nt} ⊂ H

with dimension d = dim Hnt . Let {φ1, . . . , φd} be a basis of Hnt that is orthonormal with respect to the inner
product of L2(Ω). Then every ysi = ys(ti), i = 0, . . . , nt, is a linear combination of φ1, . . . , φd,

ysi =

d∑
j=1

(ysi , φj)H φj .
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Now choose a fixed number ` ∈ {1, . . . , d}. In the application to model reduction, ` is small compared with d.
We intend to find an orthonormal set of functions {ϕj}`j=1 ⊂ H such that the sum of squared errors

εi =
∥∥∥ysi − ∑̀

j=1

(ysi , ϕj)Hϕj

∥∥∥2

H

is minimized. In other words, we consider the optimization problem

min
ϕ1,...,ϕ`∈H

nt∑
i=0

αi

∥∥∥ysi − ∑̀
j=1

(ysi , ϕj)H ϕj

∥∥∥2

H
=: J nt(ϕ1, . . . , ϕ`),

s.t. (ϕi, ϕj)H = δij ∀ i, j ∈ {1, . . . , `},

(3.28)

where α0, . . . , αnt are the trapezoidal weights

α0 = (t1 − t0)/2, αi = (ti+1 − ti−1)/2, for i = 1, . . . , nt − 1, αnt = (tnt − tnt−1)/2.

The solution to (3.28) is obtained by solving a certain eigenvalue problem, described by the linear operator
Rnt : H → Hnt that maps z ∈ H to

Rntz =

nt∑
i=0

αi (z, ysi )H y
s
i . (3.29)

The following proposition characterizes the operator Rnt and shows that the eigenfunctions to the ` largest
eigenvalues of Rnt solve the problem (3.28).

Proposition 3.1. Let H be a real Hilbert space, y ∈ C([0, T ], H), Hnt = span {y(ti) | i = 0, . . . , nt} ⊂ H with
dimension d = dim Hnt and Rnt : H → Hnt defined in (3.29). Then the following statements hold:

(i) The operator Rnt is bounded, self-adjoint, compact and non-negative.
(ii) There exist a sequence of eigenvalues {λnti }di=1 with λnt1 ≥ λnt2 ≥ . . . ≥ λntd ≥ 0 and an associated

orthonormal set {ψnti }di=1 ⊂ H of eigenelements that solve the eigenvalue problem

Rntψnti = λnti ψ
nt
i , i = 1, . . . , d.

(iii) For any fixed number ` ∈ {1, . . . , d}, problem (3.28) is solved by the eigenfunctions {ψnt1 , . . . , ψnt` }.
(iv) The corresponding minimal value of J nt is given by

inf
ϕ1,...,ϕ`∈H

J nt(ϕ1, . . . , ϕ`) = J nt(ψnt1 , . . . , ψnt` ) =

d∑
i=`+1

λnti .

For a proof we refer to e.g. [32], [31, Section 1.3] and Holmes et al. [12, Section 3]. Note that we have
Rnt = YY∗, where the bounded linear operator Y : Rnt+1 → Hnt and its Hilbert space adjoint operator
Y∗ : H → Rnt+1 are defined by

Yq =

nt∑
i=0

αiqi y
s
i , (Y∗z) =

(
(z, ys0)H , . . . ,

(
z, ysnt

)
H

)>
.

Here, we used the notation q = (q0, . . . , qnt)
> for every q ∈ Rnt+1. Analogously to the theory of singular value

decomposition for matrices, the linear, bounded, compact, and self-adjoint operator Knt = Y∗Y : Rnt+1 →
Rnt+1 defined by

(Kntq)i =

nt∑
j=0

αj
(
ysj , y

s
i

)
H
qj , i = 0, . . . , nt,
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has the same eigenvalues {λnti }di=1 as Rnt . The corresponding eigenvectors of Knt are obtained by

(Φnti )j =
1√
λnti

(Y∗ψnti )j =
1√
λnti

(ψnti , y
s
j )H , j ∈ {0, . . . , nt},

for all i ∈ {1, . . . , `}. In many cases, the number (nt + 1) of time instances is much smaller than the number
mx of spatial ansatz functions. Then it is convenient to solve the eigenvalue problem

KntΦnti = λnti Φnti , i = 1, . . . , d, (3.30)

instead of using the operator Rnt .
So far, we considered ysi as exact solution to the parabolic PDE at the time instances ti. Now we apply

a standard finite element approximation with respect to the spatial variable x. For this purpose, let Th be a
family of regular triangulations of Ω with mesh size h > 0. For each Th, let Vh ⊂ L2(Ω) be the space of piecewise
linear and continuous functions spanned by the finite element basis functions {ϕ1, . . . , ϕmx}, mx ∈ N.

Then for every function z ∈ Vh there exist z1, . . . , zmx ∈ R such that

z(x) =

mx∑
j=1

zjϕj(x), for all x ∈ Ω. (3.31)

Thanks to our numerical approximation of the PDE, we can assume that our snapshots ysi belong to Vh.
Therefore, for every i ∈ {0, . . . , nt} there exist γi1, . . . , γ

i
mx ∈ R, such that

ysi =

mx∑
j=1

γijϕj , (3.32)

where now ysi denotes the semidiscrete FEM-approximation of ysi . In order to avoid too many indices, we do
not write ysi,h. Set

Hnt = span{ysi | i = 0, . . . , nt} ⊂ Vh.
For convenience, we introduce the vectors ~ysi = (γi1, . . . , γ

i
mx)>. In this way, we have the correspondence

Vh 3 ysi ∼ ~ysi ∈ Rmx . Let z ∈ Vh be given. Then

(Rntz)(x) =

nt∑
i=0

αi (ysi , z)L2(Ω) y
s
i (x).

By definition, we have Rnt : H → Hnt ⊂ Vh. Let us denote the restriction of Rnt to Vh with range in Vh by the
same symbol so that Rnt : Vh → Vh. Applying equation (3.31) for every node x1, . . . , xmx of the triangulation
of Ω, we infer for Vh 3 z ∼ ~z ∈ Rmx and Vh 3 ysi ∼ ~ysi ∈ Rmx

(Rntz)(xj) =

nt∑
i=0

mx∑
k=1

αi γ
i
k ϕk(xj)

mx∑
l,ν=1

γil zν (ϕl, ϕν)L2(Ω)

=

nt∑
i=0

mx∑
l,ν=1

αi γ
i
j γ

i
l (ϕl, ϕν)L2(Ω) zν

=

nt∑
i=0

mx∑
l,ν=1

αi Yji Yli(Mh)lν zν =

nt∑
i=0

mx∑
l,ν=1

αi Yji (Y >)il(Mh)lν zν

=

nt∑
i=0

YjiDii (Y >Mh z)i =
(
Y D Y >Mh~z

)
j
,

(3.33)
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where Y =
[
~ys0| . . . |~ysnt

]
, D = diag(α0, . . . , αnt). In the first line, we used ϕk(xj) = δkj . Mh with entries

(Mh)kl = (ϕk, ϕl)L2(Ω)

is the mass matrix associated with the finite element basis functions. Define R̄nt : Rmx → Rmx by

R̄nt~z :=

nt∑
i=0

αi ((~ysi )
>Mh ~z) ~y

s
i .

Since
(Rntz)(xj) =

nt∑
i=0

αi (ysi , z)L2(Ω) y
s
i (xj) =

nt∑
i=0

αi(~y
s
i )
>Mh~z γ

i
j

=

(
nt∑
i=0

αi((~y
s
i )
>Mh~z) ~y

s
i

)
j

=
(
R̄nt~z

)
j
,

the operator Rnt corresponds to the matrix R̄nt in the numerical approximation. Moreover, by (3.33) we have

R̄nt~z = Y D Y >Mh~z.

To obtain an optimal solution of (3.28), we solve the eigenvalue problem

R̄nt ~ψnti = Y DY >Mh
~ψnti = λnti

~ψnti , i = 1, . . . , `. (3.34)

Defining Ŷ = M
1
2

h Y D
1
2 , ψ̂nti = M

1
2

h
~ψnti and multiplying (3.34) by M

1
2

h from the left, we arrive at the symmetric
eigenvalue problem

Ŷ Ŷ >ψ̂nti = λnti ψ̂
nt
i , i = 1, . . . , `.

Using similar arguments for the operator Knt , we also can solve the discretized eigenvalue problem

K̄nt~Φnti = Y >MhY D ~Φnti = λnti
~Φnti , i = 1, . . . , `. (3.35)

Defining Φ̂nti = D
1
2 ~Φnti and multiplying (3.35) by D

1
2 from the left, we infer

Ŷ >Ŷ Φ̂nti = λnti Φ̂nti , i = 1, . . . , `.

Summarizing, we compute the POD basis of rank ` by the method of snapshots as follows:

Algorithm 3.2 (Method of Snapshots). Let mx � nt.

(1) Solve the symmetric eigenvalue problem of dimension (nt + 1)× (nt + 1)

Ŷ >Ŷ Φ̂nti = λnti Φ̂nti , i = 1, . . . , `.

(2) Transform the eigenvectors Φ̂nt1 , . . . , Φ̂nt` by singular value decomposition to the POD basis vectors
~ψnt1 , . . . , ~ψnt` ,

~ψnti = M
− 1

2

h ψ̂nti =
1√
λnti

M
− 1

2

h Ŷ Φ̂nti =
1√
λnti

Y D
1
2 Φ̂nti , i ∈ {1, . . . , `}.

Then the POD basis functions Vh 3 ψnti ∼ ~ψnti ∈ Rmx , i = 1, . . . , `, are given by

ψnti =

mx∑
j=1

(~ψnti )jϕj(x).
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Remark 3.3. (1) In the method of snapshots, we do not have to set up the matrix M
1
2

h , since

Ŷ >Ŷ = D
1
2Y >MhY D

1
2 .

(2) Note that (3.34) is an mx ×mx eigenvalue problem, whereas (3.35) has dimension (nt + 1)× (nt + 1).
In many applications we have mx � nt. Hence, the operator Knt is preferred for generating the POD
basis. In the case, mx ≤ nt, one should solve the problem (3.34) instead. Moreover, the singular value
decomposition is much more stable in computing the small eigenvalues, see e.g. Lass and Volkwein [17]
and [27] for this aspect in the context of POD. ♦

3.2. POD Galerkin projection

Let us consider exemplarily the state equation (0.2) of our boundary control problem (PB). For convenience,
we use the short notation (·, ·)Ω := (·, ·)L2(Ω) and (·, ·)Γ := (·, ·)L2(Γ) for inner products. Then the corresponding
variational formulation of (0.2) is given by

d

dt
(y(t), ϕ)Ω + (∇y(t),∇ϕ)Ω + (b(·, t, y(t)), ϕ)Γ = (u(t), ϕ)Γ

(y(0), ϕ)Ω = (y0, ϕ)Ω,

for all ϕ ∈ H1(Ω) and for almost all t ∈ [0, T ]. Under our assumptions on the given data, to each u ∈
Lr(Γ× (0, T )) with r > 2, there exists a unique solution y ∈W (0, T ) ∩ C(Q̄) of (0.2).

Let now {ti}nti=0 be an equidistant partition of [0, T ]. As above, we denote by Vh the space of piecewise
linear functions spanned by the FE basis functions {ϕ1, . . . , ϕmx} defined on a regular triangulation Th of Ω.
To generate the snapshots, we select a fixed reference control us ∈ Lr(Σ) and solve the semidiscrete equation
for y : [0, T ]→ Vh,

d

dt
(y(t), ϕj)Ω + (∇y(t),∇ϕj)Ω + (b(·, t, y(t)), ϕj)Γ = (u(t), ϕj)Γ

(y(0), ϕj)Ω = (y0, ϕj)Ω,
(3.36)

for all j ∈ {1, . . . ,mx} and for the given time instances ti. As before, we denote the snapshots by Vh 3 ys(ti) =

ysi =
∑mx
j=1 γ

j
iϕj , i = 0, . . . , nt and

Hnt = span {ysi | i ∈ {0, . . . , nt}}
with dimension d ∈ N. Next, we fix a small natural number ` ≤ d and compute the POD basis functions
{ψnt1 , . . . , ψnt` } as described in Section 3.1. Notice that all ψnti , i = 1, . . . , `, are linear combinations of the FE
basis functions ϕ1, . . . , ϕmx .

Applying a Galerkin scheme based on the (small) POD basis, we obtain a nonlinear initial value problem of
finding a function y` with

y`(t) =
∑̀
i=1

ηi(t)ψ
nt
i ,

such that
d

dt
(y`(t), ψnti )Ω + (∇y`(t),∇ψnti )Ω + (b(·, t, y`(t)), ψnti )Γ = (u(t), ψnti )Γ

(y`(0), ψnti )Ω = (y0, ψ
nt
i )Ω

(3.37)

is satisfied for almost all t ∈ [0, T ] and all i ∈ {1, . . . , `}. This is the state equation of a low size optimal control

problem with state space of dimension `, see problem (PB.1`) below. This small optimal control problem is
then solved to obtain a suboptimal control ū`.
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Remark 3.4. It is not obvious that the reduced equation (3.37) has a unique solution, because the reduced
Galerkin basis might destroy the monotonicity of the nonlinearity. To avoid this theoretical difficulty, we might
truncate b as follows:

bc(x, t, y) =

 b(x, t, c) if y ≥ c
b(x, t, y) if |y| ≤ c/2

b(x, t,−c) if y ≤ −c,
where bc is defined in (−c,−c/2) ∪ (c/2, c) such that bc is C2 with respect to y. Then bc is uniformly Lipschitz
with respect to y so that the theorem by Picard and Lindelöf permits to show existence and uniqueness of a
solution of (3.37) for all T > 0. In our computations, the function y` was uniformly bounded so that we did
not follow this idea. ♦

4. A posteriori error estimation for POD solutions

To apply our a posteriori error estimation technique described in Section 2, we select a solution of some POD
reduced optimal control problem. This is convenient, since model reduction by POD does not provide a rigorous
a priori error analysis. Nevertheless, it often gives excellent results. This will be illustrated in the following two
numerical examples.

4.1. Example 1

We first discuss a one-dimensional boundary control problem that is governed by a semilinear parabolic
equation. The boundary control u is to drive a spatio-temporal temperature distribution to a predefined,
desired temperature distribution at the final time T .

Let Ω = (0, 1), T = 1.58 and Q := Ω× (0, T ). The optimal control problem is given by

min
1

2

∫ 1

0

(
y(x, T )− 1

2
(1− x2)

)2

dx+
1

20

∫ T

0

u(t)2 dt =: J (y, u) (PB.1)

subject to the heat equation with Stefan-Boltzmann type boundary condition

yt(x, t)− yxx(x, t) = 0 in Q
yx(0, t) = 0 in (0, T )

yx(1, t) + y(1, t) + y4(1, t) = u(t) in (0, T )
y(x, 0) = 0 in Ω

(4.38)

and to the bilateral control constraints

−1 ≤ u(t) ≤ 1, t ∈ (0, T ).

This is a well-known test example that goes back to Schittkowski [26].

Remark 4.1. Formally, the function y 7→ y4 does not fulfill our assumption of monotonicity. Therefore, often
y 7→ |y|y3 is considered instead. In our numerical tests, all occuring state functions y were non-negative.
Therefore, we are justified to write y4. ♦

The corresponding adjoint equation is defined by

−pt(x, t)− pxx(x, t) = 0 in Q
px(0, t) = 0 in (0, T )

px(1, t) + p(1, t) + 4 y3(1, t)p(1, t) = 0 in (0, T )
p(x, T ) = y(x, T )− yd(x) in Ω.

(4.39)
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To reduce the state equation by POD, we selected an equidistant partition of the time interval, 0 = t0 <
t1 < . . . < tnt = T , and a piecewise linear finite element discretization on the interval Ω with standard FE basis
(”hat”) functions {ϕ1, . . . , ϕmx}. In all what follows, this time partition is only used to define the snapshots
ys(ti). For the ease of presentation, we tacitly assume to solve the occuring differential equations without time
discretization. In our concrete computations, however, we used a semi-implicit Euler scheme in time to solve the
resulting semidiscrete equation (3.36). Nevertheless, in the optimality conditions, in particular in the formulas
for the computation of ζ, we ignore this time discretization.

Associated with the fixed control us ≡ 0.5, the snapshotsysi = ys(ti) =

mx∑
j=1

γijϕj


nt

i=0

⊂ Vh ⊂ L2(Ω)

were generated. Now we collect the snapshot vectors ~ysi = (γi1, . . . , γ
i
mx)>, i = 0, . . . , nt, in the matrix Y =[

~ys0| . . . |~ysnt
]
∈ Rmx×(nt+1). As above, M denotes the mass matrix associated with {ϕ1, . . . , ϕmx} with entries

Mij = (ϕi, ϕj)L2(Ω) , i, j ∈ {1, . . . ,mx}.

For convenience, we ignore the dependence on h. Furthermore, let τ = T/nt and α0, . . . , αnt be the trapezoidal
weights

α0 = αnt = τ/2, αi = τ, for i = 1, . . . , nt − 1.

Define D = diag(α0, . . . , αnt). Then the small orthonormal system {ψnt1 , . . . , ψnt` } is obtained from the eigen-

value decomposition of Y >MYD, see Section 3.1, Algorithm 3.2.
We use the POD Galerkin ansatz for both the state y from (4.38) and the corresponding adjoint state p that

solves the adjoint equation (4.39),

y`(x, t) =
∑̀
j=1

ηj(t)ψ
nt
j (x), p`(x, t) =

∑̀
j=1

ρj(t)ψ
nt
j (x).

The associated POD reduced optimal control problem is

min
1

2

∫ 1

0

(
y`(x, T )− 1

2
(1− x2)

)2

dx+
1

20

∫ T

0

u(t)2 dt (PB.1`)

subject to

M ` ∂

∂t
~y`(t) + (K` + F `)~y`(t) + E`(~y`(t)) = B`u(t)

~y`(0) = 0,
(4.40)

and
−1 ≤ u(t) ≤ 1,

for almost all t ∈ (0, T ). Here, ~y` : [0, T ] → R` denotes the vector function ~y`(t) = (η1(t), . . . , η`(t))
>. The

matrices M `,K`, F ` ∈ R`×`, B` ∈ R` are given by

M `
ij = (ψnti , ψ

nt
j )L2(Ω), K`

ij = ((ψnti )′, (ψntj )′)L2(Ω), F `ij = ψnti (1)ψntj (1), B`i = ψnti (1),

and E` : R` → R` is defined by y 7→ (y>B`)4B`.
The adjoint state ~p` : [0, T ]→ R` associated with ~y` is the unique solution of the equation

−M ` ∂

∂t
~p`(t) + (K` + F `)~p`(t) + 4Ẽ`(~y`(t))F `~p`(t) = 0

~p`(T ) = ~y`(T )− ~yd.
(4.41)
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with Ẽ` : R` → R` defined by y 7→ (y>B`)3B`.

Remark 4.2. In general, the use of the same POD space for both the state and the adjoint state is not necessarily
the best option. The adjoint state might be better approximated by an own POD basis. Nevertheless, we used
only the snapshots of the state function y to set up the POD basis, because an extension by snapshots of p did
not really improve the result.

The state equation of the associated discretized optimal control problem is solved again by a semi-implicit
Euler scheme and the controls u are chosen as step functions according to the given partition {t0, . . . , tnt} by

u(t) = ui, ti−1 ≤ t < ti, i = 1, . . . , nt.

Therefore, we have the equivalence u(·) ∼ (u1, . . . , unt)
> = ~u> ∈ Rnt . To explain our method, for simplicity we

only discretize the control but not the state and adjoint state functions.
This discretized optimal control problem was solved by an SQP method, where the associated sequence

of linear-quadratic control systems was treated by a primal-dual active set strategy. Let us denote by ~̄u` =
(ū`1, . . . , ū

`
nt)
> the obtained locally suboptimal control vector, and by ū`τ (·) ∼ ~̄u` the corresponding step function.

We are interested in estimating the distance between ū`τ and the next locally optimal control ū. For this
purpose, we apply our perturbation method that was formulated in Section 2.3. This needs two full PDE solves.
First, we have to determine the state ȳ` = G(ū`τ ), i.e. the solution of the parabolic boundary value problem
(4.38) associated with ū`τ . Second, we must compute the solution p̄` of the full adjoint equation (4.39). Then
the time-dependent perturbation ζ` is also a step function on [0, T ]. It is equivalent to the vector (ζ1, . . . , ζnt)

>

defined by

ζi =



[
1

τ

∫ ti

ti−1

p̄`(1, t)dt+ λ ū`i

]
−

, if ū`i = −1,

−

[
1

τ

∫ ti

ti−1

p̄`(1, t)dt+ λ ū`i

]
, if − 1 < ū`i < 1,

−

[
1

τ

∫ ti

ti−1

p̄`(1, t)dt+ λ ū`i

]
+

, if ū`i = 1.

for all i ∈ {1, . . . , nt} and

ζ`(t) = ζ`i , ti−1 ≤ t < ti.

In real computation, we are not able to determine the exact state p̄`. Therefore, we applied the mentioned
semi-implicit Euler method to solve a fully discrete version of equation (4.41). Then, the associated adjoint
state will correspond to a step function p̄`τ in time with

p̄`τ (·, t) = p̄`i(·), t ∈ [ti−1, ti), i = 1, . . . , nt,

and one can use 1
τ

∫ ti
ti−1

p̄`(1, t)dt = p̄`i(1).

We assume that the suboptimal control ū`τ belongs to an L∞-ball around a locally optimal control ū, where
the coercivity condition (2.26) is satisfied. In other words, we assume that ū`τ is sufficiently precise and the
optimal control problem behaves well around ū.

Then we need an approximation of the coercivity constant δ. This will be accomplished by that of the
reduced Hessian matrix Ψ`, associated with the suboptimal control ~̄u`. We have to assume that Ψ` is positive
definite. Let be σ`min the smallest eigenvalue of Ψ`. Then there holds for all vectors ~u ∈ R` and their associated
step functions uτ that

~u>Ψ` ~u ≥ σ`min|~u|22 =
σ`min
τ
‖uτ‖2L2(0,T ).



TITLE WILL BE SET BY THE PUBLISHER 19

Therefore, if the control problem behaves well around ū, the coercivity constant δ′ can be approximated by
σ`min/τ . Assuming that

σ`min
τ
≤ δ′

holds, we can deduce that the distance of ū`tau to the unknown locally optimal control ū can be estimated by

‖ū`τ − ū‖L2(0,T ) ≤
τ

σ`min
‖ζ`‖L2(0,T ).

In our numerical test, we computed a sufficiently precise approximation of ū, since this control was not
exactly known. For this purpose, the interval Ω = (0, 1) was split in 400 intervals [xj , xj+1), j = 1, . . . ,mx − 1,

(step size h = 1
400 ), and we selected a time step size τ = T

nt
= T

200 . The solution of the accordingly discretized

optimal control problem (PB.1) was the function ūτ shown in Figure 1.

Figure 1. Example 1: Optimal FE control ūτ .

Table 1 compares the a posteriori error estimate for ‖ū − ū`τ‖L2(0,T ) determined by our method with the

”exact” numerical error ‖ūτ − ū`τ‖L2(0,T ).

Remark 4.3. The left column of Table 1 shows some convergence for increasing `, because both ūτ and ū`τ
are based on the same discretized model with discretization parameters τ and h. In contrast to this, the error
estimator in the middle column stagnates at 3 · 10−4. This behavior can be explained as follows: Even for the
”exact” ūτ the estimator delivers a value of 0.00030587 although one might expect a very small number. This
value complies with the error estimate for ‖ū − ūτ,h‖ explained in the next remark. Moreover, the discretized
adjoint equation is not the one associated with the discretized model. The latter one would not be useful for
our purpose, since the associated ζ would ignore the discretization error. We discretized the continuous adjoint
equation by a semi-implicit Euler scheme. This causes another error of the discretization order. The estimator
cannot be better than the discretization error; compare [27].

Remark 4.4. So far, we have tacitly assumed in our error estimates that, to determine a perturbation ζ,
we are able to solve the state equation and the adjoint equation exactly. This is not possible in numerical
applications. In solving these equations, numerical errors are unavoidable. There are two sources of errors,
which are related to the approximation in time and the approximation in space. It is known from an early
paper by Malanowski [19] and a recent publication by Neitzel and Vexler [22] that the error between a locally
optimal control ū and the corresponding discretized locally optimal control ūτ,h satisfies the a priori error
estimate ‖ū− ūτ,h‖L2(Q) ≤ C (τ + h2) with some constant C.
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` ‖ūτ − ū`τ‖L2(0,T )
τ

σ`min
‖ζ`‖L2(0,T ) σ`min

1 3.625e-1 6.441e-1 7.9724e-4
2 5.805e-2 6.498e-2 8.0598e-4
3 3.552e-3 4.191e-3 8.0686e-4
4 2.737e-4 5.043e-4 8.0686e-4
5 3.621e-5 2.964e-4 8.0686e-4
6 5.338e-6 3.081e-4 8.0686e-4
7 6.749e-7 3.056e-4 8.0686e-4
8 7.108e-8 3.059e-4 8.0686e-4
9 7.643e-9 3.059e-4 8.0686e-4

Table 1. Example 1: Numerical errors ‖ūτ − ū`τ‖L2(0,T ) and error estimates for ‖ū− ū`τ‖L2(0,T )

with corresponding eigenvalues σ`min, ` = 1 . . . , 6.

In our method, we want to estimate the error ‖ū− ū`τ‖L2(0,T ), but actually we estimate the norm of ūτ,h − ū`τ .
By the triangle inequality and the a priori error estimate mentioned above, we obtain

‖ū− ū`τ‖L2(0,T ) ≤ ‖ū− ūτ,h‖L2(0,T ) + ‖ūτ,h − ū`τ‖L2(0,T )

≤ C (τ + h2) + ‖ūτ,h − ū`τ‖L2(0,T ) ∼ C τ + ‖ūτ,h − ū`τ‖L2(0,T )

(4.42)

since in our computations we have τ � h2. To make this estimate work, we need an estimation for C that is
described below. ♦

Let us tacitly assume that the discretization in space can be neglected and denote by ūτ the solution of the
full system discretized only in time. To determine C in (4.42), we solve the (full size) discretized optimal control
problem with mesh sizes τ and τ/2, respectively. Then it holds

‖ūτ − ūτ/2‖L2(0,T )
≤ ‖ūτ − ū‖L2(0,T ) + ‖ū− ūτ/2‖L2(0,T )

≤ C τ + C
τ

2
=

3τ

2
C

so that we can expect that

C ≈ 2

3τ
‖ūτ − ūτ/2‖L2(0,T )

.

In our example above, we applied this rough estimation technique by solving the problem with mesh sizes
τ = T/200 and τ/2 = T/400, respectively. We obtained C ≈ 0.2741 and therefore the discretization error can
be estimated by

‖ū− ūτ‖L2(0,T ) ≤ 2.1654 · 10−3.

According to Table 1, this is of lower order than the error ‖ūτ − ū`τ‖L2(0,T ). The computations show that a more
detailed analysis on the influence of the discretization errors is desirable. Here, we do not consider this issue.

By the same SQP type optimization algorithm as for the full discretized problem, the POD-reduced optimal
control problem (PB.1`) with ` = 4 was solved within 2.3 seconds, whereas the optimization of the full problem
(PB.1) needed 43 seconds, see Table 2. It turns out that the difference between the minimal values of the
objective function J for the full FE solution and the POD solutions with ` = 4 only amounts to the order
3 · 10−6.

To obtain the smallest eigenvalue of the reduced Hessian that is needed for the a-posteriori estimate, we
first constructed the reduced Hessian matrix Ψ` by applying the null space method. This is fairly expensive
(11.24 seconds of the 13.24 seconds in Table 3). Next we used the Lanczos algorithm for computing its smallest
eigenvalue.
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FEM POD (` = 4)
CPU time for optimization 43 s 2.3 s
Minimal value of J 0.023238 0.023240

Table 2. Example 1: CPU times for POD optimization and corresponding minimal values of
the objective function in comparison with FE method.

(` = 4) CPU time
POD basis 1.50 s
Optimization 0.76 s
Computation of y`τ 1.35 s
Computation of p`τ 2.44 s
Error estimation 13.24 s

Table 3. Example 1: CPU times for POD optimization and a-posteriori error estimation.

4.2. Example 2: A distributed control problem

In our second example, we consider a distributed 2D optimal control problem, which is essentially more
demanding, since distributed controls have more direct influence on the solution of the parabolic equation than
boundary controls. Moreover, the dimension two of Ω increases the computational effort.

The system dynamics of the problem is given by a semilinear parabolic partial differential equation in Ω =
(0, π)2. We constructed the example in such a way that we know the exact optimal solution. Here, a desired
spatio-temporal heat distribution yQ is to be pursued as close as possible.

Let be T = 1 and Q := Ω × (0, T ). Four time dependent controls u1, . . . , u4 ∈ L2(0, T ) are given that are
distributed to Ω by some weight functions wi ∈ L2(Ω), i = 1, . . . , 4.

Thus, we consider a distributed control û of the form

û(x, t) =

4∑
i=1

wi(x)ui(t). (4.43)

Furthermore, we define some auxiliary functions ay ∈ L2(Ω) and d ∈ L2(Q), which help us constructing an
explicitely known optimal solution. Our objective functional to be minimized is

J (y, u1, . . . , u4) =
1

2
‖y − yQ‖2L2(Q) + (ay, y(·, T ))L2(Ω) +

1

200

4∑
i=1

‖ui‖2L2(0,T ). (PD.2)

The state equation is the semilinear heat equation

∂y

∂t
(x, t)−∆y(x, t) + y3(x, t) + d(x, t) =

4∑
i=1

wi(x)ui(t) in Q

∂y

∂ν
(x, t) = 0 in Σ

y(x, 0) = y0(x) in Ω

(4.44)

with given initial function y0 ∈ L2(Ω) and homogeneous Neumann boundary condition. Moreover, we impose
pointwise box constraints on the four controls,

|ui(t)| ≤ 1, a.e. in (0, T ), i = 1, . . . , 4.
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Remark 4.5. (1) The cost functional (PD.2) does not exactly fit in the setting of problem (PD), where
the linear term (ay, y(·, T ))L2(Ω) is missing. However, the associated theory of optimality conditions
is fairly analogous to the one of (PD). Here, the adjoint equation contains an inhomogeneous final
condition p(·, T ) = ay. It looks as follows:

−∂p
∂t

(x, t)−∆p(x, t) + 3y2(x, t)p(x, t) = y(x, t)− yQ(x, t) in Q

∂p

∂ν
(x, t) = 0 in Σ

p(x, T ) = ay(x) in Ω.

(2) Furthermore, the equation (4.44) does not exactly fit in problem (0.1). First, we have a Neumann bound-
ary condition instead of a Dirichlet one. Second, the control function has the form (4.43). However,
the theory is similar to that explained at the beginning of the paper. Moreover, we detail the necessary
changes. The treatment of homogeneous Neumann boundary conditions is completely analogous to the
Dirichlet case.

♦

All given parameters are chosen such that locally optimal solutions are known in advance. For this purpose,
we define with x = (x1, x2)

y0(x) = cos(x1) cos(x2),

yQ(x, t) = cos(x1) cos(x2)(1 + 0.02(t− t2)− 0.03 t2 cos2(x1) cos2(x2)),

ay(x) = 0.01 cos(x1) cos(x2),

w1(x) = max{0, 10− 50(x1 − x2)(x1 + x2 − π
2 )},

w2(x) = max{0, 10− 50(x1 − x2 − π
2 )(x1 + x2 − π)},

w3(x) = max{0, 10− 50(x1 − x2)(x1 + x2 − 3π
2 )},

w4(x) = max{0, 10− 50(x1 − x2 + π
2 )(x1 + x2 − π)},

βi(t) = IP[−1,1]

{
−t2

∫
Ω

wi(x) cos(x1) cos(x2)dx

}
, i = 1, . . . , 4,

d(x, t) =
4∑
i=1

wi(x)βi(t)− 2 cos(x1) cos(x2)− cos3(x1) cos3(x2).

The graphs of the four functions w1, . . . , w4 are pictured in Figure 2. Consequently, locally optimal controls
can be specified exactly as

ūi(t) = IP[−1,1]

{
−t2

∫
Ω

wi(x) cos(x1) cos(x2)dx

}
, i = 1, . . . , 4.

They are shown in Figure 3. The associated (locally) optimal state ȳ and the corresponding adjoint state p̄ are
given by

ȳ(x, t) = cos(x1) cos(x2), p̄(x, t) =
1

100
t2 cos(x1) cos(x2).

The domain Ω is discretized by a regular triangulation so that an FE space of mx = 687 piecewise linear
ansatz functions is obtained. For the snapshot generation we took an equidistant partition of the time interval
[0, T ] with step size τ = 1/119, so that nt = 120 snapshots were computed. Then a number ` was chosen,
the POD basis {ψnti }`i=1 was computed as explained in Section 3.1 and we applied the standard POD Galerkin
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Figure 2. Example 2: Weight functions w1, . . . , w4.

Figure 3. Example 2: Optimal controls ū1, ū2. For symmetry reasons it holds ū1 = ū3, ū2 = ū4.

ansatz for both the state y and the adjoint state p,

y`(x, t) =
∑̀
i=1

ηi(t)ψ
nt
i (x), p`(x, t) =

∑̀
i=1

ρi(t)ψ
nt
i (x),

as well as for the functions w1, . . . , w4 ∈ L2(Ω) and d ∈ L2(Q),

d`(x, t) =
∑̀
i=1

δi(t)ψ
nt
i (x), (wk)`(x) =

∑̀
i=1

(ωk)iψ
nt
i (x), k = 1, . . . , 4,

to obtain the reduced order model (PD.2`)

min
1

2
‖y` − yQ‖2L2(Q) + (ay, y`(·, T ))L2(Ω) +

1

200

4∑
i=1

∥∥ui∥∥2

L2(0,T )
(PD.2`)
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subject to

M ` ∂

∂t
~y`(t) +K`~y`(t) + E`(~y`(t)) +M `~d`(t) =

4∑
i=1

M ` ~w`i u
i(t)

~y`(0) = 0,

(4.45)

and
|ui(t)| ≤ 1, i = 1, . . . , 4,

for almost all t ∈ (0, T ). As above, ~y` : [0, T ]→ R` denotes the vector function ~y`(t) = (η1(t), . . . , η`(t))
>, and

the matrices M `,K` ∈ R`×` are given by

M `
ij = (ψnti , ψ

nt
j )L2(Ω), K`

ij = (∇ψnti ,∇ψ
nt
j )L2(Ω), i, j = 1, . . . , `,

and E` : R` → R` is defined by

(
E`(y)

)
i

=
∑̀

j,k,l=1

yjykyl

∫
Ω

ψntj (x)ψntk (x)ψntl (x)ψnti (x) dx, i = 1, . . . , `.

After discretizing the semidiscrete problem (PD.2`) by the semi-implicit Euler scheme with an equidistant
partition {ti}nti=0 of [0, T ], we applied an SQP method for solving the discretized reduced problem. In this
context, the integration of linearized terms such as

∫
Ω

(yk(x, t))2y(x, t)ψntj (x)dx =

∫
Ω

(∑̀
i=1

ηki (t)ψnti (x)

)2∑̀
l=1

ηl(t)ψ
nt
l (x)ψntj (x)dx,

=
∑̀

i,µ,l=1

ηki (t)ηkµ(t)ηl(t)

∫
Ω

ψnti (x)ψntµ (x)ψntl (x)ψntj (x)dx

cannot be easily accomplished on using the mass matrix. We applied a prismoidal formula. Therefore, we
interpolated the node data of the POD basis functions ψnt1 , . . . , ψnt` linearly to the triangle midpoints xτν of the
finite elements τν such that the cubature is given by

∫
Ω

ψnti (x)ψntµ (x)ψntl (x)ψntj (x)dx ≈
m̃∑
ν=1

Aτνψ
nt
i (xτν )ψntµ (xτν )ψntl (xτν )ψntj (xτν ),

where the corresponding areas of the triangles of the finite element triangulation are denoted by Aτν and m̃ is
the number of triangles of the approximation of Ω. The linear-quadratic subproblems in each level of the SQP
method were treated by the primal-dual active set strategy.

Remark 4.6. We should mention in this context that this ad-hoc method can certainly be improved by the
application of the discrete empirical interpolation method (DEIM) as it was suggested by Barrault et al. [3] or
Chaturantabut and Sorensen [7]. Let us also refer to the recent paper by Lass and Volkwein [17]. However, we
did not concentrate on this technique, because our main concern is the problem of a posteriori error estimation.

♦

Now denote the obtained POD-optimal control vector by ū`τ = (ū`,1τ , . . . , ū`,4τ )> and by ȳ` the associ-
ated state. Define the control-to-state mapping G : L∞(0, T ;R4) → L2(Q) that maps the control terms
u = (u1, u2, u3, u4)> ∈ L∞(0, T ;R4) to the associated state y.

We obtain the following corollary of Theorem 2.4 on error estimation:
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Corollary 4.7. Suppose there are a radius r > 0 and some δ > 0 such that there holds

f ′′(u)(v, v) ≥ δ ‖v‖2L2(0,T ;R4)

for all u with ‖u − ū‖L∞(0,T ;R4) ≤ r and for all v ∈ L2(0, T ;R4). Let ` ∈ N be a fixed number and ū`τ ∈
L∞(0, T ;R4). If ‖ū`τ − ū‖L∞(0,T ;R4) ≤ r, then we have

‖ū`τ − ū‖L2(0,T ;R4) ≤
1

δ
‖ζ‖L2(0,T ;R4).

As before, the coercivity parameter δ is approximated by means of the smallest eigenvalue of the reduced
Hessian matrix associated with the POD solution ū`τ , as described in Section 4.1. Under the assumptions of
Corollary 4.7, we have

‖ū`τ − ū‖L2(0,T ;R4) ≤
τ

σ`min
‖ζ‖L2(0,T ;R4).

The control functions u1, u2, u3, u4 are chosen as step functions according to the given time partition by

ukτ (t) = uki , ti−1 ≤ t < ti, i = 1, . . . , nt,

for k = 1, . . . , 4. Let us denote by ~̄u`,k = (ū`,k1 , . . . , ū`,knt )> the obtained locally suboptimal control vector

with corresponding step function ū`,kτ . Then the time-dependent perturbation functions ζ1, . . . , ζ4 are also step
functions on [0, T ], and they are equivalent to vectors (ζk1 , . . . , ζ

k
nt)
>, k = 1, . . . , 4, defined by

ζki =



[
1

τ

∫ ti

ti−1

∫
Ω

(wk)`(x)p̄`(x, t)dxdt+ λū`,ki

]
−

, if ū`,ki = −1,

−

[
1

τ

∫ ti

ti−1

∫
Ω

(wk)`(x)p̄`(x, t)dxdt+ λū`,ki

]
, if − 1 < ū`,ki < 1,

−

[
1

τ

∫ ti

ti−1

∫
Ω

(wk)`(x)p̄`(x, t)dxdt+ λū`,ki

]
+

, if ū`,ki = 1,

(4.46)

with

ζk(t) = ζki , ti−1 ≤ t < ti,

for all i ∈ {1, . . . , nt}, k = 1, . . . , 4. Finally, we use ‖ζ‖2L2(0,T ;R4) =
∑4
k=1 ‖ζk‖2L2(0,T ).

Remark 4.8. Analogous to Section 4.1, after discretization, the adjoint state p̄` will correspond to a step
function p̄`τ in time. Then, the time integrals in equation (4.46) can be directly evaluated and expressed in
terms of p̄`i(·) = p̄`τ (·, t), t ∈ [ti−1, ti), i = 1, . . . , nt.

We computed a sufficiently precise approximation of the known optimal controls by step functions {ūkτ}4k=1.
Let ūτ = (ū1

τ , . . . , ū
4
τ )>. The comparison of the error estimators and the numerical errors between the POD-

optimal control vector function ū`τ = (u`,1τ , . . . , u`,4τ )> and ūτ is illustrated in Table 4. In contrast to Example
1, this example does not fit that well for POD; compare Table 1. Notice that the success of the standard POD
is not guaranteed and may depend on the particular type of equation.

The exact optimal solutions ūi must obey the necessary optimality conditions

ūi(t) = P[−1,1]

− 1

λ

∫
Ω

wi(x)p(x, t)dx

 , i = 1, . . . , 4.
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` ‖ūτ − ū`τ‖L2(0,T ;R4)
τ

σ`min
‖ζ‖L2(0,T ;R4) σ`min

4 6.414e-3 2.467e-2 0.0015327
5 5.051e-3 1.791e-2 0.0015335
6 4.026e-3 1.001e-2 0.0015345
7 2.293e-3 3.832e-3 0.0015354
8 2.601e-3 5.714e-3 0.0015353
9 5.142e-3 1.562e-2 0.0015341
10 7.335e-3 2.646e-2 0.0015328
11 9.112e-3 3.141e-2 0.0015353
12 5.234e-3 1.567e-2 0.0015343

Table 4. Example 2: Numerical errors ‖ūτ − ū`τ‖L2(0,T ;R4) and error estimators
τ

σ`min
‖ζ‖L2(0,T ;R4) for different numbers ` with corresponding eigenvalues σ`min.

In Figure 4 the precision of satisfying these conditions is visualized for the POD-optimal controls ū`1 and ū`2
using ` = 7 POD basis functions. Here, the solid lines mark the POD controls whereas the dashed lines present
the terms −

∫
Ω
wi(x)p(x, t)dx/λ. The corresponding results for the controls ū`3, ū`4 look just as well.

Figure 4. Example 2: Optimality test for the POD controls ū7
1, ū

7
2.

The optimization of the full system needed more than 18 minutes, whereas the POD reduced optimal control
problem (PD.2`) with ` = 7 was solved in about 4.5 seconds, a tremendous gain. The performance of the
method is illustrated in Table 5. There is no significant difference between the computed optimal values.

FEM POD (` = 7)
CPU time for optimization 18 min 35 s 4.25 s
Minimal value of J 0.031540 0.031539

Table 5. Example 2: CPU times of POD optimization and corresponding minimal values of
the objective function in comparison with FE method.

We should remark that the computing times in the Tables 2 and 5 do not include the time for setting up
the reduced Hessian and for computing its smallest eigenvalue. Again, the computation of the reduced Hessian
matrix by the null space method was a time consuming task. Here it took us about 7.5 minutes. This shows
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that, to speed up the process, the smallest eigenvalue of the reduced Hessian should be computed by a method
that avoids the detour via the null space.

References

[1] A. C. Antoulas. Approximation of large-scale dynamical systems, volume 6 of Advances in Design and Control. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. With a foreword by Jan C. Willems.
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