Geometry I

Dott. Matteo Petrera
WS 09/10
http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 9

Exercise 1: Correlations.

A correlation is by definiton a point-to-line and line-to-point transformation which dualizes incidences.

Prove that under a correlation, concurrent lines are mapped to collinear points.

Exercise 2: Dual conics.

Let $\gamma:=\left\{[x] \in \mathbb{R} P^{2}: x^{T} A x=0\right\} \subset \mathbb{R} P^{2}$ be a non-degenerate conic. For every $P=[x] \in \gamma$ let $\ell_{P}:=\left\{[y] \in \mathbb{R} P^{2}: x^{T} A y=0\right\} \subset \mathbb{R} P^{2}$ denote its tangent line and P^{*} be the dual of ℓ_{P}.

1. Prove that $P^{*}=[A x] ;$
2. Prove that $\gamma^{*}:=\left\{P^{*}: P \in \gamma\right\} \subset \mathbb{R} P^{2}$ is a non-degenerate conic (called the dual conic);
3. By construction, any point of a conic dualizes to a tangent of the dual conic and viceversa. Dualize Pascal's Theorem (you will end up with Brianchon's Theorem).

Exercise 3: Conics and quadrilaterals.

Let $\gamma \subset \mathbb{R} P^{2}$ be a non-degenerate projective conic through the vertices of a quadrilateral $A B C D$. Let ℓ be the line passing through the points $A C \cap B D$ and $A D \cap B C$. Prove that the tangents to γ at A and B intersect at a point on ℓ.

Exercise 4: Conic through five points .
Let $A=[1,0,0], B=[0,1,0], C=[0,0,1], D=[1,1,1], E=[2,-1,-1]$ be points in $\mathbb{R} P^{2}$. Find the equation of a conic γ (if exists) passing through A, B, C, D, E.

