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Solutions to optimization problems with pde constraintseirit special properties; the asso-
ciated state solves the pde which in the optimization probiakes the role of a equality
constraint, and this state together with the associatettal@olves an optimization problem,
i.e. together with multipliers satisfies first and secondeortecessary optimality conditions.
In this note we review the state of the art in designing discowncepts for optimization
problems with pde constraints with emphasis on structursewation of solutions on the
discrete level, and on error analysis for the discrete kbginvolved. As model problem
for the state we consider an elliptic pde which is well untterd from the analytical point of
view. This allows to focus on structural aspects in diszedidon. We discuss the approaches
First discretize, then optimizend First optimize, then discretizeand consider in detail two
variants of theFirst discretize, then optimizapproach, namely variational discretization, a
discrete concept which avoids explicit discretizationh# tontrols, and piecewise constant
control approximations. We consider general constraintshe control, and also consider
pointwise bounds on the state. We outline the basic idegxréwiding optimal error analysis
and complement our analytical findings with numerical exi@®iprhich confirm our analyti-
cal results.

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In pde-constrained optimization, we have usually a pdeate siquation and constraints on
control and/or state. Let us write the pde for the state Y with the controlu € U in the
forme(y,u) = 0in Z. Assuming smoothness, we are then led to optimization proslof
the form

min  J(y,u) ste(y,u) =0, c(y) €, u€ Uy, Q)
(y,u)eY xU
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wheree : Y x U — Z andc : Y — R are continuously Fréchet differentiable, c R

is a closed convex cone representing the state constramd$/,;, C U is a closed convex
set representing the control constraints. We are intet@stduminating discrete approaches
to problem (1), where we place particular emphasis on stragireservation at the discrete
level, and also on analysing the contributions to the tatalreof the discretization errors in
the variables and multipliers involved.

In order to approach an optimal control problem of the forim{@merically, one may either
discretize this problem by substituting all appearing tiorc spaces by finite dimensional
spaces, and all appearing operators by suitable approxioccainterparts which allow their
numerical evaluation on a computer. Denotingibthe discretization parameter, one ends up
with the problem

min Jn(yn,up) sten(yn, up) = 0andey (yn) € Kn, up € U;ld, 2
(Yn,un)€EYR X Up
whereJy, : Y, x U, — R, ep : Yy x Uy, — Z,andcey, : Y, — R. For the finite dimensional
subspaces one may requirg C Y,U;, C U, say, and(;, C R a closed and convex cone,
U, C Uy, closed and convex. This approach in general is referred Eirstsdiscretize, then
optimize
On the other hand, one may switch to the Karush-Kuhn-Tugkstes associated to (1)

e(y,u) =0, c(y) € ®)
xeke, (A ))R (4)
Ly(y,a,p) + ¢ (§)" A = (5)
@€ Upy (Lu(§ a,p),u — Wy >0 Y€ Ung. (6)

and substitute all appearing function spaces and operatordingly, wherd.(y, u,p) :=
J(y,u) — (p,e(y,u))z+ z denotes the Lagrangian associated to (1),/ah¢he polar cone of
K. This leads to solving

en(Yn,un) =0, cn(yn) € Ka, (7)
A € Kn°, (Ansen(yn))re.r =0, (8)
Li, (Yn, un, pr) + i (yn) " An = 0, 9)
up € ULy (L, (Ynstns pn),u — up)u=u >0 Vu €Ul (10)

for 4, @n, Pn, A\n. This approach in general is referred to as first optimizen ttiscretize,
since it builds the discretization upon the first order neagsoptimality conditions.

Instead of applying discrete concepts to problem (1) o(§3directly we may first apply
an SQP approach on the continuous level and then dfdlydiscretize, then optimize the
related linear quadratic constrained subproblems, ordpBmize, then discretize to the SQP
systems appearing in each iteration of the Newton methoth@imfinite dimensional level.
This motivates us to illustrate the discrete approach famear model pde which is well un-
derstood w.r.t. analysis and discretization concepts aifalcus the presentation on structural
aspects inherent to optimal control problems with pde cairgs. However, error analysis for
optimization problems with nonlinear state equations i phesence of constraints on con-
trols and/or state is not straightforward and requiresispechniques such as extensions of
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150 M. Hinze and F. Troltzsch: Discrete concepts

Newton-Kantorovich-type theorems, and second order giffioptimality conditions. This
complex of questions also will be discussed briefly.

The outline of this note is as follows. In Section 2, we coasian elliptic model optimal
control problem containing all relevant features whichdiebe resolved by a numerical ap-
proach. We use the finite element element method for theadigation of the state equation
and propose two different approximation approaches ofifs¢ discretize, then optimizson-
cept to the optimal control problem, including numericahlgsis. In Section 3, we discuss
improvements of the approximation properties of discretes and controls if the constraints
on the state and/or the control obey special structuresud fhally note that the structural as-
pects discussed in the present note also carry over to daton&ol problems with parabolic
pdes in a straightforward manner.

2 A model problem

In order to explain the main results that can be expected imemical approximation, let us
discuss a simple model problem with pointwise bounds onroband state. We consider the
Neumann problem

min(y,u)EYXUad '](ya U) = % jQ |1/ - y0|2 + %”u”?]

s.t.
Ay = Bu inQ, | -
(S) dy = 0 onT, } <= y = G(Bu) (112)
and
y € Yad:= {y € Y,y(z) < b(z) a.e. inQ2}.
Here,Y := H'(), A denotes a uniformly elliptic operator, for exampley = —Ay +

y, andQ C R? (d = 2,3) denotes an open, bounded sufficiently smooth (or polyhgedral
domain. Furthermore, we suppose that> 0 and thaty, € L?(2), andb € W>((Q)

are given. (U, (-,-)y) denotes a Hilbert space ai®l: U — L2(Q) c H*(Q)* the linear,
continuous control operator. By : U* — U we denote the inverse of the Riesz isomorphism.
Furthermore, we associate withthe continuous, coercive bilinear forag-, -).

Example 2.1 There are several examples for the choic&andU.
(i) Distributed controlU = L2(Q2), B = Id : L?(Q2) — Y".

(i) Boundary control:U = L?(9Q), Bu(-) = [wuyo(-)dz : L*(2) — Y’, wherevy, is the
boundary trace operator .

(iii) Linear combinations of input fields/ = R™, Bu=Y"""  u;fi, fi € Y.

If not stated otherwise we from here onwards consider thatin (i) of the previous
example. In view ofv > 0, it is standard to prove that problem (11) admits a uniquetswi
(y,u) € Yaa x Uaq. In pde constrained optimization, the pde for given datgudemntly is
uniquely solvable. In equation (11) this is also the casehabfor every controt, € U,q
we have a unique state= G(Bu) € H'(Q) N C°(Q). We needy € C°(Q) to satisfy the
Slater condition required below. Problem (11) thereforegsivalent to the so called reduced
optimization problem

min J(v) := J(G(Bv),v) s.t.G(Bv) € Yaq. (12)

veEUq
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The key to the proper numerical treatment of problems (1#)(42) can be found in the
first order necessary optimality conditions associateiése control problems. To formulate
them properly we require the following constraint qualifica, often referred to aSlater
condition It requires the existence of a state in the interior of theYsg considered as a
subset ofC°(Q2) and ensures the existence of a Lagrange multiplier in thecaed dual
space. Moreover, it is useful for deriving error estimates.

Assumption 2.2 33 € U,q  G(Ba)(x) < b(z) forall z € Q.

Following Casas [7, Theorem 5.2] for the problem under aersition we now have the
following theorem, which specifies the KKT system (3)-(6) ttoe setting of problem (11).

Theorem 2.3 Letu € U,q denote the unique solution (@1). Then there exist a Lagrange
multiplier € M(£2) and an adjoint state € L?(2) such that, withy = G(Bu), there holds

/ pAv = / (y —yo)v —|—/ vdp Yv € H?(Q) with 9,v = 0 on 91, (13)
Q Q Q
(RB*p+ au,v —u),; >0 Yo € Ugd, (14)

@ >0, y(z) < b(z)in Qand /Q(b —y)du = 0. (15)

Here,(M(Q), ||- | m(e)) denotes the space of Radon measures which is defined as the dua
Q

space of>°(9). SinceJ'(v) = B*p+ a(-,u)y, a short calculation shows that the variational
inequality (14) is equivalent to

uw= Py, (u—ocRJ'(u)) (o >0),

wherePy;,, denotes the orthogonal projectionlinontoU, 4. This nonsmooth operator equa-
tion constitutes a relation between the optimal conir@nd its associated adjoint staie
In the present situation, when we consider the special céb®wt control constraints, i.e.
Ua.q = L?(Q), this relation boils down to

au+p=0in L*(Q),

o > 0. This relation already gives a hint to the discretizationhef state; and the control;
in problem (11), if one wishes to conserve the structure isfalgebraic relation also on the
discrete level.

2.1 Finite element discretization

For the convenience of the reader we recall the finite elersetting. To begin with, let

75, be a triangulation of2 with maximum mesh sizé := maxyc7, diam(7) and vertices

x1,...,Zm. We suppose thd® is the union of the elements @, so that element edges
lying on the boundary are possibly curved. In addition, weuage that the triangulation is
quasi-uniform in the sense that there exists a constan® (independent of) such that each

T € T, is contained in a ball of radius™ 'k and contains a ball of radiugh. Let us define

the space of linear finite elements,

X, := {vy, € C°(Q) | vy, is alinear polynomial on each € 7}
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152 M. Hinze and F. Troltzsch: Discrete concepts

with the appropriate modification for boundary elementswhat follows it is convenient to
introduce a discrete approximation of the operatorFor a given functionr € L2(f2), we
denote byz, = G, (v) € X, the unique solution of the discrete Neumann problem

a(zp,vp) = /vvh for all v, € Xj,.
Q

2.1.1 Variational discretization

From the point of view of numerical analysis, variationasatetization allows the easiest
analysis of the discretization error and in general yiefgsraximation errors of higher order
than the other approaches discussed below. Problem (1dyvispproximated by the follow-
ing sequence of so calladriational discretecontrol problems [26] depending on the mesh
parameteh:

— 2 J—
urél[l]ild Jh / lyn — yol|” + ||u||U (16)
subject tOyh = gh (Bu) andyh(arj) <b(zj)forj=1,...,m.

Notice that the integem is not fixed and tends to infinity ds — 0, so that the number of
state constraints in this optimal control problem increasih decreasing mesh size of un-
derlying finite element approximation of the state spaces d@lscretization approach can be
understood as a generalization of fiest discretize, then optimiz#pproach in that it avoids
discretization of the control spacé. It leads to a convex infinite-dimensional optimization
problem of similar structure as problem (11), but with onlyitBly many equality and in-
equality constraints for the state, which form a convex adible set. So we are again in
the setting of (1) withY” replaced by the finite element spakg (compare also the analysis
of Casas presented in [8]). Sin€g(Bu) — G(Ba) in L*(Q2), a Slater condition for (16)
automatically is satisfied, i is small enough. We thus have

Lemma 2.4 Problem (16) has a unique solutian, € U,q. There exisjy, ..., tm € R
andp;, € X, such that withy, = G;,(Buy,) andu, = Z}”:l pjd., we have

a(vn,pn) = /(yh — Y0)Vn +ﬁ vpdpn, Yy, € Xp, (17)
Q a
(RB*pn + aup,v —up)y >0 Yo € Uyq, (18)
pi >0, yn(z;) < b(xj),5 =1,...,m, and / (Inb — yn)dus, = 0. (19)
Q

Here, 6, denotes the Dirac measure concentrated ahd [}, is the usual Lagrange in-
terpolation operator. We havg (v) = B*py, + a(-,us)v, so that the considerations after
Theorem 2.3 also apply in the present setting, but witbplaced by the discrete functipp.
Consequently, there holds

up = Py, (up — o R}, (uz)) (0> 0).

Foro = 1 we obtain

1 1
u = PUad (—ERB*p> anduy, = PUad <_ERB*ph> . (20)
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It follows from this relation that the variational discretptimal control:;, can be understood
as a discrete object which is automatically discretizedubh (20). Its structure depends on
the discrete adjoint;, and the properties of the orthogonal projectign ,, the Riesz isomor-
phismR, and the control operatds. Let us clarify the situation for the caée= L?(Q2), B =
Idpz_ g1y, andUqq = {v € U;a; < v < a,} with constant bounds; < a,. Due to the
presence ofy 4, in variational discretization the functian, = PUad(—éph) € Ugq Will

in general not belong t&;. However, in many practical situations it can be calculaiad
the computer, see for instance [26, 30, 31]. In the case ofelystate constrained problem,
we havePy,, = Id, so thatu, = —éph € Xj, by (20). This means that the optimal vari-
ational discrete optimal contral, automatically is a discrete function. Therefore, the space
U = L?(Q) in (16) may be replaced b, to obtain the same discrete solutiap, which
results in a finite—dimensional discrete optimization peabinstead. However, we empha-
size that the infinite—dimensional formulation of (16) isywaseful in numerical analysis [28,
Chap. 3].

2.1.2 Piecewise constant controls

In this section, we consider the special case= L?*(), so thatB denotes the injection
of L3(Q) into H'(92)* with box constraints;; < u < a, on the control. Controls are
approximated by element-wise constant functions. Forildete refer to [17]. We define the
space of piecewise constant functions

Uy, == {vn € L*(Q) | vy, is constant on each € 7;,}.
and denote by, : L*(Q) — U, the orthogonal projection onfd;, so that

1

@) =1 [ v senTem,
T

In order to approximate (11) we introduce a discrete copateiofU, 4,

de ={vp, € Up|a; <vp < ay,inQ}. (21)
Problem (11) is now approximated by the following sequeri@®otrol problems depend-
ing on the mesh parameter

1 @
in J == — o>+ = 2
i )= [l 5 [ 1o 22)
subject toy, = Gp(u) andyy, (z;) < b(z;) forj=1,...,m.

Problem (22), as problem (16), represents a convex finiteedsional optimization prob-
lem of similar structure as problem (11), but with only filytenany equality and inequality
constraints for state and control, which form a convex adibis set. Note thall/ fd C Ugua
andthaQ,v € U", forv € U,q. SinceG, (Qna) — G(@) in L>=(£2), again a Slater condition
is satisfied for problem (22) below so that the following amliity conditions can be argued
as those given in (2.4) for problem (16).
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Fig. 1 (online colour at: www.gamm-mitteilungen.org) Numericamparison of active sets obtained
by variational discretization, and those obtained by a entienal approach with piecewise linear, con-
tinuous controlsh = % anda = 0.1 (left), h = i anda = 0.01 (right). The red line depicts the border
of the active set in the conventional approach, the cyantlineexact border, the black and green lines,
respectively the borders of the active set in variationstiditization.

Lemma 2.5 Problem (22) has a unique solution, € U",. There exisfu1, ..., um € R
andpy, € X, such that withy, = G (us) andpy, = 3°7° | 1150, we have

a(vn,pn) = / (yn — yo)vn + / Uhdpin Vo € X, (23)
Q Q
/(ph + auh)(vh — uh) >0 Yy, € U:da (24)
Q
pi >0, yn(r;) < b(zj),j=1,...,mand [ (Inb — yn)dpn = 0. (25)
Q

Similar considerations hold for control approximations dpntinuous, piecewise poly-
nomial functions. Discrete approaches to problem (11)imglyn control approximations
directly lead to fully discrete optimization problems likB2). These approaches lead to
large-scale finite-dimensional optimization problemsgcsithe discretization of the pde in
general introduces a large number of degrees of freedom. eNaah implementation then
is easy, which certainly is an important advantage of cdajpproximations over variational
discretization, whose numerical implementation is mowelved. The use of classical NLP
solvers for the numerical solution of the underlying disizel problems only is feasible, if
the solver allows to exploit the underlying problem struete.g. by providing user interfaces
for first- and second-order derivatives, and to the pde solve

On the other hand, the numerical implementation of vaneidiscretization is not straight-
forward. However, the big advantage of variational didgzegion is its property of optimal
approximation accuracy, which is completely determinedhat of the related state and ad-
joint state. Fig. 3.3 compares active sets obtained by tianial discretization and piecewise
linear control approximations in the presence of box camsts. One clearly observes that
the active sets are resolved much more accurately when uaingfional discretization. In
particular, the boundary of the active set is in generaédéit from finite element edges.
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The error analysis for problem (11) relies on the regularitthe involved variables, which
is reflected by the optimality system presented in (13)-(16pnly control constraints are
present, neither the multiplierin (13) nor the complementarity condition (15) appear. Then
the variational inequality (14) restricts the regularifytioe controlu, and thus also that of
the statey. If the desired statg, is regular enough, the adjoint variahl@dmits the highest
regularity properties among all variables involved in tipdimality system. Error analysis in
this case then should involve the adjoint varighknd exploit its regularity properties.

If pointwise state constraints, are present, the situaiaompletely different. Now the
adjoint variable admits only low regularity due to the prese of the multipliery, which
in general is only a measure. The state now admits the higbgstarity in the optimality
system. This fact should be exploited in the error analysiswever, the presence of the
complementarity system (15) require&°-error estimates for the state. In the next two sec-
tions, we present error estimates for problems with statioarcontrol constraints. Details
can be found in [28, Chap. 3]. We consider variational diszation, and piecewise constant,
and also piecewise linear control approximations. Forat@mal discretization, the approx-
imation properties are determined by the&-error of the state approximation. In the latter
case, the approximation properties depend in addition eetior induced by the orthogonal
projection on the set of piecewise constant controls.

2.1.3 Error bounds

For the approximation error of variational discretizatie have the following theorem,
whose proof can be found in [28, Chap. 3].

Theorem 2.6 Letu andwy, be the solutions of (11) and (16) respectively. Then

_d
allu —unllu + lly = ynllezs 1y = yaller < ORI

If in addition Bu € W'#(Q) for somes € (1, 74;) then

3_d
allu —wunllv + lly = wnllz2, |y = ynllar < Chz721/]loghl.

If Bu, Buy, € L>(§2) with (Buy,);, uniformly bounded irL>°(2) also

allu —unllv + |y = ynllz2, |y — yallgr < Chlloghl,

where the latter estimate is valid far= 2, 3.

For piecewise constant control approximations and thengetf Section 2.1.2 the follow-
ing theorem is proved in [17].

Theorem 2.7 Letu andu;, be the solutions of (11) and (22) respectively with ), C
L°° () uniformly bounded. Then we have fbox h < h

o= unl] + Iy — ylla < Chllogh|, ifd=2
Ty = IR = oV, if d = 3.

The two theorems above have in common that a control errionatgt is only available for

«a > 0. However, the appearance®fin these estimates indicates that in teng-bangcase
a = 0 an error estimate folly — y, ||z is still available, whereas no information for the

www.gamm-mitteilungen.org (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



156 M. Hinze and F. Troltzsch: Discrete concepts

control error|u — up||y Seems to remain. In [18] a refined analysis of bang-bang @lsntr
without state constraints also provides estimates for gmgrol error on inactive regions in
the L'-norm. We further observe that piecewise constant conppiaimations in 2 space
dimensions deliver the same approximation quality as tianal discrete controls. Only in
space dimension 3 variational discretization providestéeberror estimate. This is caused
by the fact that state constraints limit the regularity &f #djoint state, so that optimal error
estimates can be expected by techniques which avoid its Gserently, the analysis for
piecewise constant control approximations involves arrise estimate fojtpy, || :, which
explains the lower approximation order in the cdse 3.

Let us mention that the bottleneck in the analysis here i$anoted by control constraints,
but by the state constraints. In fact, if one usgg = U, then variational discretization (16)
delivers the same numerical solution as the approach (2B)pie@cewise linear, continuous
control approximations. Variational discretization teglays off if only control contraints are
present and the adjoint variable is smooth, compare [ZB]Thap. 3].

For the numerical solution of problem (16), (22) severalrapphes exist in the literature.
Common are so called regularization methods which relaxsthte constraints in (11) by
either substituting it by a mixed control-state constréliravrentiev relaxation [41]), or by
adding suitable penalty terms to the cost functional irst#farequiring the state constraints
(barrier methods [29, 44], penalty methods [23, 25].

3 Improvement of error estimates for special classes of cordl
problems

3.1 The control-constrained case

The numerical analysis ofS) is well developed in the case without the pointwise state-
constraintsy(z) < b(z) and simple bound constraints on the control. Let us consfder
special casé/ = L?(Q2), whereB is the injection ofL?(2) into H!(Q)*. With real numbers

a; < a,, we consider the box constraints

Usa ={u €U, ay <u(z) < a, ae. inQ}.

Here, Theorem 2.3 holds with = 0, the adjoint state belongs tof/?(2) and the pointwise
projection formula

u(r) = Plg; 0, (—ép(x)) a.e. inQ (26)

holds for the optimal controk, wherelP|,, ,.; is the projection fronR onto [a;, a,]. We
consider now the approximated control constrained problem

1 «
min Jy(u) == = — 2+—/u2 27
min ) =5 [l 45 [ @)

with the admissible sdt”, of piecewise constant controls defined by (21).
Fromp € H?(Q) and (26) we obtaim € H'(Q). The numerical approximation af by
up, in L?(2) cannot be better than that ofoy 11,4, its projection inUy,. If u € H(Q), then
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|lu — I ul|y is of orderh. The same order might be expected ffar— | . Indeed, this
can be shown even for semilinear elliptic equations andfalsboundary control problems,
(1], [11].

Can an approximation of the contrelby continuous piecewise linear functions improve
the estimate? The optimal contrelis not regular, where it switches between activity and
inactivity (u is called active inz if w(z) = a; or u(z) = a,). Between the bounds is as
smooth ap € H?(Q2). If the measure of the union of all triangl&sof the triangulation with
up, ¢ H?(T) can be estimated by h, then for piecewise linear approximationwthe error
lu—up || is of orderh3/2, [9]. These control estimates of ordeandh?/2, respectively, are
sharp and are usually observed numerically.

What about the variational discretization, where the agritmctionw is not discretized?
Here, there is no approximation errorirso that only the FEM causes an error. In view of the
reasoning aboveju — uy || should then have the order of the finite element approximatio
Therefore, the expected ordet can indeed be proven, and is also observed numerically [26].
Summarizing, under natural assumptions we have

Ch for piecewise constanty,
allu—up|lv+lly—ynllzz < { Ch3? forcontinuous and piecewise lineas  (28)
C h? for variational discretization

These estimates are also true for Neumann boundary comtiollgms under appropriate as-
sumptions. Here, the discussionmécewise lineacontrols is more difficult. We refer only
to [10], [30] for Neumann and to [12], and [48]. Moreover, wemtion [19], where the error
is estimated for Dirichlet boundary control problems ungsiational discretization.

As observed e.g. by [11], the erripy — yx | .2(q) for the state may exhibit the higher order
h?, as it is the case for variational discretization. This hébrawas explained and proven
in [39] under the assumption on the measure of "trianglesrefjularity” mentioned above.
For piecewise constant control approximation, this orefeican be obtained by a simple
postprocessing step: After having computed the optimadf (22), substitute the associated
discrete adjoint statgy, for p in (26) and denote the resultingoy @;,. Then||u—a |y < ch?
holds andi;, has the same discrete structure as the optimal controlraatdiy variational
discretization. Howevefi;, no longer is a numerical solution to an optimal control pewi)

The case of a semilinear elliptic equatidfithe pde or the associated boundary condition
is of semilinear type, say

Ay + @(y) = u, (29)

where® : R — R is monotone non-decreasing and sufficiently smooth, thersitbhation is
more delicate.

Here, the choice ol = L>°(Q) is often needed to guarantee the existence of first- and
second-order Fréchet derivatives of the mapgingu — y from L>(Q2) to C(Q2). We also
should expect locally optimal controls rather than a unigp#mal control. Moreover, the
reduced objective functional should be locally convex around the selected local referenc
solutionu. Therefore, the reference solutians usually required to satisfy a second-order
sufficient optimality condition. To formulate it, we firsttioduce forr > 0 the strongly active
set

I (u) ={x € Q, |au(z) +p(x)| > T}
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Moreover, we define the-critical coneC'; (u) by the set of alb € L>°(Q2) with the property

=0, ifzel (v
v(iz)s >0, ifu(x)=a andz ¢ I (u)
<0, ifu(z)=a,andz ¢ I (u).

In almost all pointse with |au(z) 4+ p(x)| > 0, by the first order condition (26), the control
u(z) admits either the valug; or a,.. Here, we do not need additional second-order informa-
tion. This motivates the choice 6f. (u).

The second-order sufficient optimality condition requitest, in addition to the first-order
necessary optimality conditions, there exist 0 andd > 0 such that

j”[’U,U] Z 5”1)”%2(9) Yv € CT(U)

The smallerr > 0 can be taken, the smaller is the §&t(u) and the weaker is the second-
order requirement. Unfortunately, the choice= 0 is not allowed. If the second-order
sufficient condition is satisfied, thenis locally optimal in an open ball of£°°(2) centered
atu. For a detailed discussion of second-order sufficient e and the computation of
J" v, v], we refer to [1] or to the detailed exposition in [45] and teérences cited therein.
We have the error estimate

lu —unll Loy < ch

for the selected locally optimal contra| whereu,, is the related piecewise constant optimal
solution of (22) without state constraints, [1], [11].

3.2 Finite-dimensional controls

Let us now return to the pointwise state constrayits) < b with some real numbér, but
under the simplification thaBu has the form (iii) of Example 2.1,

(Bu)(x) = Y ui filz) (30)
1=1
with Holder continuous functiong : 2 — R, i = 1,...,n. Then problem (12) is of semi-

infinite type. Still, we have pointwise state constraintdwneasures as associated Lagrange
multipliers. Therefore, the adjoint state exhibits the sdow regularity agp in Theorem 2.3.
On the other hand, the control= (uy,...,u,) is a vector. As for variational discretization,
there is no need to discretize it, hence the discretizatitor eomes only from the FEM and
the discretization of the state constraints. Does thieimee the order of the errpr — uy|?

An answer given in [37] forl = 2, which depends on the form of the active setyof
Counter examples confirm that, in general, we can only exipecorderh+/|log k| being
close to the one in Theorem 2.6. Under additional assumgtahigher order can be shown.
To simplify the formulation of the next result, we assubig; = R™. Moreover, we denote
by vy, the state associated to the contrakith entriesu; = 0;;, j = 1,...,n.

Theorem 3.1 Let uw and u, be the solutions of12) with U,q4 = R" in the setting(30).
Assume that the optimal stagehas exactlyn active pointsey, ..., x, in Q, the Slater As-
sumption 2.2 is fulfilled, the Hessian matricg§«1), ..., y"(z,) are negative definit, and
the matrix(y; (x;)) j=1.....» has full rank. Then the following error estimate is fulfilled

lu — up| < C h?|loghl.

www.gamm-mitteilungen.org (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 33, No. 2 (2010) 159

This estimate is confirmed by associated numerical exam#&$ In the semi-infinite
case, one of the main difficulties is that number and locatiosctive points ofy, vary with
h. The situation simplifies considerably, if the state caists are required only in finitely
many fixed interior points as it is pointed out next.

3.3 Finite-dimensional control and state constraints in fiitely many points

Here, we consider problem (12), whelBe: R® — H!(Q)* has the form (30) and the sE},
of state constraints is given by

Yaa = {y € C(Q), y(z;) <b, j=1,...,m}

with m € Nandz; € Q, j = 1,...,m, given fixed. Let us allow also a semilinear equation
of the form (29). Now, the mappingsandg; : u — y(z;) = y(G(Bu))(x;) are real-valued
and smooth functions dependingoere R™ so that this optimal control problem is equivalent
to a finite-dimensional nonlinear programming problem. &pproximation error comes only
from the FEM. In view of the pointwise state constraints, \gaia needy € C(Q). In the
maximum norm, the associated error has the ohdélog 1/, [38]. Also here, the Lagrange
multiplier i, is a measure. However, it is a linear combination of Diracsueas concentrated
in the pointsz; so thaty can be identified with the vector of associated nonnegataé r
coefficients.

This and the equivalence to finite-dimensional programngagnits to estimate|y —
tnll oy BY ch?|log h| under natural assumptions. The next result is taken frofa [38

Theorem 3.2 Let uw and u;, be the solutions of the optimal control problem with finite-
dimensional control and state constraints in finitely mamyngs. Let a locally optimak
satisfy a linearized Slater condition. Assume further tirathe formulation of a nonlinear
programming problem, the strong second-order sufficietinegdity condition and the linear
independence condition of active gradients are satisfiggnThere is &' > 0 independent
of h such that, for all sufficiently small > 0, it holds

= un| + [l = unll () < Ch?[loghl.

Example 3.3([38]) We consider the state equation (29Xin= (—1,1) x (—1,1) with
A =—-A, ®(y) = y(15 + |y|), homogeneous Dirichlet boundary conditions and the ansatz
(30) for the control. The problemis

. 1 9 1 2
min J(y,u) = §||y_y0HU+ glu—uczl

subject to the elliptic equation (29) and the constraints
y('rl) S 8/273 1= 17"'547 y(CC5) 2 07

wherex1, ..., x4 are defined by the 4 possible selectiong-bf/1/3, +1/1/3), 25 = (0,0),
and the ansatz functions afg(r) = 122323 — 2(zf + 23), fo(z) = 23 + 23, f3(x) =
1, fa(z) = (23 = 1)(23 — 1)(2? + 23), f5(z) = (2% — 1)?(2% — 1)%(2? + 23)?. Further, we
defineyo(z) = (22 — 1)(23 — 1)(22 + 22) anduy = (—2,16,—4,15,1) 7.

Thenu = uy is the optimal control with state = y,, which is active inzq, ..., x5.
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Fig. 2 Optimal state and adjoint state of Example 3.3

The computed statg and the adjoint state are shown in Figure 3.3. The Lagrande mu
tipliers are Dirac measures concentrated on the paintBence the associated adjoint state
exhibits singularities in these points. Computations &ithnitial mesh containingy, . . ., x5
confirmed the predicted error estimate, [38].
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