TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan **Geometry I** Dott. Matteo Petrera http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 8

Exercise 1: Cross-ratio.

Let l_1, l_2, l_3 be three skew lines in $\mathbb{R}P^3$. Let a, b, c, d be lines in $\mathbb{R}P^3$ which intersect each line l_i . Then the four intersection points $\{a_i, b_i, c_i, d_i\}$ on l_i determine a cross-ratio $q_i = cr(a_i, b_i, c_i, d_i)$. Show that $q_1 = q_2 = q_3$.

Exercise 2: Pencil of conics.

Consider the following pencil of conics in \mathbb{R}^2 :

$$\gamma_t: x^2 + (1-t)y^2 + 2tx - 2(1-t)y + 2 - t = 0$$

Find $t \in \mathbb{R}$ such that:

- 1. γ_t is a parabola;
- 2. γ_t is a hyperbola;
- 3. γ_t is an ellipse (with real points);
- 4. γ_t is empty (an ellipse with no real points);
- 5. γ_t is a circle;
- 6. γ_t is a degenerate conic.

Exercise 3: Canonical form of conics.

- 1. Classify and find the canonical form of the following conics in \mathbb{R}^2 :
 - (a) γ_1 : $x^2 + 2xy + y^2 + 4x = 0;$
 - (b) γ_2 : $x^2 + 6xy + y^2 3 = 0;$
 - (c) $\gamma_3: 3x^2 + 2xy + 3y^2 8 = 0.$
- 2. Write down the change of coordinates which transforms the conics γ_i in canonical form.

Exercise 4: Parabola.

In \mathbb{R}^2 consider the conic of equation γ : $4x^2 + 4xy + y^2 + x = 0$.

- 1. Show that γ is a parabola and find its vertex;
- 2. Find the tangent lines to γ which are parallel to the line x = 0.

WS 09/10

(6 pts)

(4 pts)

(4 pts)

(4 pts)