Technische Universität Berlin

Prof. Dr. John M. Sullivan

## Geometry I

Dott. Matteo Petrera
WS 09/10
http://www.math.tu-berlin.de/~sullivan/L/09W/Geol/

## Exercise Sheet 7

## Exercise 1: Collinearity.

Let $\ell_{1}, \ell_{2}, \ell_{3}, m_{1}, m_{2}, m_{3}$ be distinct lines in a projective plane such that

$$
\left\{\begin{array}{l}
\ell_{1} \cap \ell_{2} \cap \ell_{3} \neq \emptyset, \\
m_{1} \cap m_{2} \cap m_{3} \neq \emptyset, \\
\ell_{1} \cap \ell_{2} \cap m_{1}=\emptyset .
\end{array}\right.
$$

Let $p_{i j}:=\ell_{i} \cap m_{j}$. Prove that the three points $\overline{p_{13} p_{32}} \cap \overline{p_{23} p_{31}}, p_{11}$ and $p_{22}$ are collinear. (Hint: use Pappus Theorem).

## Exercise 2: Intersections.

Find the equation of a projective line in $P^{3}(\mathbb{R})$ which intersects the projective lines

$$
\left\{\begin{array} { l } 
{ x _ { 1 } = 0 , } \\
{ x _ { 2 } + x _ { 3 } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
x_{4}=0, \\
x_{2}-x_{3}
\end{array}=0, \quad\left\{\begin{array}{l}
x_{2}-x_{1}=0, \\
x_{4}-x_{3}=0
\end{array}\right.\right.\right.
$$

(Note that there are many such lines).

## Exercise 3: Projective transformations.

Let $Q:=\{[0,1],[1,0],[1,2],[2,1]\} \subset P^{1}(\mathbb{R})$. Consider the projective transformations $\tau: P^{1}(\mathbb{R}) \rightarrow P^{1}(\mathbb{R})$ such that $\tau(Q) \subseteq Q$.

1. How many such transformations $\tau$ exist?
2. Find explicit formulas for these transformations $\tau$.

## Exercise 4: Cross-ratio.

Find all $t \in \mathbb{C}$ such that there exists a projective transformation $\tau: P^{1}(\mathbb{C}) \rightarrow P^{1}(\mathbb{C})$ with

$$
\tau(0)=0, \quad \tau(1)=1, \quad \tau(t)=2, \quad \tau(2)=6-t .
$$

## Exercise 5: Cross-ratio.

Let $\ell, \ell^{\prime}$ be two lines in a projective plane and $p:=\ell \cap \ell^{\prime}$. Let $a, b, c$ and $a^{\prime}, b^{\prime}, c^{\prime}$ be distinct points on $\ell$, resp. on $\ell^{\prime}$, all of them different from $p$. Prove that

$$
\overline{a a^{\prime}} \cap \overline{b b^{\prime}} \cap \overline{c c^{\prime}} \neq \emptyset \quad \Leftrightarrow \quad \operatorname{cr}(a, b, c, p)=\operatorname{cr}\left(a^{\prime}, b^{\prime}, c^{\prime}, p\right) .
$$

