# Geometry I 

Dott. Matteo Petrera

## Exercise Sheet 6

## Exercise 1: Fixed points of projective transformations.

1. Show that any projective transformation on $P^{2}(\mathbb{R})$ has a fixed point.
2. Let $V$ be a vector space over the field $\mathbb{K}$. Give necessary and sufficient conditions for an arbitrary projective transformation (which is not the identity) to have fixed points on $P(V)$.

## Exercise 2: Cubic equations.

Let $E$ be subspace of $P^{2}(\mathbb{C})$ defined by the cubic equations

$$
\left\{\begin{array}{l}
x_{0} x_{1} x_{2}=0, \\
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}=0 .
\end{array}\right.
$$

1. How many points are in $E$ ?
2. Let $a, b \in E, a \neq b$. Prove that the line through $a$ and $b$ contains $c \in E, c \neq a, b$.

## Exercise 3: Duality.

Let $A=[1,0,0], B=[0,1,0], C=[0,0,1], D=[1,1,1]$ be points in $P^{2}(\mathbb{R})$. Let $A^{\prime}=A D \cap B C, B^{\prime}=B D \cap C A$ and $C^{\prime}=C D \cap A B$. Let $X=B C \cap B^{\prime} C^{\prime}$, $Y=C A \cap C^{\prime} A^{\prime}$ and $Z=A B \cap A^{\prime} B^{\prime}$

1. Describe the dual of $A, B, C, D$.
2. Show that $X, Y, Z$ are collinear.
3. Find the dual statement corresponding to that you have proved in 2 .

## Exercise 4: Dual of projective points.

Let $V$ be a 3-dimensional vector space with basis $v_{1}, v_{2}, v_{3}$ and let $A, B, C$ be points in $P(V)$ expressed in homogeneous coordinates relative to this basis by

$$
A=[2,1,0], \quad B=[0,1,1], \quad C=[-1,1,2] .
$$

Find the coordinates with respect to the dual basis of the three points in the dual space $P\left(V^{\prime}\right)$ which represent the lines $A B, B C$ and $C A$.

