TEChnische Universität BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan
Geometry I
Dott. Matteo Petrera
WS 09/10
http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 8

Exercise 1: Cross-ratio.

Let l_{1}, l_{2}, l_{3} be three skew lines in $\mathbb{R} P^{3}$. Let a, b, c, d be lines in $\mathbb{R} P^{3}$ which intersect each line l_{i}. Then the four intersection points $\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ on l_{i} determine a cross-ratio $q_{i}=\operatorname{cr}\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$. Show that $q_{1}=q_{2}=q_{3}$.

Exercise 2: Pencil of conics.

Consider the following pencil of conics in \mathbb{R}^{2} :

$$
\gamma_{t}: x^{2}+(1-t) y^{2}+2 t x-2(1-t) y+2-t=0 .
$$

Find $t \in \mathbb{R}$ such that:

1. γ_{t} is a parabola;
2. γ_{t} is a hyperbola;
3. γ_{t} is an ellipse (with real points);
4. γ_{t} is empty (an ellipse with no real points);
5. γ_{t} is a circle;
6. γ_{t} is a degenerate conic.

Exercise 3: Canonical form of conics.

1. Classify and find the canonical form of the following conics in \mathbb{R}^{2} :
(a) $\gamma_{1}: x^{2}+2 x y+y^{2}+4 x=0$;
(b) $\gamma_{2}: x^{2}+6 x y+y^{2}-3=0$;
(c) $\gamma_{3}: 3 x^{2}+2 x y+3 y^{2}-8=0$.
2. Write down the change of coordinates which transforms the conics γ_{i} in canonical form.

Exercise 4: Parabola.

In \mathbb{R}^{2} consider the conic of equation $\gamma: 4 x^{2}+4 x y+y^{2}+x=0$.

1. Show that γ is a parabola and find its vertex;
2. Find the tangent lines to γ which are parallel to the line $x=0$.
