TEChnische UniversitÄt BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan

Geometry I

Dott. Matteo Petrera
WS 09/10
http://www.math.tu-berlin.de/~sullivan/L/09W/Geol/

Exercise Sheet 10

Exercise 1: Cross-ratio for a conic.

Given a non-degenerate conic $\gamma \subset \mathbb{R} P^{2}$, the cross-ratio of four points $P_{i} \in \gamma, i=$ $1,2,3,4$, is defined by $\operatorname{cr}\left(P_{1}, P_{2}, P_{3}, P_{4}\right):=\operatorname{cr}\left(Q P_{1}, Q P_{2}, Q P_{3}, Q P_{4}\right)$, where Q is an arbitrary point on γ.

Let $\gamma \subset \mathbb{R} P^{2}$ be a non-degenerate conic. Let $P, Q, R \in \mathbb{R} P^{2}$ be such that γ is tangent to $P Q$ at $Q \in \gamma$ and to $P R$ at $R \in \gamma$. Prove that for any $A, B \in \gamma$ the following formula holds:

$$
[\operatorname{cr}(Q, R, A, B)]^{2}=\operatorname{cr}(P Q, P R, P A, P B) .
$$

Exercise 2: Triangle circumscribed around a conic.

Let $\triangle A B C \subset \mathbb{R} P^{2}$ be a triangle circumscribed around a non-degenerate conic $\gamma \subset$ $\mathbb{R} P^{2}$. The lines $C B, A C, A B$ meet γ at P_{1}, P_{2}, P_{3} respectively. Show that $A P_{1}, B P_{2}, C P_{3}$ are concurrent.

Exercise 3: Canonical forms of quadrics.

Classify and find the canonical form of the following quadrics in \mathbb{R}^{3} (up to Euclidean motion) :

1. $\sigma_{1}: 6 x z+8 y z-5 x=0$;
2. $\sigma_{2}: 6 x z+8 y z-5=0$;
3. $\sigma_{3}: 3 x^{2}+2 y^{2}+2 x z+3 z^{2}-4=0$.

Exercise 4: Circular cone.

Decide which of the following equations describes the circular cone that is obtained when one rotates the line $\ell:=\{[x, y, z]: x=0, z=2 y\}$ around the z-axis:

$$
x^{2}+4 y^{2}=z^{2}, \quad 4\left(x^{2}+y^{2}\right)-z^{2}=0, \quad 2\left(x^{2}+y^{2}\right)-z^{2}=0, \quad z=4\left(x^{2}+y^{2}\right) .
$$

Exercise 5: Intersections.

The quadrics $\sigma_{1}: z=x^{2}+y^{2}$ and $\sigma_{2}: z=x^{2}-y^{2}$ are both examples of paraboloids. Find the equations of planes $\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ (each parallel to some coordinate plane) such that:

1. $\sigma_{1} \cap \pi_{1}$ is a parabola;
2. $\sigma_{1} \cap \pi_{2}$ is a circle;
3. $\sigma_{2} \cap \pi_{3}$ is a hyperbola;
4. $\sigma_{2} \cap \pi_{4}$ is a pair of lines.
