TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan Dott. Matteo Petrera http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 10

Exercise 1: Cross-ratio for a conic.

Given a non-degenerate conic $\gamma \subset \mathbb{R}P^2$, the cross-ratio of four points $P_i \in \gamma$, i =1, 2, 3, 4, is defined by $cr(P_1, P_2, P_3, P_4) := cr(QP_1, QP_2, QP_3, QP_4)$, where Q is an arbitrary point on γ .

Let $\gamma \subset \mathbb{R}P^2$ be a non-degenerate conic. Let $P, Q, R \in \mathbb{R}P^2$ be such that γ is tangent to PQ at $Q \in \gamma$ and to PR at $R \in \gamma$. Prove that for any $A, B \in \gamma$ the following formula holds:

$$[\operatorname{cr}(Q, R, A, B)]^2 = \operatorname{cr}(PQ, PR, PA, PB).$$

Exercise 2: Triangle circumscribed around a conic.

Let $\triangle ABC \subset \mathbb{R}P^2$ be a triangle circumscribed around a non-degenerate conic $\gamma \subset$ $\mathbb{R}P^2$. The lines CB, AC, AB meet γ at P_1 , P_2 , P_3 respectively. Show that AP_1 , BP_2 , CP_3 are concurrent.

Exercise 3: Canonical forms of quadrics.

Classify and find the canonical form of the following quadrics in \mathbb{R}^3 (up to Euclidean motion):

1.
$$\sigma_1: 6xz + 8yz - 5x = 0;$$

2.
$$\sigma_2: 6xz + 8yz - 5 = 0;$$

3. σ_3 : $3x^2 + 2y^2 + 2xz + 3z^2 - 4 = 0$.

Exercise 4: Circular cone.

Decide which of the following equations describes the circular cone that is obtained when one rotates the line $\ell := \{ [x, y, z] : x = 0, z = 2y \}$ around the z -axis:

$$x^{2} + 4y^{2} = z^{2}, \quad 4(x^{2} + y^{2}) - z^{2} = 0, \quad 2(x^{2} + y^{2}) - z^{2} = 0, \quad z = 4(x^{2} + y^{2}).$$

Exercise 5: Intersections.

The quadrics σ_1 : $z = x^2 + y^2$ and σ_2 : $z = x^2 - y^2$ are both examples of paraboloids. Find the equations of planes $\pi_1, \pi_2, \pi_3, \pi_4$ (each parallel to some coordinate plane) such that:

1. $\sigma_1 \cap \pi_1$ is a parabola;

- 2. $\sigma_1 \cap \pi_2$ is a circle;
- 3. $\sigma_2 \cap \pi_3$ is a hyperbola;
- 4. $\sigma_2 \cap \pi_4$ is a pair of lines.

Mathematical School

> Geometry I WS 09/10

> > (4 pts)

(2 pts)

(4 pts)

(6 pts)

(4 pts)

Due: Tutorial on 29.01.10