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Abstract— We consider the following problem of error esti-
mation for the optimal control of nonlinear parabolic partial
differential equations: Let an arbitrary control function be
given. How far is it from the next locally optimal control?
Under natural assumptions including a second order sufficient
optimality condition for the (unknown) locally optimal control,
we are able to estimate the distance between the two controls.
To do this, we need some information on the lowest eigenvalue
of the reduced Hessian. We apply this technique to a model
reduced optimal control problem obtained by proper orthogonal
decomposition (POD). The distance between a (suboptimal) local
solution of the reduced problem to a local solution of the original
problem is estimated.

I. INTRODUCTION

We focus on the following question for the optimal control
problem of semilinear parabolic equations: Let a numerical
approximation us for a locally optimal control be given.
For instance, it can be the solution to some reduced order
optimization model. How far is this control from the nearest
locally optimal control ū? We want to quantify the error
‖us − ū‖ in an appropriate norm.

We will concentrate on suboptimal controls us obtained by
proper orthogonal decomposition (POD). We extend a method
suggested in [1] to the case of semilinear equations.

II. OPTIMAL CONTROL PROBLEM AND OPTIMALITY
CONDITIONS

We explain our method for the following special optimal
control problem in a bounded Lipschitz domain Ω ⊂ Rn:

(P ) min J(y, u) :=
1
2

∫
Ω

(y(x, T )− yd(x))2 dx

+
λ

2

∫ T

0

u(t)2 dt

in Ω = (0, `), subject to

yt(x, t)− yxx(x, t) = 0 in Ω× (0, T )

yx(0, t) = 0 in (0, T ]

yx(`, t) + y4(`, t) = u(t) in (0, T ]

y(x, 0) = 0 in Ω

and to the control constraints |u(t)| ≤ 1.

In this problem, yd ∈ L2(Ω); T, λ, ` > 0 are given. For
the control we require u ∈ L∞(0, T ), and y is defined as
weak solution of the parabolic equation in W (0, T ) ∩ C(Q̄);
we have set Q := Ω× (0, T ).

Let u be an arbitrary control for (P). Associated with u,
we have the state function yu is the unique solution of the
parabolic equation above. Moreover, we define the associated
adjoint state pu as the weak solution to the adjoint equation

−pt(x, t)− pxx(x, t) = 0 in Q

px(0, t) = 0 in (0, T ]

px(`, t) + 4 y3
u(`, t) p(`, t) = 0 in (0, T ]

p(x, T ) = yu(x, T )− yd(x) in Ω.

Let now ū be a locally optimal control for (P) and let p̄ := pū

be the associated adjoint state. Then the following standard
necessary optimality condition must be satisfied for almost all
t ∈ [0, T ] :

(p̄(`, t) + λū(t))(u− ū(t)) ≥ 0 ∀u ∈ [−1, 1],

From this variational inequality, we deduce the implications

p̄(`, t) + λū(t) < 0 ⇒ ū(t) = 1,

p̄(`, t) + λū(t) > 0 ⇒ ū(t) = −1.

On the other hand, this also implies

ū(t) = −1 ⇒ p̄(`, t) + λū(t) ≥ 0

ū(t) ∈ (−1, 1) ⇒ p̄(`, t) + λū(t) = 0

ū(t) = 1 ⇒ p̄(`, t) + λū(t) ≤ 0

 (1)

a.e. in (0, T ). This is the basis for the perturbation method.

III. THE PERTURBATION METHOD

For the optimal control of ordinary differential equations,
the perturbation method was introduced by Dontchev et al.
[2] and Malanowski, Büskens, and Maurer.

Let us 6= ū be a suboptimal control, obtained by some
numerical method. Then us will not in general satisfy the op-
timality conditions above. However, us satisfies the condition

(ps(`, t) + λus(t) + ζ(t))(u− us(t)) ≥ 0 ∀u ∈ [−1, 1],
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if the perturbation ζ ∈ L2(0, T ) is properly chosen. Following
Arada et al. [3] we define

ζ(t) :=


[ps(`, t) + λus(t)]− if us(t) = −1

−(ps(`, t) + λus(t)) if us(t) ∈ (−1, 1)

[ps(`, t) + λus(t)]+ if us(t) = 1,

(2)

where, for a ∈ R, [a]+ := 1
2 (|a| + a), [a]− := 1

2 (|a| − a).
With this choice of ζ, us satisfies the necessary optimality
conditions for the perturbed control problem

(Pζ) minJ(yu, u) +
∫ T

0

ζ(t)u(t) dt

subject to all other constraints of (P). An easy discussion
shows that ζ is defined such that us obeys the counterpart
of the conditions (1) formulated for (Pζ).

IV. A POSTERIORI ERROR ESTIMATION

A. The error estimate

Define the reduced objective functional f by

f(u) := J(yu, u).

By our construction above, ū and us satisfy the necessary op-
timality conditions for the problems (P) and (Pζ), respectively.
Therefore, we have

f ′(ū)(us − ū) ≥ 0

f ′(us)(ū− us) +
(
ζ , ū− us

)
≥ 0,

(3)

where
(
· , ·

)
denotes the inner product of L2(0, T ).

To quantify the distance of us to ū, it is natural to require
that ū satisfies a second-order sufficient optimality condition.
If this is true, then the second derivative f ′′(u) is positive
definite in a certain L∞- neighborhood of ū. To get an esti-
mate, we have to assume that us belongs to this neighborhood.
Notice that f ′′ is not twice differentiable in L2(0, T ), we need
the space L∞(0, T ), cf. [4].

Theorem. Suppose there are a radius ρ > 0 and some
α > 0 such that

f ′′(u)h2 ≥ α ‖h‖2L2(0,T ) ∀u ∈ Bρ(ū), ∀h ∈ L2(0, T ).

If us belongs to Bρ(ū), then it holds

‖us − ū‖L2(0,T ) ≤
1
α
‖ζ‖L2(0,T ).

Proof. Adding the inequalities (3), we find

(f ′(us)− f ′(ū))(ū− us) +
(
ζ , ū− us

)
≥ 0. (4)

By the mean value theorem, there exists uθ ∈ [us, ū] so that

−(f ′(us)− f ′(ū))(ū− us) = f ′′(uθ)(us − ū)2.

Therefore (4) yields

f ′′(uθ)(ū− us)2 ≤
(
ζ , ū− us

)
,

where uθ belongs to [us, ū], hence uθ ∈ Bρ(ū).
Invoking the assumed second-order coercivity condition, we
obtain

f ′′(uθ)(ū− us)2 ≥ α ‖ū− us‖2L2(0,T ).

By the Cauchy-Schwarz inequality,(
ζ , ū− us

)
≤ ‖ζ‖L2(0,T ) ‖ū− us‖L2(0,T ),

it follows

α ‖ū− us‖2L2(0,T ) ≤ ‖ζ‖L2(0,T ) ‖us − ū‖L2(0,T )

implying the statement of the theorem. ¤

B. Numerical application of the perturbation method

1) General remarks: A numerical application of this result
requires the following information:
• The second derivative f ′′ is uniformly positive definite in

an L∞-ball around ū. This is equivalent to a second-order
sufficient condition at ū.

• The suboptimal us is sufficiently close to ū.
• We know α, the associated coercivity constant.

In general, none of them is known in advance, except the
equation is linear. Therefore, we somehow have to trust that us

was already determined sufficiently close to ū while the latter
function satisfies the second-order condition. Assumptions
of this type are more or less unavoidable in the numerical
solution of nonlinear optimization problems. This concerns
in particular the second-order sufficient optimality condition.
A similar assumption is that of a constraint qualification
in nonlinear optimization that guarantees the existence of
Lagrange multipliers. Also this assumption can often not be
verified in advance.

A serious obstacle is the estimation of the coercivity con-
stant α. We try to estimate α by establishing the reduced Hes-
sian associated with us and computing its smallest eigenvalue.

2) Application to (P): For a numerical implementation in
the case of our boundary control problem (P), we take an
equidistant partition of [0, T ] with mesh size τ and assume
that u is a step function expressed by a vector ~uτ having the
”step heights” as entries.

In this way, we obtain a discrete version of the reduced
functional f ,

ϕ(~uτ ) := f(uτ ),

where uτ is the step function associated with the vector ~uτ .
Denote by Hs the reduced Hessian matrix, associated with

the suboptimal solution ~us,τ ,

Hs = ϕ′′(~us,τ )

and assume that Hs has the smallest eigenvalue σs
min > 0 .

Then it holds

~uT
τ Hs~uτ ≥ σs

min |~uτ |22 =
σs

min

τ
‖uτ‖2L2(0,T )

for all vectors ~uτ associated with a corresponding step function
uτ .
If the problem (P) behaves well around the unknown ū, i.e.
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our coercivity assumptions are satisfied, and us is sufficiently
close to ū, then

α ≈ σs
min

τ
.

If there holds in addition
σs

min

τ
≤ α, then

‖us − ū‖L2(0,T ) ≤
τ

σs
min

‖ζ‖L2(0,T ).

3) Numerical application: We first should mention that
all arguments above were presented as if we were able to
determine the state functions y and p exactly. This was tacitly
assumed to keep the presentation simple. A precise estimation
should also include the error due to a numerical discretization
of the parabolic state equation and the associated adjoint
equation. Let us therefore assume that the solution of these
equations is done very precisely so that the associated error
can be neglected.

To estimate the distance of a suboptimal control us to the
unknown exact locally optimal control ū, one has to proceed
as follows:

(i) Compute the state ys = yus and the adjoint state pus .
(ii) Determine the residual ζ of the optimality system accord-

ing to (2).
(iii) Compute the reduced Hessian Hs for the discretized

problem and determine its smallest eigenvalue σs
min.

(iv) Estimate by

‖us − ū‖L2(0,T ) ≈
τ

σs
min

‖ζ‖L2(0,T ).

V. AN APPLICATION TO MODEL REDUCTION BY POD

A. Proper orthogonal decomposition

To establish a model reduced optimal control problem, we
apply standard POD. We find a small Galerkin basis that well
expresses the main properties of the underlying system.

Step 1. Determine snapshots.

We compute the state yũ for a useful control ũ. For instance,
ũ = 0 is not useful, since yũ = 0. We took ũ(t) = −1 +
2t/T, 0 ≤ t ≤ T.

For a partition of [0, T ], ti = i/n · T, i = 0, . . . , n, we
computed the snapshots yi(·) := y(·, ti), i = 0, . . . , n, of the
state yũ. To have some typical number at hand, think of n =
100.

Step 2. Find a small Galerkin basis.

Define V := H1(Ω), V n := span {y0, . . . , yn}, let d =
dim V n, fix r ∈ N, r ≤ d. In our tests, we took r = 3, 4, 5.

Establish an orthonormal system {Φ1, . . . ,Φr} by

min
Φ1,...,Φr

n∑
i=0

αj

∥∥∥yj −
r∑

i=1

(
Φi , yj

)
Φi

∥∥∥2

V

with certain weights αj > 0. This step is accomplished by
solving a certain eigenvalue problem, see e.g. Kunisch and
Volkwein [5] or Volkwein [6].

Step 3. Set up the reduced PDE.

With the small Galerkin basis {Φ1, . . . ,Φr}, we apply the
standard Galerkin method: Based on the ansatz

y(x, t) =
r∑

i=1

ηi(t)Φi(x),

we obtain the system

d

dt
(y(·, t) , Φj)Ω + (∇y(·, t) , ∇Φj)Ω

+(y4(·, t) , Φj)∂Ω = (u(t) , Φj)∂Ω.

for all j = 1, ..., r.
Next, the associated low-dimensional optimal control prob-

lem is solved to obtain the suboptimal control ur with state
yr. For this purpose, we used an SQP method.

Step 4. POD a posteriori error estimation.

The a posteriori estimation of ‖ū − ur‖L2(0,T ) is done by
our perturbation method. This requires the full state yr := yur

and the solution pr = pur
of the adjoint equation

−pt(x, t)− pxx(x, t) = 0
px(0, t) = 0

px(`, t) + 4 y3
r(`, t)p(`, t) = 0,

p(x, T ) = yr(x, T )− yd(x).

In this way, we have to solve two full size PDEs. Then
we determined the associated reduced Hessian matrix and
estimated as explained in Section IV. We increased the number
r, if the computed estimate was too large. In this case, we
solved the associated slightly larger reduced control problem.

B. Numerical test

We report on one of our numerical tests, where we consid-
ered (P) in Ω = (0, 1) with T = 1.58, yd(x) := (1 − x2)/2
and λ = 1/10.

The state equation and the adjoint equation were solved by
a finite element scheme with m = 400 degrees of freedom.
A semi-implicit Euler scheme was applied for solving the
semidiscrete equation PDEs. Next, 200 snapshots were taken
and the small Galerkin basis was set up accordingly.

As a substitute for the unknown exact locally optimal
control, we solved the full discretized optimal control problem
with spatial step size h = 1

400 and time step size τ = T
200 to

determine the ”exact” optimal solution ūh,τ .
Then we solved the POD reduced optimal control problem

with r = 2, . . . , 5 POD ansatz functions. Already for r =
4, the computed suboptimal control cannot be graphically
distinguished from the ”exact” optimal control ūh,τ presented
in Fig. 1.

The table below indicates that the order of the error is well
expressed by our method of a posteriori estimation.
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Fig. 1. Optimal control in the example

r ‖ūh,τ − ur‖L2(0,T )
τ

σr
min

‖ζ‖L2(0,T )

1 3.622e-1 6.440e-1
2 5.745e-2 6.471e-2
3 3.728e-3 4.606e-3
4 8.616e-4 4.749e-4
5 1.121e-3 7.407e-4
6 1.101e-3 7.095e-4

The tremendous gain in performance by the model reduction
is shown in the next table:

Computational step CPU time
FE optimization 143 s
Snapshots for r = 4 0.7 s
POD basis for r = 4 0.1 s
Optimization ROM for r = 4 0.4 s

VI. CONCLUSION

We have suggested a method of a posteriori error estimation
for estimating the distance of a computed suboptimal control
to a sufficiently close unknown (exact) locally optimal control.
The method is based on some second-order coercivity assump-
tion on the exact optimal control. Moreover, it requires that
the suboptimal control is sufficiently close to the exact one.
Assumptions of this type seem to be unavoidable for nonlinear
equations. They were also needed in any method of model
reduction, if a precise error estimate for the difference between
the solution of the given PDE and its reduced version were
available.

The application of our method to a nonlinear boundary
control problem with Stefan-Boltzmann boundary condition
demonstrated the applicability of our method. We have also
discussed nonlinear distributed control problems with similar
success. More details are presented for a general class of
parabolic control problems in [7].
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