TEChnische UniversitÄt BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan

Geometry I

Dott. Matteo Petrera
WS 09/10
http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 5

Exercise 1: Circles.

Let C denote the Euclidean circle with center $(0, s)$ and radius s, where $0<s<1 / 2$.

1. Compute the center and radius of the hyperbolic circle represented by C in the Poincaré disk model \mathbb{D}^{2}.
2. Let C^{\prime} denote the hyperbolic circle in \mathbb{D}^{2} with center $(0,0)$ and the same hyperbolic radius as C. Then as Euclidean circles, which has larger radius, C or C^{\prime} ? Why?

Exercise 2: Möbius transformations.

Consider the half-plane model $\mathbb{H}_{+}^{2}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. Let $C \subset \mathbb{H}_{+}^{2}$ be a hyperbolic line (i.e. either a semicircle orthogonal to the real axis or a vertical straight line). Let γ be a Möbius transformation defined by

$$
\gamma(z):=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{R}, a d-b c>0
$$

1. Prove that $\gamma(C)$ is a hyperbolic line.
2. Let $C^{\prime} \neq C$ be a hyperbolic line. Prove that there exists a Möbius transformation that maps C to C^{\prime}.

Exercise 3: Projective lines in $P^{2}(\mathbb{R})$.

1. Find the equation of the projective line in $P^{2}(\mathbb{R})$ joining $A=[1,2,0]$ to $B=[1,0,1]$.
2. Let $\ell \subset P^{2}(\mathbb{R})$ be the projective line through $[0,1,1]$ and $[1,0,1]$; let $\ell^{\prime} \subset P^{2}(\mathbb{R})$ be the projective line through $[1,1,1]$ and $[0,2,-1]$. Find the homogeneous coordinates of the point $\ell \cap \ell^{\prime}$.

Exercise 4: Projective transformations in $P^{2}(\mathbb{R})$.

1. Find a projective transformation $\tau_{1}: P^{2}(\mathbb{R}) \rightarrow P^{2}(\mathbb{R})$ which maps the points

$$
P_{0}=[1,2,0], \quad P_{1}=[0,1,0], \quad P_{2}=[-1,0,2], \quad P_{3}=[-1,3,4],
$$

to the points

$$
Q_{0}=[1,0,0], \quad Q_{1}=[1,1,0], \quad Q_{2}=[0,-1,1], \quad Q_{3}=[1,1,1],
$$

respectively.
2. Find a projective transformation $\tau_{2}: P^{2}(\mathbb{R}) \rightarrow P^{2}(\mathbb{R})$ which maps the points $P_{0}, P_{1}, P_{2}, P_{3}$ from 1. to the points $P_{3}, P_{2}, P_{1}, P_{0}$ (i.e. τ_{2} interchanges these points).

Exercise 5 (optional): Riemannian metrics.

(extra 4 pts)
Consider the following hyperbolic models:

$$
\begin{aligned}
& \mathbb{J}:=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \mid x_{1}^{2}+\cdots+x_{n+1}^{2}=1, x_{n+1}>0\right\}, \\
& \mathbb{L}:=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \mid x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1, x_{n+1}>0\right\} .
\end{aligned}
$$

\mathbb{J} is the Hemisphere model and \mathbb{L} is the Hyperboloid model. The corresponding Riemannian metrics are:

$$
d s_{\mathrm{J}}^{2}=\frac{d x_{1}^{2}+\cdots+d x_{n+1}^{2}}{x_{n+1}^{2}}, \quad d s_{\mathbb{L}}^{2}=d x_{1}^{2}+\cdots+d x_{n}^{2}-d x_{n+1}^{2} .
$$

The isometry between \mathbb{L} and \mathbb{J} is the central projection from the point $(0,0, \ldots, 0,-1)$:

$$
\alpha: \mathbb{L} \rightarrow \mathbb{J}, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(\frac{x_{1}}{x_{n+1}}, \ldots, \frac{x_{n}}{x_{n+1}}, \frac{1}{x_{n+1}}\right)
$$

Prove that $\alpha^{*}\left(d s_{\mathrm{J}}^{2}\right)=d s_{\mathbb{⿺}}^{2}$, where $\alpha^{*}\left(d s_{\mathrm{J}}^{2}\right)$ is the pullback of $d s_{\mathrm{J}}^{2}$ by the isometry α.

