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SUMMARY

We consider the NP-hard preemptive single-machine scheduling problem to minimize the total weighted
completion time subject to release dates. A natural extension of Smith’s ratio rule is to preempt the
currently active job whenever a new job arrives that has higher ratio of weight to processing time. We
prove that the competitive ratio of this simple on-line algorithm is precisely 2. We also show that list
scheduling in order of random �-points drawn from the same schedule results in an on-line algorithm
with competitive ratio 4

3 . Since its analysis relies on a well-known integer programming relaxation of
the scheduling problem, the relaxation has performance guarantee 4

3 as well. On the other hand, we
show that it is at best an 8

7 -relaxation. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: scheduling theory; approximation algorithm; on-line algorithm; randomized algorithm;
LP relaxation; combinatorial optimization

1. INTRODUCTION

We study the preemptive single-machine on-line scheduling problem with release dates so as
to minimize the average weighted completion time. A set of independent jobs J = {1; : : : ; n}
has to be scheduled on a single machine, where jobs arrive over time and the number of
jobs is unknown in advance. Each job j∈ J becomes available at its integral release date rj;
which is not known in advance; at time rj we learn both its positive integral processing time
pj and its non-negative weight wj. The machine cannot process more than one job at a time,
and each job j has to be scheduled for pj time units on the machine. The processing of a
job may repeatedly be interrupted and continued at a later point in time, i.e. we sequence in
a preemptive fashion. For each time t; we must construct the schedule until time t without
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122 A. S. SCHULZ AND M. SKUTELLA

any knowledge of the jobs that will arrive afterwards. The aim is to minimize the sum of
weighted job completion times

∑
j wjCj or, equivalently, the average weighted completion time

(1=n)
∑

j wjCj; here, Cj denotes the completion time of job j in a schedule. The corresponding
o�-line optimization problem, where all job data is known in advance, is usually denoted by
1 | rj; pmtn |

∑
wjCj [1]. It is strongly NP-hard [2].

The performance of an on-line algorithm is typically measured by its competitive ratio,
which is the largest ratio of the objective function value achieved by the on-line algorithm to
the value of the o�-line optimum, taken over all instances. For randomized algorithms, we use
expected objective function value in the de�nition of the competitive ratio. This corresponds
to the so-called oblivious adversary model. We refer the reader to Reference [3] for a general
introduction to on-line algorithms, and to Reference [4] for a survey of on-line scheduling.
Because we will discuss at times the o�-line scenario as well, let us introduce the related
concept of an approximation algorithm. A �-approximation algorithm is a polynomial-time
algorithm that produces a solution of value not worse than � times the optimal value. In case
the algorithm has access to randomness, we call it a randomized �-approximation algorithm,
provided that it still runs in polynomial time; the performance guarantee �, however, only
needs to hold in expectation. Obviously, any on-line algorithm that runs in polynomial time
and has competitive ratio � is a �-approximation algorithm.
The main result of this paper is a randomized on-line algorithm for 1 | rj; pmtn |

∑
wjCj with

competitive ratio 4
3 and running time O(n log n). For the o�-line setting, it can be derandomized

without loss of performance guarantee, but at the cost of an increased running time of O(n2).
Our result also implies a bound of 4

3 on the quality of a well-known linear programming
relaxation (which happens to be integer) of the problem under consideration. Moreover, we
present a class of instances showing that the ratio between the true optimum and the LP lower
bound can be arbitrarily close to 8

7 .
The three key ingredients of the algorithm and its analysis are the conversion of a

preemptive schedule to another preemptive schedule, the use of �-points in connection with
randomness to sample more information from the given preemptive schedule, and the ex-
ploitation of a linear programming relaxation as a lower bound on the optimal objective
function value. All three techniques have in recent years evolved as important tools to derive
constant-factor approximation algorithms for a series of scheduling problems with min-sum
objective.
The conversion of preemptive schedules to (non-preemptive) schedules was introduced by

Phillips et al. [5] and was subsequently also used in References [6–8], among others. Slightly
varying notions of �-points were considered in References [5; 9], but their full potential was
revealed when Chekuri et al. [7] as well as Goemans [8] chose the parameter � at random.
For 0¡�61; the �-point CPj (�) of job j with respect to a given (preemptive) schedule P is
the �rst point in time at which an �-fraction of job j has been completed, i.e. when j has
been processed on the machine for �pj time units. In particular, CPj (1)=Cj and for �=0 we
de�ne CPj (0) to be the starting time of job j. Later, �-points with individual values of � for
di�erent jobs have been used, see Reference [10]. We refer to Reference [11;Chapter 2] for
a detailed account of approximation algorithms for min-sum criteria scheduling and �-point
scheduling.
The actual history of constant-factor approximation algorithms for 1 | rj; pmtn |

∑
wjCj is

rather short. Phillips et al. [5] designed an (8 + �)-approximation algorithm for the more
general problem of minimizing the average weighted completion time on unrelated parallel
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machines subject to release dates. Hall et al. [12] gave a 2-approximation algorithm for the
single-machine problem, in which there may also be precedence constraints among the jobs.
Their algorithm is based on a related LP relaxation, rather than on the preemptive schedule that
is an optimal solution of the integer programming relaxation that we employ in our analysis.
In fact, it was Goemans [8] who �rst showed that one can use this preemptive schedule
to construct a non-preemptive schedule whose value is at most twice the optimal value of
the integer programming relaxation. In particular, Goemans’ algorithm is a 2-approximation
algorithm for 1 | rj; pmtn |

∑
wjCj as well. Goemans et al. [13] then presented a randomized

1.466-approximation algorithm which also works in the on-line setting, as does the randomized
variant of Goemans’ algorithm; our work may be seen as a simpler analysis of their algorithm
that at the same time yields a better performance guarantee. Subsequently, a polynomial-time
approximation scheme has been obtained for the o�-line problem 1 | rj; pmtn |

∑
wjCj; see

Reference [14].
The rest of the paper is organized as follows. In Section 2 we embed the algorithm under

consideration in the general class of preemptive list scheduling algorithms. Its actual analysis
is given in Section 3. We conclude with some remarks on its derandomization and a discussion
of open problems in Section 4.

2. PREEMPTIVE LIST SCHEDULING

There is a straightforward way to construct a feasible preemptive schedule from a given
list of jobs representing some order: schedule at any point in time the �rst available job in
this list. Here, a job is available if its release time has elapsed. We refer to this routine as
preemptive list scheduling; the resulting schedule is called preemptive list schedule. Preemptive
list scheduling has been used in various settings before, e.g. for minimizing the maximum
lateness on a single machine [15]. An application of this routine in the context of min-sum
criteria approximation has been proposed by Hall et al. [12] in order to turn an optimal
solution to an LP relaxation in completion time variables into a feasible preemptive schedule.
Goemans [8] showed that the routine can be used to construct an optimal solution to an LP
relaxation in time-indexed variables; he also pointed out that preemptive list schedules can be
constructed in O(n log n) time using a priority queue.
As a consequence of the following lemma, one can in fact restrict to schedules that are

generated by preemptive list scheduling.

Lemma 2.1
Given a feasible preemptive schedule P, preemptive list scheduling in order of non-decreasing
completion times does not increase completion times of jobs.

Proof
Although this lemma belongs to the folklore of the �eld, let us provide a proof for the sake
of completeness.
We denote the completion time of a job j in the given schedule by CPj and in the preemptive

list schedule by Cj. By construction, the new schedule is feasible since no job is processed
before its release date. For a �xed job j, let t¿0 be the earliest point in time such that there
is no idle time in the preemptive list schedule during (t; Cj] and only jobs k with CPk 6C

P
j
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are processed. We denote the set of these jobs by K . By the de�nition of t, we know that
rk¿t, for all k∈K . Hence, CPj ¿t +

∑
k∈K pk . On the other hand, the de�nition of K implies

Cj= t+
∑

k∈K pk and therefore Cj6C
P
j .

An important property of preemptive list schedules is that whenever a job is preempted
from the machine, it is only continued after all available jobs with higher priority are �nished.
Moreover, a job is only preempted if another job is released at that time. Therefore, since all
release dates are integral, preemptions only occur at integral points in time. Throughout the
paper we restrict to schedules meeting this property. Notice also that there are at most n− 1
preemptions.
In the absence of non-trivial release dates there is no need for preemption and an optimal

schedule can be constructed in O(n log n) time using Smith’s ratio rule [16]: schedule the
jobs in order of non-increasing ratios wj=pj. In the following, we will always assume that jobs
are numbered such that w1=p1¿ · · ·¿wn=pn; moreover, whenever we talk about scheduling in
order of non-increasing ratios wj=pj, we refer to this order of jobs. A natural generalization
of Smith’s Ratio Rule to 1 | rj; pmtn |

∑
wjCj is preemptive list scheduling in order of non-

increasing ratios wj=pj; notice that this algorithm also works on-line since at any point in time
the ratios of all available jobs are known. Of course, the schedule constructed in this way is
in general not optimal. The following lemma gives a lower bound on the performance of this
simple heuristic.

Lemma 2.2
The competitive ratio of preemptive list scheduling in order of non-increasing ratios wj=pj is
not better than 2, even if wj=1 for all j∈ J .

Proof
For an arbitrary n∈N, consider the following instance with n jobs. Let wj=1; pj= n2−n+j;
and rj=−n+j+∑n

k=j+1 pk , for 16j6n. Preemptive list scheduling in order of non-increasing
ratios of wj=pj preempts job j at time rj−1 and �nishes it only after all other jobs j−1; : : : ; 1 have
been completed. The value of this schedule is therefore n4− 1

2n
3 + 1

2n. The shortest remaining
processing time rule [17], which solves instances of 1 | rj; pmtn |

∑
Cj optimally and does so

on-line, sequences the jobs in order n; : : : ; 1. It has value 1
2n
4 + 1

3n
3 + 1

6n. Consequently, the
ratio of the objective function values of the ‘SPT-rule’ and the ‘SRPT-rule’ goes to 2 when
n goes to in�nity.

Notice that the negative result in Lemma 2.2 does not result from the on-line nature of
the problem; it follows from the proof that this is rather an inherent drawback of preemptive
list scheduling in order of non-increasing ratios wj=pj. On the other hand, one can give an
upper bound of 2 on the performance of this algorithm. The following observation is due to
Goemans, Wein and Williamson (personal communication, August 1997).

Lemma 2.3
Preemptive list scheduling in order of non-increasing ratios wj=pj has competitive ratio 2.

Proof
We use two di�erent lower bounds on the value Z∗ of an optimal solution in order to prove
the claim. Since the completion time of a job is always at least as large as its release date, we
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get Z∗¿
∑

j wjrj. The second lower bound is the value of an optimal solution for the relaxed
problem in which all the release dates are zero. This yields Z∗¿

∑
j(wj

∑
k6j pk) by Smith’s

ratio rule. Let Cj denote the completion time of job j in the preemptive list schedule. By
construction one has Cj6rj +

∑
k6j pk and thus

∑
j
wjCj6

∑
j
wjrj +

∑
j

(
wj
∑
k6j
pk

)
62Z∗

In spite of the negative result in Lemma 2.2, preemptive list scheduling in order of non-
increasing ratios wj=pj can help to construct a preemptive schedule whose value is at most
a factor 4

3 away from the optimum. The idea is to transform this schedule by preemptive
list scheduling in order of non-decreasing �-points. The underlying intuition is that the given
schedule gives rise to di�erent job orders if di�erent values of � are used. There is, however,
no instance that is simultaneously bad for the preemptive list schedules obtained from all
di�erent values of �. Consider for instance the example constructed in the proof of Lemma 2.2.
For most values of �; the corresponding preemptive list schedule is optimal. We will analyse
the following simple algorithm:

Algorithm 1

(1) Draw � randomly from [0; 1].
(2) Construct the preemptive list schedule P in order of non-increasing ratios wj=pj.
(3) Apply preemptive list scheduling in order of non-decreasing CPj (�).

The on-line variant of Algorithm 1 constructs the two preemptive list schedules in
Step 2 and Step 3 simultaneously. Notice that preemptive list scheduling can be implemented
on-line if a job can be inserted at the correct position in the list with respect to the jobs that
are already known, as soon as it becomes available. As already mentioned, preemptive list
scheduling in order of non-increasing ratios wj=pj works on-line since at any point in time
the ratios of all available jobs are known. Unfortunately, this is not true for the �-points of
jobs because the future development of the schedule in Step 2 is not known. However, at any
point in time and for an arbitrary pair j; k of already available jobs we can predict whether
CPj (�) will be smaller than C

P
k (�), or not. If one or even both values are already known,

we are done. Otherwise the job with higher priority in the ratio list of Step 2, say j, will
win since job k cannot be (re)started in Step 2 before j is �nished. Thus, we have proved
that Algorithm 1 can be implemented as a randomized on-line algorithm. Since preemptive
list scheduling runs in O(n log n) time, the running time of Algorithm 1 and its on-line vari-
ant is O(n log n); too. For �xed �, we call the schedule computed in Step 3 preemptive
�-schedule.
Goemans analysed in Reference [8] a variant of Algorithm 1 in which the jobs are scheduled

non-preemptively in order of non-decreasing �-points, where � is chosen uniformly at random.
Because the value of the resulting schedule is an upper bound on the value of the schedule
computed in Step 3, it follows that Algorithm 1 has competitive ratio 2 in this case.
Goemans et al. [13] showed that Algorithm 1 achieves competitive ratio 1.466 if � is

chosen from the interval [0; �] according to a probability distribution with density function
f(�)= [(1− �)=�](1− �)−2, where � ≈ 0:682.
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The following theorem contains the main result of this paper.

Theorem 2.4
Let the random variable � be chosen from a probability distribution over [0,1] with the density
function

f(�)=



1
3 (1− �)−2 if �∈ [0; 12 ]
4
3 otherwise

Then, Algorithm 1 has competitive ratio 4
3 .

The proof of Theorem 2.4 is presented in the next section. Besides the better performance
ratio, its major advantage compared to the analysis in Reference [13] is its simplicity. In par-
ticular, in contrast to Reference [13], our analysis is job-by-job, i.e. we compare the expected
completion time of each job with its completion time in the integer programming relaxation.

3. ANALYSIS OF THE ALGORITHM

The analysis of Algorithm 1 is divided into three parts. First, we discuss an integer linear
programming relaxation which gives a lower bound on the value of an optimal schedule. Then
we derive a general upper bound on the completion time of an arbitrary job in the schedule
computed by Algorithm 1, which depends on �. Finally, in the third part, we compare the ex-
pected value of this upper bound to the corresponding term in the integer linear programming
relaxation derived in the �rst part.

3.1. An integer linear programming relaxation

To obtain a good lower bound on the value of an optimal solution, we use an integer linear
programming relaxation in time-indexed variables that was originally introduced by Dyer
and Wolsey [18]. Although each integral feasible solution to this program corresponds to a
feasible preemptive schedule, the program is a true relaxation of 1 | rj; pmtn |

∑
wjCj since

the objective function underestimates the value of a preemptive schedule. On the other hand,
this integer linear program (ILP) can be solved to optimality in polynomial time such that
we need not consider its LP relaxation.
The idea of the formulation is to discretize time between 0 and a �xed horizon T+1 :=

maxj rj+
∑

j pj into intervals of length 1. One introduces binary variables yjt for each job j
and each time interval (t; t + 1]; t=0; 1; : : : ; T; where yjt =1 if and only if job j is being
processed during the time interval (t; t+1]. Note that T and thus the number of yjt-variables
may be exponential in the input size of the scheduling problem. We get the following ILP:

minimize
∑
j∈J
wjC ILPj

subject to
T∑
t=rj
yjt =pj for all j∈ J (1)
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∑
j∈J
yjt61 for t=0; : : : ; T (2)

C ILPj =
pj
2
+
1
pj

T∑
t=0
yjt(t + 1

2) for all j∈ J (3)

yjt =0 for all j∈ J and t=0; : : : ; rj − 1 (4)

yjt ∈{0; 1} for all j∈ J and t= rj; : : : ; T (5)

Equations (1) ensure that the whole processing requirement of every job is satis�ed. The
machine capacity constraints (2) express that the machine can process at most one job at a
time. Because of Equations (4), no job can be processed before its release date. The following
lemma, due to Goemans [8], o�ers one way to understand Equations (3).

Lemma 3.1
Consider an arbitrary preemptive schedule P that is �nished before time T + 1, and assign
the values to the ILP variables yjt as de�ned above, i.e. yjt =1 if j is being processed in the
interval (t; t + 1]; and yjt =0 otherwise. Then,∫ 1

0
CPj (�) d�=

1
pj

T∑
t=0
yjt(t + 1

2)6C
P
j − pj

2
(6)

for each job j, and equality holds if and only if job j is never preempted from the machine.

Proof
For a �xed job j, denote by �t; t=0; : : : ; T + 1; the fraction of j that is �nished in the
preemptive schedule P by time t. Since 0=�06�16 · · ·6�T+1 =1; we can write∫ 1

0
CPj (�) d�=

T∑
t=0

∫ �t+1

�t
CPj (�) d�=

T∑
t=0
(�t+1 − �t)(t + 1

2)=
T∑
t=0

yjt
pj
(t + 1

2)

which proves the equation in (6). Since CPj (�)6C
P
j − (1− �)pj for 06�61, we get∫ 1

0
CPj (�) d�6C

P
j − pj

∫ 1

0
(1− �) d�=CPj − pj

2

Equality holds if and only if CPj (�)=C
P
j − (1 − �)pj for all 0¡�61, that is, i� job j is

scheduled non-preemptively.

As a consequence of Lemma 3.1, the value of an optimal solution to ILP is a lower bound
on the value of an optimal preemptive schedule.
As pointed out by Dyer and Wolsey [18], it follows from the work of Posner [19] that

ILP can be solved in O(n log n) time. Goemans [8] showed that preemptive list scheduling
in order of non-increasing ratios wj=pj de�nes an optimal solution to ILP if the variables yjt
are set as described above. This basically follows from the observation that eliminating the
variables C ILPj by plugging (3) into the objective function leads to a transportation problem,
which can be solved in a greedy manner.
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As a result, the encoding size of the optimal solution is polynomial in the input size and
it can be constructed in time O(n log n) although ILP itself may be exponentially large. In
addition, Algorithm 1 computes an optimal solution to ILP in Step 2.

3.2. Preemptive �-conversion

This subsection presents the insights into the structure of the preemptive list schedules com-
puted in Step 2 and Step 3 of Algorithm 1 that are needed to prove Theorem 2.4.
For a �xed job j, we de�ne J ′ to be the subset of J consisting of all jobs that are started

before j in the preemptive list schedule P. Notice that no job k ∈ J ′ is being processed between
the start and the completion time of j; if k is not yet completed when j is started, then j¡k.
We denote the fraction of job k ∈ J ′ that is completed by time CPj (0) by �k . Since we can
write the starting time CPj (0) of job j as the amount of idle time plus the time during which
the machine is busy processing jobs in J ′ before j is started, we get

CPj (0)¿
∑
k∈J ′

�kpk (7)

To analyse the completion times of jobs in the schedule computed in Step 3 of Algorithm 1
we consider schedules that are constructed by a slightly di�erent o�-line conversion routine,
which we call preemptive �-conversion.

Algorithm: Preemptive �-conversion. Consider the jobs j∈ J in order of non-increasing
CPj (�) and iteratively change the current preemptive schedule by applying the following
steps:

(i) postpone the whole processing that is done later than CPj (�) by (1− �)pj;
(ii) remove the (1− �)-fraction of job j that is being processed later than CPj (�) from the

machine and shrink the corresponding time intervals;
(iii) process the removed fraction of job j in the released time interval (CPj (�); C

P
j (�) +

(1− �)pj].
Note that the completion time of any job in the schedule produced by preemptive
�-conversion is not smaller than its completion time obtained from preemptive list scheduling
according to non-decreasing CPj (�); this follows from Lemma 2.1 since the order of comple-
tion times in the preemptive �-schedule coincides with the order of �-points in P. Figure 1
depicts a small example with 4 jobs illustrating the action of preemptive �-conversion.

Lemma 3.2
For �xed �, the completion time Cj of job j in the schedule computed by Algorithm 1 can
be bounded by

Cj6CPj (�) + (1− �)pj +
∑

k∈J ′:�k¿�
(1− �k)pk (8)

Proof
We prove that the right-hand side of (8) is equal to the completion time of job j in the
schedule constructed by preemptive �-conversion. Notice that preemptive �-conversion does
not modify the schedule P within the time interval [0; CPj (�)] before the iteration in which
j is being converted. Therefore, directly after the conversion of job j its completion time in
the current preemptive schedule is equal to CPj (�) + (1− �)pj.

Copyright ? 2002 John Wiley & Sons, Ltd. J. Sched. 2002; 5:121–133



THE POWER OF �-POINTS IN PREEMPTIVE SINGLE MACHINE SCHEDULING 129

Figure 1. The conversion of the preemptive list schedule P by preemptive �-conversion and by
preemptive list scheduling in order of non-decreasing �-points for �= 5

8 .

Consider a subsequent iteration corresponding to a job k with CPk (�)¡C
P
j (�). We distin-

guish two cases: If CPk (�)¿C
P
j (0) then k¡j since job j is interrupted by k in the sched-

ule P. In particular, k is completed before the processing of j is resumed in P. Therefore,
the completion time of j in the current schedule is not a�ected by the total postponement in
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Step (i) and the shrinking in Step (ii). If CPk (�)6C
P
j (0), then k ∈ J ′ and �k¿�. In this case,

Step (i) and Step (ii) cause a delay of the completion time of job j by (1− �k)pk .
As already mentioned before, it follows from Lemma 2.1 that the completion time of job

j in the preemptive list schedule in order of non-decreasing �-points is smaller than the
completion time of job j in the schedule constructed by preemptive �-conversion.

3.3. An appropriate probability distribution

The key to the analysis of Algorithm 1 is to bound the expected completion time of job
j in the resulting schedule by the expected value of the right-hand side of (8). We then
compare the latter expected value to C ILPj in the optimal solution to ILP, which is computed
in Step 2 of Algorithm 1. The following lemma highlights the connection between the chosen
probability distribution and the achieved performance guarantee.

Lemma 3.3
Let f be a density function on [0; 1] and denote the expected value of a random variable that
is distributed according to f by Ef, i.e. Ef : =

∫ 1
0 f(�)� d�. Assume that �¿0 and

(i) max�∈[0;1] f(�)61 + �,

(ii) 1− Ef6 1+�
2 ,

(iii) (1− �) ∫ �0 f(�) d�6�� for every �∈ [0; 1].
Moreover, let the random variable � be drawn from [0; 1] according to a probability distribution
with density function f. Then, the expected completion time of every job j∈ J in the schedule
constructed by Algorithm 1 is at most (1 + �)C ILPj .

The intuition underlying the three conditions (i)–(iii) on the density function f is to bound
the expectations of the three corresponding terms on the right-hand side of (8) with respect
to C ILPj .

Proof of Lemma 3.3
Lemma 3.2 yields

E[Cj]6E[CPj (�)] + E[(1− �)pj] + E
[ ∑
k∈J ′:�k¿�

(1− �k)pk
]

The three terms on the right-hand side can be bounded as follows:

E[CPj (�)] = C
P
j (0) +

∫ 1

0
f(�)(CPj (�)− CPj (0)) d�

6CPj (0) + (1 + �)
∫ 1

0
(CPj (�)− CPj (0)) d� by (i)

= (1 + �)C ILPj − �CPj (0)− (1 + �)
pj
2

by Lemma 3:1;

E[(1− �)pj] = (1− Ef)pj6(1 + �)pj2 by (ii);
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E

[ ∑
k∈J ′:�k¿�

(1− �k)pk
]
=
∑
k∈J ′

(1− �k)pk
∫ �k

0
f(�) d�

6 �
∑
k∈J ′

�kpk6�CPj (0) by (iii) and (7)

and the result follows. Notice that it is essential for the analysis to implicitly divide the interval
[0; CPj (�)] into [0; C

P
j (0)] and (C

P
j (0); C

P
j (�)] in order to bound E[C

P
j (�)]. This division re�ects

the structural insight that led to the introduction of the subset J ′.

Proof of Theorem 2.4
Observe that the density function f given in Theorem 2.4 meets the requirements (i)–(iii)
of Lemma 3.3 for �= 1

3 . Thus, the competitive ratio
4
3 follows from Lemma 3.3 by linearity

of expectations.

Since inequalities (i) and (iii) are tight in the proof of Theorem 2.4, we can show that the
density function f is optimal with respect to the analysis given in Lemma 3.3. Suppose that
there exists a density function g that ful�ls properties (i) and (iii) for �¡ 1

3 . Using (i), this
leads to the following contradiction: Let �= 1

2 , then

(1− �)
∫ �

0
g(�) d�=

1
2
− 1
2

∫ 1

1=2
g(�) d�¿

1
2
− 1
2
×1
2
×4
3
=
1
3
�

3.4. Further results

One can also prove a competitive ratio of 4
3 for the variant of Algorithm 1 where � is

chosen from the interval [0; 34 ] according to the probability distribution with density function
f(�)= 1

3(1 − �)−2. Notice that this distribution is of the form as the one used in Reference
[13] (with �= 3

4). However, the analysis is slightly more complicated in this case.
In our analysis of Algorithm 1 we have bounded the expected value of the computed

schedule in terms of the lower bound given by an optimal solution to ILP. Thus, we have
derived the same bound on the quality of the integer linear programming relaxation ILP.

Theorem 3.4
The relaxation ILP is a 4

3 -relaxation, but it is not better than an
8
7 -relaxation for the problem

1 | rj; pmtn |
∑
wjCj.

Proof
The upper bound on the quality of ILP follows from the analysis of Algorithm 1. To prove the
negative result, consider the following instance with n jobs, where n is assumed to be even.
The processing times of the �rst n− 1 jobs j=1; : : : ; n− 1 are 1, their common release date
is n=2, and all weights are 1=n2. The last job has processing time pn= n, weight wn=1=(2n),
and is released at time 0. This instance is constructed such that every reasonable preemptive
schedule without idle time on the machine has value 2−3=(2n). However, an optimal solution
to ILP has value 7

4 − 5=(4n) such that the ratio goes to 8
7 when n increases.
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4. CONCLUDING REMARKS

Goemans [8] observed that there are at most n combinatorially di�erent values of �, i.e. over
all possible choices of � one gets at most n di�erent preemptive list schedules in order of
�-points. Since each preemptive list schedule can be evaluated in O(n) time, this results in
an o�-line deterministic 4

3 -approximation algorithm with running time O(n2) by choosing the
best one from these schedules, i.e. the one with smallest weighted sum of completion times.
We close by discussing some open questions that we regard as interesting. We have shown

that ILP is a 4
3 -relaxation of 1 | rj; pmtn |

∑
wjCj and not better than an 8

7 -relaxation. What
is its true quality? Interestingly, the very same integer program is known to be a 1.686-
relaxation for the non-preemptive problem 1|rj|

∑
wjCj. In this context, it is not better than a

1.581-relaxation. See Reference [10] for both results.
In the on-line setting, it seems that no good lower bound on the achievable competitive

ratio of any on-line algorithm for the preemptive problem is known, neither for deterministic,
nor for randomized algorithms. As for the upper bounds, we do not believe that the presented
algorithms, which have competitive ratio 2 and 4

3 , respectively, will be the ultimate answer.
In contrast, the corresponding non-preemptive problem seems better understood. For the to-
tal completion time objective (wj=1 for all j∈ J ), Hoogeveen and Vestjens [20] as well
as Phillips et al. [5] gave deterministic 2-competitive algorithms; Hoogeveen and Vestjens
also showed that competitive ratio 2 is best possible for deterministic on-line algorithms.
In Reference [7], Chekuri et al. presented a randomized e=(e − 1)-competitive algorithm;
Vestjens [21] proved this is optimal against oblivious adversaries. The best known determin-
istic and randomized on-line algorithms for the more general total weighted completion time
objective have competitive ratio 2.415 and 1.686, respectively, see References [8; 10]. They
use ILP in the analysis and �-points drawn from the corresponding preemptive schedule in the
algorithm, as we do. The current knowledge on the cost of the lack of complete information
is the same as in the unit-weight case.

Note added in Proof. The following new results were recently derived, which partly answer
some of the open problems we had posed. Epstein and van Stee [23] gave lower bounds
of 1.073 and 1.038 for the competitive ratio achievable by any deterministic respectively
randomized on-line algorithm for 1|rj; pmtn|

∑
wjCj. Anderson and Potts [24] presented a

deterministic 2-competitive algorithm for 1|rj|
∑
wjCj.
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