TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. John M. Sullivan **Geometry I** Dott. Matteo Petrera WS 09/10 http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 1

Exercise 1: Distance.

Let x and y be two points in the Euclidean space \mathbb{E}^n . Prove that the shortest path between them is the line segment connecting them.

Exercise 2: Spherical circles.

In S^2 , define the circle of radius r around a point c as

$$C_r(c) := \{ x \in \mathbf{S}^2 \mid d(c, x) = r \},\$$

where $d(\cdot, \cdot)$ is the spherical metric. Show that $C_r(c)$ is the intersection of \mathbf{S}^2 with a plane. Find the length of the circle.

Exercise 3: Perpendicular bisector.

Given two points $P \neq Q \in \mathbf{S}^2$, define

$$X := \{ x \in \mathbf{S}^2 \mid d(x, P) = d(x, Q) \}.$$

Show that X is a great circle that intersects any great circle through P and Q orthogonally. What is special about the case P = -Q?

Exercise 4: Polar triangle.

For a point $P \in \mathbf{S}^2$, let H_P denote the hemisphere with interior pole P. Show that a point $P \in \mathbf{S}^2$ is contained in a spherical triangle Δ if and only if H_P contains the polar triangle of Δ .

(4 pts)

(4 pts)

Berlin Mathematical School

(4 pts)

(4 pts)