Geometry I

Dott. Matteo Petrera
WS 09/10
http://www.math.tu-berlin.de/~sullivan/L/09W/Geo1/

Exercise Sheet 1

Exercise 1: Distance.

Let x and y be two points in the Euclidean space \mathbb{E}^{n}. Prove that the shortest path between them is the line segment connecting them.

Exercise 2: Spherical circles.

In \mathbf{S}^{2}, define the circle of radius r around a point c as

$$
C_{r}(c):=\left\{x \in \mathbf{S}^{2} \mid d(c, x)=r\right\},
$$

where $d(\cdot, \cdot)$ is the spherical metric. Show that $C_{r}(c)$ is the intersection of \mathbf{S}^{2} with a plane. Find the length of the circle.

Exercise 3: Perpendicular bisector.
Given two points $P \neq Q \in \mathbf{S}^{2}$, define

$$
X:=\left\{x \in \mathbf{S}^{2} \mid d(x, P)=d(x, Q)\right\} .
$$

Show that X is a great circle that intersects any great circle through P and Q orthogonally. What is special about the case $P=-Q$?

Exercise 4: Polar triangle.
For a point $P \in \mathbf{S}^{2}$, let H_{P} denote the hemisphere with interior pole P. Show that a point $P \in \mathbf{S}^{2}$ is contained in a spherical triangle Δ if and only if H_{P} contains the polar triangle of Δ.

