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The k-Splittable Flow Problem1

Georg Baier,2 Ekkehard Köhler,2 and Martin Skutella3

Abstract. In traditional multi-commodity flow theory, the task is to send a certain amount of each commodity
from its start to its target node, subject to capacity constraints on the edges. However, no restriction is imposed on
the number of paths used for delivering each commodity; it is thus feasible to spread the flow over a large number
of different paths. Motivated by routing problems arising in real-life applications, e.g., telecommunication,
unsplittable flows have moved into the focus of research. Here, the demand of each commodity may not be
split but has to be sent along a single path.

In this paper a generalization of this problem is studied. In the considered flow model, a commodity can
be split into a bounded number of chunks which can then be routed on different paths. In contrast to classical
(splittable) flows and unsplittable flows, the single-commodity case of this problem is already NP-hard and
even hard to approximate. We present approximation algorithms for the single- and multi-commodity case
and point out strong connections to unsplittable flows. Moreover, results on the hardness of approximation
are presented. In particular, we show that some of our approximation results are in fact best possible, unless
P = NP.
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1. Introduction. The k-splittable flow problem is!a multi-commodity flow problem
in which each commodity may be shipped only on a restricted number of different paths.
The number of possible paths can be the same for all commodities or it may depend on
the particular commodity. Problems of this kind occur, for instance, in communication
networks: Customers request connections of given capacities between certain pairs of
terminals in the network. If these capacities are large, it might be impossible for the
network administrator to realize them unsplittably, that is, on single paths without in-
creasing network capacity. On the other hand, the customer might not want to handle
many connections of small capacity. Thus, one has to find a flow fulfilling the different
customer demands and restrictions on connecting lines while respecting all capacity
constraints.

Similar problems appear in transportation logistics: A number of different commodi-
ties has to be delivered to various destinations by means of trains (or ships). The possible
train connections define a network with capacities on the arcs. In order to convey a com-
modity, it has to be packed into special containers which can then be loaded on trains.
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In this context, it seems to be natural to impose bounds on the number of containers
available for each commodity. Speaking in flow terminology, we thus have to bound the
number of paths used for delivering a commodity.

Problem definition and notation. An instance of the k-splittable flow problem is defined
on a directed or undirected graph G = (V, E)with edge capacities ue ∈ Z>0, e ∈ E . For
arbitrary source and target nodes s, t ∈ V , letPs,t denote the set of simple s-t-paths in G.
Then a k-splittable s-t-flow F is specified by k pairs (P1, f1), . . . , (Pk, fk) ∈ Ps,t ×R≥0

of s-t-paths Pi and flow values fi . We do not require that the paths P1, . . . , Pk are distinct
or edge-disjoint. In particular, any k-splittable flow is also k ′-splittable for all k ′ ≥ k. The
sum

∑k
i=1 fi is called the s-t-flow value of F . The flow F is feasible if it respects edge

capacities, that is, for each edge e ∈ E the sum of flow values on paths containing this
edge must be bounded by its capacity ue. The maximum k-splittable s-t-flow problem
asks for a feasible k-splittable s-t-flow of maximal value.

Obviously, k-splittable s-t-flows form a special class of s-t-flows in graphs. In fact,
it is a well-known result from classical network flow theory that any s-t-flow can be
decomposed into the sum of at most |E | flows on s-t-paths and a circulation; apart from
the circulation, it is thus an |E |-splittable s-t-flow in our terminology. In particular,
for k ≥ |E | the maximum k-splittable s-t-flow problem can be solved efficiently by
standard network flow techniques; see, e.g., [1]. On the other hand, we show that the
problem for directed graphs is NP-hard for k = 2. All our results except for hardness
hold for directed and undirected graphs but for simpler notation we concentrate on the
directed case.

We also study k-splittable s-t-flows with additional restrictions. A k-splittable s-t-
flow in which all paths with non-zero flow value carry identical amounts of flow is
called a uniform k-splittable s-t-flow. Moreover, a uniform k-splittable s-t-flow which
sends flow on exactly k paths is called a uniform exactly-k-splittable s-t-flow. For our
algorithms it is essential that we do not require k distinct paths. If there are also edge
costs ce ∈ Q≥0, e ∈ E , we can consider the problem with an additional budget constraint:
Find a maximum k-splittable s-t-flow whose cost does not exceed a given budget B ≥ 0.
A closely related problem is the minimum-cost maximum k-splittable s-t-flow problem:
Find a k-splittable s-t-flow of maximal value such that the cost of the flow is minimized.
In this setting, let cP =

∑
e∈P ce denote the cost of path P . Then the cost of a k-splittable

s-t-flow (P1, f1), . . . , (Pk, fk) can be written as
∑k

i=1 fi cPi , which is equal to the sum
over all edges of edge cost times flow value on the edge.

In the multi-commodity variant of the k-splittable flow problem, there are � terminal
pairs (s1, t1), . . . , (s�, t�) of source and target nodes, and a bound ki on the number
of paths allowed for each terminal pair (si , ti ), i = 1, . . . , �. A k-splittable multi-
commodity flow (or simply k-splittable flow) F is the sum of ki -splittable si -ti -flows,
for i = 1, . . . , �. If all ki -splittable si -ti -flows are uniform exactly-ki -splittable si -ti -
flows, then F is called a uniform exactly-k-splittable multi-commodity flow. Notice that
this definition allows different flow values per path for different commodities. For given
demand values D1, . . . , D� > 0, the k-splittable multi-commodity flow problem (or
simply k-splittable flow problem) is to find a feasible k-splittable flow F with si -ti -
flow value Di , for i = 1, . . . , �. Here, the flow sent from si to ti is also referred to as
commodity i .
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To the best of our knowledge, the k-splittable flow problem has not been considered in
the literature before. However, it contains the well-known unsplittable flow problem as
a special case: Setting ki = 1 models the requirement that commodity i must be routed
unsplittably, i.e., on a single si -ti -path. The unsplittable flow problem has been introduced
by Kleinberg [8], [9] as a generalization of the disjoint path problem. Kleinberg shows
that it comprises several NP-complete problems from areas such as packing, partitioning,
scheduling, load balancing, and virtual-circuit routing.

Kleinberg introduced several optimization versions of the unsplittable flow problem.
In the “minimum congestion” version, the task is to find the smallest value λ > 0 such
that there exists an unsplittable flow that uses at most a λ-fraction of the capacity of any
edge. An equivalent problem is the “maximum concurrent flow” problem where the aim
is to maximize the routable fraction of the demand, i.e., find the maximal factor by which
the given demands can be multiplied such that there still exists a feasible unsplittable flow
satisfying the resulting demands. Obviously, any solution to the minimum congestion
problem of value λ can be turned into a solution to the maximum concurrent flow
problem of value 1/λ, and vice versa. The “minimum number of rounds” version asks
for a partition of the set of commodities into a minimum number of subsets (rounds) and
a feasible unsplittable flow for each subset. Finally, the “maximum routable demand”
problem is to find a feasible unsplittable flow for a subset of demands maximizing the
sum of demands in the subset. In this paper we only consider the maximum concurrent
flow problem for multi-commodity k-splittable flows.

Since, apart from some special cases, all of these problems are NP-hard, much ef-
fort has been spent in obtaining approximation results. A ρ-approximation algorithm is
an algorithm running in polynomial time and always finding a feasible solution whose
value is at most a factor of ρ away from the optimum. The value ρ is called the per-
formance ratio or performance guarantee of the algorithm. In the following we use the
convention that the performance ratio for a maximization problem is less than 1, while
for a minimization problem it is greater than 1. Thus, a ρ-approximation algorithm for
a maximum concurrent flow problem computes a solution in polynomial time which
realizes a fraction of at least ρ ≤ 1 times the optimal fraction of the demands.

We mention some basic results and notation used in the remainder of the paper. A flow
whose flow value on any edge is a multiple of a given value α > 0 is called α-integral. If
we restrict to α-integral flows, we can round down edge capacities to the nearest multiple
of α without abandoning any solution. Thus, the problem of finding α-integral flows is
equivalent to finding integral flows in graphs with integral capacities; it can therefore be
solved efficiently in the single-commodity case by standard flow techniques.

Related results from the literature. Kleinberg [8], [9] considers a restricted version of
the unsplittable flow problem where the maximal demand is bounded from above by
the minimal edge capacity. This condition is usually referred to as the balance condi-
tion. Assuming that the balance condition holds, the randomized rounding technique of
Raghavan and Thompson [17] can be applied to the problem of minimizing congestion,
yielding an O(log|E |)-approximation algorithm and even a constant factor approxima-
tion if the optimal congestion is at least�(log|E |). For densely embedded unit-capacity
graphs (generalization of two-dimensional meshes), Kleinberg [8] gives an algorithm
that finds a constant factor approximation with high probability. Aspnes et al. [2] present
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an asymptotically tight on-line O(log|V |)-competitive algorithm for the related virtual
circuit routing problem.

For the maximum routable demand problem in unit-capacity graphs, Kleinberg [8]
gives an approximation algorithm with performance ratio�((1−Dmax)/

√|E |), where Dmax

denotes the maximal demand. Kolliopoulos and Stein [14] give the first non-trivial ra-
tio�(1/(log|E |√|E |)) independent of the edge-capacities and Dmax, Baveja and Srini-
vasan [5] improve the ratio to �(1/

√|E |). Azar and Regev [3] give a strongly polyno-
mial algorithm also with performance ratio�(1/

√|E |). On the other hand, Guruswami
et al. [7] show that in the directed case there is no approximation algorithm with a per-
formance ratio better than |E |−1/2+ε for any ε > 0, unless P = NP. Still, for densely
embedded unit-capacity graphs, Kleinberg and Tardos [11] provide a constant factor ap-
proximation. To get better approximation results one has to incorporate additional graph
parameters into the bound. Baveja and Srinivasan [5] develop a rounding techniques to
convert an arbitrary solution to an LP-relaxation into an unsplittable flow within a factor
of�(1/

√|E |) or�(1/d); here, d denotes the length of a longest path in the LP solution.
Using a result of Kleinberg and Rubinfeld [10], showing that d ∈ O(2α−2 log3|V |)
for uniform capacity graphs with some expansion parameter α and maximal degree ,
one can achieve a better bound. In a recent work, Kolman and Scheideler [15] use a
new graph parameter, the “flow number” ϕ, and improve the ratio further to�(1/ϕ) for
undirected graphs; they show that ϕ ∈ O(α−1 log|V |).

Without the balance condition, Guruswami et al. [7] give an algorithm with per-
formance ratio �(1/(

√|E | log3/2|E |)) for the maximum routable demand problem
when the demand values are polynomially bounded. Their algorithm is based on an
LP-relaxation and randomized rounding. Azar and Regev [3] describe a deterministic
algorithm with performance ratio�(1/(

√|E | log(2+Dmax/umin))); here, Dmax and umin

denote the maximal demand and minimal edge-capacity, respectively. Kolman and Schei-
deler [15] give a greedy �(1/

√|E |)-approximation algorithm without any assumption
on demands or capacities.

The unsplittable flow problem is much easier if all commodities share a common
single source; nevertheless, the resulting single source unsplittable flow problem re-
mains strongly NP-hard. Various constant factor approximation algorithms have been
developed for the congestion version of this problem. Again assuming that the balance
condition holds, Kleinberg [8], [9] gives a 16-approximation algorithm. Kolliopoulos
and Stein [13] (see also [12]) introduce a partitioning and scaling technique for the
single-source unsplittable flow problem. Like Kleinberg, they assume that the balance
condition is fulfilled and present a 3-approximation algorithm for the congestion version
without cost and a bicriteria approximation algorithm of performance ratio 2 for cost
and 3 for congestion. If the balance condition is not given, they can achieve a performance
guarantee of 3 + 2

√
2 for the case without costs. Dinitz et al. [6] consider the problem

without costs. They give a 2-approximation for the case with balance condition, and a 5-
approximation, otherwise. Finally, Skutella [18] improved on the approximation results
for the budget-constrained version by refining the scaling technique of Kolliopoulos and
Stein. Without relaxing the budget constraint, he gives a 3-approximation algorithm in
presence of the balance condition and a (3 + 2

√
2)-approximation, otherwise. For an

overview of results on the other optimization versions of the single-source unsplittable
flow problem we refer to [18].
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In a recent work Bagchi et al. [4] consider fault-tolerant routings in networks. They
independently define problems similar to our uniform exactly k-splittable flow problem.
To ensure connection for each commodity for up to k − 1 edge failures in the network,
they require edge disjoint flow-paths per commodity. Their algorithm builds on the work
of Kolman and Scheideler [15] and uses a bounded greedy algorithm which is analyzed
using the “flow number.”

The question of bounded splittability is also considered in the scheduling context in
a recent paper by Krysta et al. [16].

Contribution of this paper. In Section 2, approximation results for the maximum k-
splittable s-t-flow problem are derived. We start with the special cases k = 2 and k = 3
in Section 2.1 and show that approximate solutions can be obtained by executing two
iterations of the classical augmenting path algorithm. In each iteration, an augmenting
path with maximal residual capacity is chosen. The resulting s-t-flow is 3-splittable and
its value constitutes an upper bound on the value of a maximum 2-splittable s-t-flow.
These insights yield fast approximation algorithms with performance ratio 2/3 for the
maximum 2- and 3-splittable s-t-flow problem. Surprisingly, this approximation result
is best possible, unless P = NP.

In order to derive approximation algorithms for higher values of k, it is first shown in
Section 2.2 that a maximum uniform (budget-constrained) k-splittable s-t-flow can be
computed in polynomial time. For the problem without costs, the presented algorithm is
a subtle variant of the augmenting path algorithm with exactly k iterations. In contrast
to the classical augmenting path algorithm, the width of a path chosen in one iteration
is subject to constant decrease in later iterations. In fact, apart from its usefulness in the
context of k-splittable flows, this algorithm might be of interest in its own right. We show
a maximum-flow minimum-cut theorem for uniform exactly-k-splittable s-t-flows.

In Section 2.3 it is shown that the value of a maximum uniform exactly-k-splittable
s-t-flow approximates the value of a maximum k-splittable s-t-flow within a factor
of 1

2 . This result can be extended to the problem with costs yielding a 1
2 -approximation

algorithm for the maximum budget-constrained k-splittable s-t-flow problem.
In Section 3, approximation results for the maximum concurrent flow version of

the k-splittable multi-commodity flow problem are presented. We consider uniform
exactly-k-splittable multi-commodity flows. As in the single-commodity case we show
that the optimal values differ by a factor of at most 2. However, in contrast to the
single-commodity case, the uniform exactly-k-splittable multi-commodity flow prob-
lem is already NP-hard since it contains the unsplittable flow problem as a special
case. We show that the two problems are in fact equivalent, that is, an instance of
the uniform exactly-k-splittable multi-commodity flow problem can be transformed
into an equivalent instance of the unsplittable flow problem. In particular, an arbi-
trary approximation algorithm for the maximum concurrent flow version of the un-
splittable flow problem with performance ratio ρ yields a ρ/2-approximation algorithm
for the k-splittable multi-commodity flow problem. Again, this result can be gener-
alized to the setting with costs, i.e., to the maximum concurrent budget-constrained
k-splittable flow problem.

Finally, in Section 4 a result on the hardness of approximation is presented. It is
obtained via a reduction from the classical SATISFIABILITY problem. The underlying
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construction is similar to a reduction used in [18] in a related context. Additionally, we
show that a slightly modified problem in which the flow value is given and the number
of flow-paths has to be minimized is strongly NP-hard, too.

2. The Single-Commodity Case. In this section we consider the maximum k-splittable
s-t-flow problem, that is, the case of only one commodity whose demand must be routed
on at most k paths from source s to target t . This problem is already strongly NP-hard
since it contains the single-source unsplittable flow problem as a special case: Assume
we are given an instance of the single-source unsplittable flow problem, that is, a graph G
with source s, sinks t1, . . . , tk , and corresponding demands D1, . . . , Dk . We add a new
node t together with edges ti t of capacity Di , for i = 1, . . . , k. Computing a k-splittable
flow from source s to target t of flow value

∑k
i=1 Di is equivalent to solving the given

single-source unsplittable flow problem. Thus, the k-splittable s-t-flow problem is NP-
hard, see, e.g., [8].

As mentioned above, the k-splittable s-t-flow problem can be solved efficiently by
classical flow techniques if k ≥ |E |. In the remainder of this section we therefore assume
that k < |E |. We start by discussing the special cases k = 2 and k = 3.

2.1. Approximating Maximum 2-Splittable and 3-Splittable s-t-Flows. We start with
the maximum 2-splittable flow problem and give a simple combinatorial 2

3 -approxima-
tion algorithm. As we show in Section 4, this result is best possible in the sense that no
approximation algorithm with a strictly better performance ratio exists for this problem,
unless P = NP.

Our algorithm (described in the proof of Theorem 3) uses a special variant of the
classical augmenting path algorithm for maximum flows which chooses an augment-
ing s-t-path of maximal residual capacity in each iteration. Notice that such a maximum
capacity path can be found in O(|E | log|E |) time by a modified Dijkstra labeling algo-
rithm. This variant is known as the maximum capacity augmenting path algorithm (see,
e.g., Chapter 7.3 of [1]).

We first show that the resulting flow after two iterations of the augmenting path
algorithm is in fact 3-splittable.

LEMMA 1. After two iterations of the augmenting path algorithm, the resulting flow
can be decomposed into the sum of a 3-splittable flow and a circulation. Moreover, such
a decomposition can be computed in linear time.

PROOF. Let P1 and P2 denote the two augmenting paths found by the algorithm with
corresponding flow augmentations f1 and f2, respectively. By construction, path P1

consists only of forward edges. If the same holds for path P2, then a natural flow de-
composition is given by P1 and P2. However, since path P2 is computed in the residual
graph corresponding to the flow along P1, it may contain backward edges.

We can give a decomposition into the sum of flows on at most three paths as follows:
The first path in the decomposition is P1 with flow value f1 − f2 (if f1 = f2, it can
be ignored). If we reduce the flow along path P1 by f1 − f2, the remaining flow is f2-
integral and has flow value f1+ f2−( f1− f2) = 2 f2. Using standard flow decomposition
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techniques, such a flow can be decomposed in linear time into the sum of flows of value f2

on two s-t-paths plus a circulation (iteratively, take any flow-carrying s-t-path and reduce
the flow on it by f2).

LEMMA 2. After two iterations of the maximum capacity augmenting path algorithm,
the value of the resulting flow is an upper bound on the value of a maximum 2-splittable
flow.

PROOF. Let F∗ be a maximum 2-splittable flow solution which sends flow on paths P∗1
and P∗2 with flow values f ∗1 and f ∗2 , respectively. Moreover, let P1 and P2 denote the
two augmenting paths found by the maximum capacity augmenting path algorithm with
corresponding flow augmentations f1 and f2. We have to show that f1+ f2 ≥ f ∗1 + f ∗2 .

Consider the subgraph G ′ of G induced by all edges in paths P1, P∗1 , and P∗2 . Set
the capacity of each edge in G ′ to the smallest value such that both the optimal solu-
tion {(P∗1 , f ∗1 ), (P

∗
2 , f ∗2 )} and the flow of value f1 on path P1 are feasible. Consider

now the residual graph of G ′ with respect to the flow of value f1 on P1. We will show
that there is an s-t-path of capacity at least f ∗1 + f ∗2 − f1 in this residual graph. This
yields f2 ≥ f ∗1 + f ∗2 − f1 since the augmenting path algorithm could have chosen this
path.

If f ∗1 + f ∗2 − f1 ≤ 0, there is nothing to be shown. We can thus assume that f1 < f ∗1 +
f ∗2 . Moreover, we know by choice of P1 that f1 ≥ max{ f ∗1 , f ∗2 }. Let P be a thickest s-
t-path in the residual graph with bottleneck edge e. The residual capacity of edge e is
strictly positive since the value of a maximum s-t-flow in G ′ is at least f ∗1 + f ∗2 > f1.
We distinguish the following three cases:

Case 1: edge e is a forward edge of P1. Since e has positive residual capacity, both P∗1
and P∗2 must contain e such that the residual capacity of e is f ∗1 + f ∗2 − f1.

Case 2: edge e is a backward edge of P1. In this case the residual capacity of e is f1 ≥
f ∗1 + f ∗2 − f1.

Case 3: edge e is not contained in P1. In this case the residual capacity of e is at least
min{ f ∗1 , f ∗2 } ≥ f ∗1 + f ∗2 − f1.

Lemmas 1 and 2 together yield the following approximation result for the maximum
2-splittable flow problem.

THEOREM 3. There exists a 2
3 -approximation algorithm for the maximum 2-splittable

s-t-flow problem with running time O(|E | log|E |).

PROOF. Run two iterations of the maximum capacity augmenting path algorithm. The
resulting flow can be decomposed into three paths and a circulation by Lemma 1. Delet-
ing the circulation and the path with the smallest flow value yields a 2-splittable flow.
The performance guarantee of 2

3 is an immediate consequence of Lemma 2. Finally,
the running time is dominated by the modified Dijkstra labeling algorithm which is
O(|E | log|E |).
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In Section 4 we show that this result is in fact tight, that is, there does not exist an
approximation algorithm for the 2-splittable flow problem with performance guaran-
tee 2

3 + ε for any ε > 0, unless P = NP. The result for k = 2 from Theorem 3 can easily
be carried over to the maximum 3-splittable flow problem.

COROLLARY 4. There exists a 2/k-approximation algorithm for the maximum
k-splittable s-t-flow problem with running time O(|E | log|E |), for k ≥ 3. In partic-
ular there is a 2

3 -approximation algorithm for k = 3.

PROOF. Again, we run two iterations of the maximum capacity augmenting path al-
gorithm. The resulting flow is decomposed into three paths and a circulation which we
remove. By Lemma 2 the flow value of the resulting 3-splittable flow is at least as big
as the maximum flow on two paths. However, the flow value of a maximum 2-splittable
flow is at least a fraction of 2/k of the flow value of a maximum k-splittable flow.

Unfortunately, the straightforward approach which led to the approximation result
in Theorem 3 cannot be extended directly to a larger number of iterations. Firstly, k
iterations of the maximum capacity augmenting path algorithm do not necessarily yield
an upper bound on the value of a maximum k-splittable flow; see Figure 1. Secondly,
for arbitrary k, it is difficult to bound the number of flow-carrying paths necessary in
a path decomposition of the flow resulting from k iterations of the maximum capacity
augmenting path algorithm. In Figure 2 we show that one augmentation may even double
this number.

2.2. Computing Maximum Uniform k-Splittable s-t-Flows. Before we turn to the gen-
eral k-splittable s-t-flow problem, we first discuss the problem of determining a maxi-
mum k-splittable s-t-flow where all paths with positive flow value carry the same amount
of flow. We refer to this problem as the uniform k-splittable s-t-flow problem. In con-
trast to the problem with arbitrary flow values, which is strongly NP-hard, the uniform
k-splittable s-t-flow problem turns out to be solvable in polynomial time. This result is
used in Section 2.3 as an important building block for the construction of approximate
solutions to the general problem. Note that for uniform k-splittable flows the maximal
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Fig. 1. A simple example showing that Lemma 2 cannot be generalized to values of k greater than 2. A 3-
splittable s-t-flow can use the paths s-v-t , s-v-t , and s-u-t with flow values 3, 3, and 4, respectively. Thus, a
maximum 3-splittable flow has value 10. However, in its first two iterations, the maximum capacity augmenting
path algorithm chooses the paths s-u-v-t and s-v-u-t of bottleneck capacity 5 and 3. Now both edges incident
to t have residual capacity 1. Thus, the maximum capacity augmenting path algorithm yields after three
augmentations a flow of value 9.
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s t
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2

1� �

v1 w1

v2 w2

vk�1 wk�1

wk

Fig. 2. A single augmentation can double the number of necessary paths in a path decomposition. Assume we
have a flow of value 1 on each of the k − 1 horizontal s-t-paths via vi and wi . As the augmenting path we use
the gray marked s-t-path via v1, w2, v2, w3, . . . , wk−1, vk−1, wk with residual capacity 1− ε. Increasing the
flow along this path requires k − 1 additional paths.

flow value can increase even for values of k greater than |E |. Consider the graph consist-
ing of only two parallel s-t-edges with capacity 1 and 2; a maximum uniform 2-splittable
s-t-flow has value 2 and a maximum uniform 3-splittable s-t-flow has value 3.

Consider first a further specialization of the k-splittable s-t-flow problem where flows
of identical value must be sent on exactly k paths. We refer to this problem as the uniform
exactly-k-splittable s-t-flow problem. Assume that we know the maximal flow value D.
Then our problem is equivalent to finding a D/k-integral s-t-flow of value D; notice
that such a flow can easily be decomposed into a sum of k path-flows of value D/k
plus a circulation (iteratively, take any flow-carrying s-t-path and reduce the flow on
it by D/k). As mentioned above, this problem is efficiently solvable by standard flow
techniques. Thus, we can find an optimal flow if we know the optimal flow value D.

Unfortunately, neither the flow value per path D/k nor the total flow value D have
to be integral in general. Consider a graph consisting of two parallel edges from s to t ,
each with capacity 1. For odd k = 2q + 1 > 2, there is an optimal solution that uses q
times the first edge and q + 1 times the second edge as paths. Thus, the maximal flow
value per path is 1/(q+1)which yields a non-integral uniform exactly-k-splittable flow
of value 2− 1/(q + 1). Even if we do not require exactly k paths, the optimal value may
be non-integral; an example is given in Figure 3.

How “fractional” is an optimal solution in the “worst” case? Consider an arbitrary
optimal solution. Since the flow value is maximal, there must exist at least one edge with
a tight capacity constraint. Thus, the flow value on any path is equal to the capacity of
this edge divided by the number of paths using this edge in the optimal solution under
consideration. Hence, possible flow values are of the form ue/ i , for some edge e ∈ E

s t

2

2

2

2

5

Fig. 3. An instance showing that the value of a maximum uniform k-splittable s-t-flow is in general not integral.
The values attached to the edges denote the edge capacities. A maximum uniform 4-splittable s-t-flow has
value 20

3 and uses four paths with flow value 5
3 .
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and some number i ∈ {1, . . . , k}. That is, there are at most |E |k possible values which
can be enumerated in polynomial time.

OBSERVATION 5. The maximum uniform exactly-k-splittable s-t-flow problem can be
solved in polynomial time.

If we add costs and consider the budget-constrained version of the maximum uniform
exactly-k-splittable s-t-flow problem, the situation gets more complicated. In this case
the flow value per path may be forced by the budget constraint instead of a capacity
constraint. Nevertheless, we can prove the following result.

THEOREM 6. A maximum budget-constrained uniform exactly-k-splittable s-t-flow can
be computed in time O(k2|E |2 log|E |).

PROOF. Consider an arbitrary optimal solution to the problem under consideration and
let α ≥ 1 be the maximal factor by which the solution can be scaled without violating
the capacity of an edge. Clearly, the scaled flow is a uniform exactly-k-splittable s-t-
flow of flow value kue/ i for some tight edge e ∈ E and some number i ∈ {1, . . . , k}.
Moreover, assuming that the budget constraint is tight, its cost is αB where B is the given
budget. Therefore, a minimum-cost ue/ i-integral flow with flow value kue/ i has costβB
withβ ≤ α. Thus, scaling it by a factor min{1/β, 1} yields an optimal budget-constrained
uniform exactly-k-splittable s-t-flow.

Using this insight, we can now state an algorithm which solves the maximum budget-
constrained uniform exactly-k-splittable s-t-flow in polynomial time. For all e ∈ E
and i ∈ {1, . . . , k}, compute a minimum-cost ue/ i-integral flow with flow value kue/ i
and scale it down until it obeys the cost-constraint. From the resulting k|E | budget-con-
strained uniform exactly-k-splittable s-t-flows take one with maximal flow value. As
shown above, this yields a maximum budget-constrained uniform exactly-k-splittable
s-t-flow.

The running time of this algorithm is dominated by the k|E | minimum-cost flow
computations. Each minimum-cost flow can be computed in timeO(k|E | log|E |) by the
successive shortest path algorithm.

Before we present an algorithm with a much better running time for the problem
without costs, we show a maximum-flow minimum-cut theorem for uniform exactly-k-
splittable s-t-flows. As in standard flow theory an s-t-cut C in graph G is a subset of
the vertices such that C ∪ (V \C) is a partition of the vertex-set that separates s and t . In
contrast to standard flow theory we have to define the capacity of a cut C in relation to k
to deal with the restriction to exactly k paths. We formulate the cut capacity as a packing
problem. Let A be a multi-set of bins with capacities corresponding to the capacities of
all edges from C to V \C . The k-uniform cut capacity ck(C) of C is the maximal volume
of a packing of k identically sized packages into the bins of multi-set A. An s-t-cut of
minimal capacity ck(s, t) := min{ck(C)|s ∈ C ⊆ V \{t}} is called a minimum k-uniform
s-t-cut. Now we can formulate an analog to the maximum-flow minimum-cut theorem
of Ford and Fulkerson for uniform exactly-k-splittable s-t-flows.
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THEOREM 7. The minimal k-uniform s-t-cut value ck(s, t) equals the maximal flow
value of a uniform exactly-k-splittable s-t-flow.

PROOF. Obviously ck(s, t) is an upper bound on the maximum uniform exactly-k-
splittable s-t-flow value. It remains to show the reverse relation. Let G ′ be a copy of
graph G with edge capacities u′e := �kue/ck(s, t)�, for e ∈ E ; by definition of u′e,
exactly u′e objects of size ck(s, t)/k fit into a bin of capacity ue. Thus, by definition
of ck(C), the standard minimum s-t-cut of G ′ has capacity at least k. Integral flow
theory grants an integral s-t-flow of value k in G ′. That flow can be decomposed into
k paths each of flow value 1. Using these k paths with flow value ck(s, t)/k per path
in the original graph G yields a feasible uniform exactly k-splittable s-t-flow of value
ck(s, t).

Now we present a more efficient algorithm for the problem without costs. The al-
gorithm is a variant of the augmenting path algorithm with exactly k iterations. As
augmenting paths we use maximum capacity paths in a special residual graph which is
defined as follows.

Let P1, . . . , Pi be the paths found in iterations 1 to i , and let fi denote their common
flow value after iteration i . The resulting s-t-flow of value i fi is denoted by Fi . We
construct the following residual graph Gi : For each edge e of the original graph, let qi

e
be the number of paths among P1, . . . , Pi containing e. The residual capacity of edge e
in Gi is set to ue/(1+ qi

e). Moreover, if qi
e > 0, we additionally insert a backward edge

of capacity fi into Gi .
In Gi we compute a maximum capacity s-t-path Pi+1 with bottleneck capacity fi+1 :=

u Pi+1 . Then a new flow Fi+1 of value (i +1) fi+1 is defined as follows. Send fi+1 units of
flow on all paths P1, . . . , Pi , Pi+1. By definition of the residual graph Gi , the resulting
flow Fi+1 is feasible in G. However, since path Pi+1 may contain backward edges, we
still have to argue that Fi+1 is a uniform exactly-(i + 1)-splittable flow. This follows
immediately since Fi+1 is fi+1-integral and has flow value (i+1) fi+1. Hence, we obtain
a new set of i + 1 paths which have flow value fi+1 each and provide a feasible (i + 1)-
splittable flow.

THEOREM 8. The above algorithm finds a maximum uniform exactly-k-splittable s-t-
flow in time O(k|E | log|E |).

We prove Theorem 8 by showing that there is a k-uniform s-t-cut of capacity k fk .
First we mention two observations on the behavior of the flow value with increasing k.
The maximal s-t-flow value of a uniform exactly-k-splittable flow is not monotone in k.
Consider the graph with two parallel unit-capacity s-t edges discussed above. For k even,
the maximal flow value is 2. However, for k odd, the maximal flow value is 2−2/(k+1).
On the other hand, although the total flow value is not monotone, the flow value per path is
monotonically non-increasing for increasing k. Otherwise we could use the solution with
the greater flow value per path and remove surplus paths yielding a solution contradicting
maximality.

If a modified Dijkstra labeling algorithm is used to find a maximum capacity s-t-path
in the i th iteration, we can employ the labeling to specify a minimum i-uniform s-t-cut.
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Note that the label at a node v represents the capacity of a maximum bottleneck capacity
s-v-path. Let Ci denote the set of all vertices which have a label strictly greater than
the label fi of t ; assume s gets the label infinity. Obviously Ci ∪ (V \Ci ) is a partition
separating s and t .

LEMMA 9. If the flow value per path drops in iteration i (i.e., fi−1 > fi ), then cut Ci

is a minimum i-uniform s-t-cut and ci (s, t) = i fi .

PROOF. Assume cut Ci has an i-uniform cut capacity greater than i fi . Thus, there are
edges from Ci to V \Ci which concurrently can have a load greater than i fi . We show that
this assumption implies a label greater than fi for at least one node in V \Ci , contradicting
our choice of Ci .

Consider a packing for cut Ci of volume ci (Ci ); thus the package size σ := ci (Ci )/ i
is greater than fi . Until iteration i − 1 the algorithm constructed i − 1 paths crossing the
cut Ci of flow value fi−1 (> fi ) each. Since all backward edges have capacity fi−1 (>

fi ), no backward edge is crossing the cut in the forward direction. Hence, none of the
constructed i − 1 paths is crossing the cut more than once. The considered packing
has to put on at least one edge e = vw from Ci to V \Ci more than qi−1

e packages; in
particular, ue/(1+ qi−1

e ) ≥ σ . However, ue/(1+ qi−1
e ) is the capacity of edge e in Gi .

Since v is in Ci , it got a label greater than fi . Thus, the labeling algorithm assigns w
a label greater than fi as well, contradicting the choice of Ci . As a consequence, each
packing for cut Ci has package size at most fi .

Since the above given augmenting path algorithm generates a feasible uniform exactly-
i-splittable s-t-flow of value i fi , there exists no i-uniform s-t-cut of value less than i fi .
Hence Ci is a minimum i-uniform s-t-cut.

In general, Lemma 9 is wrong if the flow value per path does not change in iteration i .
In that case we can use a cut from previous iterations.

LEMMA 10. Assume i > j are iteration indices such that fj−1 > f j = · · · = fi . Then
cut Cj is a minimum i-uniform s-t-cut and ci (s, t) = i fi .

PROOF. From Lemma 9 we know that Cj is a minimum j-uniform s-t-cut. Thus, the
maximal package size for Cj as a j-uniform s-t-cut is f j . If we have to place i instead
of j packages into the same set of bins we cannot expect a larger package size. On the
other hand, we know that i packages of size f j fit into the bins.

PROOF OF THEOREM 8. The correctness follows immediately from Lemmas 9 and 10.
The running time of the algorithm is bounded by k times the time required to find a
maximum capacity s-t-path. The latter problem can be solved by a modified Dijkstra
algorithm in time O(|E | log|E |).

As mentioned above, the flow value of a maximum uniform exactly-k-splittable flow
is not necessarily increasing with k. However, since our algorithm computes a maximum
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uniform exactly-i-splittable flow for all i = 1, . . . , k, we can easily determine the number
of paths maximizing the flow value.

THEOREM 11. The maximum uniform k-splittable s-t-flow problem can be solved effi-
ciently in time O(k|E | log|E |).

2.3. Approximating Maximum k-Splittable s-t-Flows. We show that computing a
maximum (budget-constrained) uniform k-splittable s-t-flow yields a constant factor
approximation for the maximum (budget-constrained) k-splittable s-t-flow problem.

THEOREM 12. Computing a maximum (budget-constrained) uniform exactly-k-splittable
s-t-flow is an approximation algorithm with performance ratio 1

2 for the maximum
(budget-constrained) k-splittable s-t-flow problem.

PROOF. Consider an optimal solution F of value OPT to the general (budget-constrained)
k-splittable s-t-flow problem. We show that there exists a (budget-constrained) uniform
exactly-k-splittable s-t-flow which sends D:=OPT/(2k) units of flow on each of the k
paths. In particular, the value of this flow is exactly OPT/2.

In the given optimal solution F , any flow-carrying path P with flow value fP > 0 can
be replaced by � fP/D� copies of P , each carrying D units of flow. It suffices to show
that the resulting solution consists of at least k paths, each with flow value D. Using the
fact that the number of paths used by F is bounded by k, we get

∑

P : fP>0

� fP/D� ≥ OPT

D
− k = k.

Finally, observe that the given conversion never increases flow on an edge and there-
fore never increases cost. This concludes the proof.

On the other hand, we can show that the result in Theorem 12 is tight, that is, there
exist instances with an asymptotic gap of 2 between the value of a maximum k-splittable
s-t-flow and the value of a maximum uniform k-splittable s-t-flow. Consider a graph
with two nodes s and t , and k parallel s-t edges. One of them has capacity k − 1, the
others have unit capacity. A maximum uniform k-splittable s-t-flow in this graph has
value k; the maximum k-splittable s-t-flow has value 2(k − 1).

In Section 2.2 we have seen that in contrast to standard s-t-flows maximum uniform
(exactly) k-splittable s-t-flows may have only non-integral solutions in graphs with
integral edge capacities. Now we give an example that the same holds for the general
maximum k-splittable s-t-flow problem. Consider a maximum 4-splittable s-t-flow in
the graph of Figure 4.

3. The Multi-Commodity Case. In this section we extend some techniques and re-
sults from the previous section to the general situation of multiple commodities. We
consider the (budget-constrained) maximum concurrent flow problem where the aim is
to maximize the routable fraction, i.e., maximize the factor by which we can multiply all
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Fig. 4. There is a 4-splittable s-t-flow of flow value 20 if one uses 3
2 ,

7
2 ,

13
2 , and 17

2 as path flow values. To
see that there is no integral solution we show that at least one path must have a flow value between 1 and 2.
It is easy to see that there is no 3-splittable s-t-flow of value 20 and that no solution may have a flow path of
value larger than 9. Furthermore, at each of the three nodes s, a, and b two paths must branch upward and
the other two paths must branch downward. Consider an arbitrary maximum solution. First assume there is
a path of flow value x < 1. The two edges adjacent to s would force a path of flow value 10 − x > 9. This
leads to a contradiction. Assume all paths have flow value x > 2. Thus we can remove all edges of capacity 2
which can be seen to be infeasible. Now assume there is at least one path of value 1 (or of value 2). Again the
edges adjacent to s force another path of value 9 = 10− 1 (or 8 = 10− 2). That path forces a path of value
3 = 12 − 9 (or 4 = 12 − 8) on the edge of capacity 12. That fixes the last path to a value of 7 (or 6). These
values are not feasible.

demands and still get a realizable instance respecting the given capacities (and the budget
constraint). Notice that the maximum concurrent flow problem reduces to the maximum
flow problem if only a single commodity is considered. In some sense the maximum
concurrent flow problem is more closely related to the single-commodity maximum
flow problem than the versions that minimize the number of rounds or that maximize the
routable demand. For the maximum concurrent flow problem only an optimal routing has
to be found whereas, both in the minimum number of rounds and the maximum routable
demand version, one has to solve two problems, a selection and a routing problem.

As in Section 2.3, we use uniform exactly-k-splittable flows in order to find approxi-
mate solutions.

THEOREM 13. For the multi-commodity case, the value of a maximum concurrent
(budget-constrained) uniform exactly-k-splittable flow approximates the optimal value of
the corresponding general maximum concurrent (budget-constrained) k-splittable flow
problem within a factor of 1

2 .

PROOF. As in the proof of Theorem 12, we turn an arbitrary k-splittable flow into a
uniform exactly-k-splittable flow which satisfies at least one-half of the original demands.
Notice that the technique described in the proof of Theorem 12 can be applied to the
commodities one after another. Since flow on an edge is never increased during this
conversion, the resulting uniform exactly-k-splittable flow is feasible (and obeys the
budget-constraint).

However, in contrast to the single-commodity case, the multi-commodity case of
the maximum concurrent uniform exactly-k-splittable flow problem is NP-hard, since it
contains the unsplittable flow problem as a special case (set all ki to 1, for i = 1, . . . , �).
Thus, we can only expect approximate solutions.
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Assume that we want to route concurrently a fraction µ of the demand of each
commodity. Then each path of commodity i has to carry exactly µDi/ki units of flow.
In particular, there is no choice for the number of paths and for the amount of flow ifµ is
known. Thus, the problem is equivalent to the following unsplittable flow problem on the
same graph: For each terminal pair (si , ti ) of our k-splittable flow problem, i = 1, . . . , �,
we introduce ki terminal pairs (si , ti ) and assign a demand value of Di/ki to all of them.
A concurrent unsplittable flow for the new problem instance with value µ is also a
concurrent flow solution for the uniform exactly-k-splittable flow problem of the same
value, and vice versa. Combining this observation with Theorem 13 yields the following
result.

THEOREM 14. Any ρ-approximation algorithm for the maximum concurrent (budget-
constrained) unsplittable flow problem yields an approximation algorithm with perfor-
mance guarantee ρ/2 for the maximum concurrent (budget-constrained) k-splittable
flow problem.

There are various approximation algorithms known for the maximum concurrent
unsplittable flow problem, see [8]. The randomized rounding technique of Raghavan
and Thompson [17] yields a logarithmic approximation. For the case of a single-source
node, there even exist constant factor approximation algorithms, see [9], [13], [6], and
[18]. More details can be found in the Introduction.

As pointed out by an anonymous referee, the linear program relaxation of the max-
imum concurrent unsplittable flow problem is also a relaxation of the k-splittable flow
problem. Hence, any ρ-approximation algorithm for the unsplittable flow problem which
compares the approximate solution with a solution to the fractional relaxation already
leads to a ρ-approximation algorithm for the k-splittable flow problem. In particular,
this applies to the currently best known approximation algorithms for the maximum
concurrent unsplittable flow problem [8], [6], [18].

4. Complexity and Non-Approximability Results. In this section we show that the
k-splittable s-t-flow problem is NP-hard in the strong sense for directed graphs, even if k
is fixed to 2. More precisely, we give a reduction from SAT showing that for k = 2 no
polynomial-time algorithm with performance ratio strictly better than 2

3 exists, unless
P = NP.

THEOREM 15. It is strongly NP-hard to approximate instances of the maximum 2-
splittable s-t-flow problem with an approximation ratio strictly better than 2

3 .

The following proof of Theorem 15 is similar to and inspired by the proof of Theorem 9
and Corollary 8 of [18].

PROOF. We give a reduction from the NP-complete SAT problem. Given a SAT instance
with variables x1, . . . , xn and clauses C1, . . . ,Cm , we construct a graph of size linear in n
and m with source s and sink t . We will show that for a satisfiable instance of the SAT



246 G. Baier, E. Köhler, and M. Skutella

s t
x1 x2

u1 u2 u3 umv1 v2 v3 vm

C1 C2 C3 Cm

true-chain

false-chain

Fig. 5. A graph for encoding a SAT instance as a 2-splittable flow problem. An s-t-path in the sub-
graph of black edges describes a truth assignment for the variables x1, . . . , xn . An s-t-path through the
nodes u1, v1, . . . , um , vm proves the feasibility of the assignment. All black edges have capacity 2, all gray
edges have capacity 1. In this example: C1 = ¬x1, C2 = x1 ∨ ¬x2, and C3 = ¬x1 ∨ x2.

problem, there is a 2-splittable s-t-flow of value 3. Otherwise, if the SAT instance is not
satisfiable, a maximum 2-splittable s-t-flow has value 2. Thus, an approximation algo-
rithm with performance ratio strictly better than 2

3 would imply a polynomial algorithm
for deciding the satisfiability of the SAT instance.

We construct the graph in two stages. First, the subgraph for encoding a truth assign-
ment of x1, . . . , xn is described. This subgraph is acyclic with n+1 bridges and a unique
source s and sink t ; see the part drawn in black in Figure 5. For each variable xi , there is
a segment built by two parallel paths between consecutive bridges. One of these paths
is called the true-chain, the other the false-chain of xi . The true-chain (false-chain) of
variable xi contains two consecutive edges for each clause in which xi occurs negated
(unnegated). We call the first edge of each pair the representing edge of the correspond-
ing clause. The order of clauses in each chain is monotonically decreasing by clause
index. All edges in this “variable subgraph” have capacity 2. If an s-t-path with flow
value 2 uses the true-chain (false-chain) of xi then we interpret it as assigning the value
true (false) to xi .

Secondly, there is a subgraph for encoding the clauses. The idea is to construct a
second s-t-path using the representing edges. This path gets blocked if the assignment
given by the first path is not satisfying. For each clause Ci there are two nodes ui , vi

and edges from vi−1 to ui ; the node v0 coincides with the source s and um+1 coincides
with the sink t . Node ui is connected to all tail nodes of representing edges of clause Ci

and vi is connected to all head nodes of representing edges of Ci (see the gray edges in
Figure 5). All of these edges get capacity 1.

Assume that the SAT instance is satisfiable. We fix a satisfying assignment and send 2
units of flow on a single s-t-path through the “variable subgraph”. This path uses the true-
chain of xi if the variable xi is set to true and the false-chain otherwise. By construction
of the graph, there is a path for clause Cj from uj to vj via the representing edge
of Cj in the true/false-chains of variable xi . This uj -vj -path is disjoint from the above
chosen s-t-path if the assignment of xi satisfies clause Ci . Since, by assumption, there is a
satisfying assignment, we can construct an s-t-path that is disjoint from the first s-t-path.
Consequently, there is a 2-splittable s-t-flow of value 3 if the SAT instance is satisfiable.
Furthermore, by the capacity of the edges leaving s, this is maximal. It remains to show
that a 2-splittable s-t-flow of value greater than 2 yields a satisfying truth assignment.
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First notice that the two paths must be edge disjoint, because otherwise the flow value is
at most 2. Second, one of the paths must be entirely in the black “variable graph” since
otherwise both paths have flow value at most 1.

Path P1 with flow value greater than 1 is used for assigning the values to the vari-
ables. As mentioned, this path lies entirely in the “variable graph”. Therefore, for each
variable xi it has to use all edges of either the true- or the false-chain of xi . Path P2, on
the other hand, has to leave s via edge (s, u1) and then traverses representing edges for
the clauses Ci in order of increasing index, intercepted by (vi , ui+1) edges. The consec-
utive traversal of representing edges according to increasing clause index is assured by
the decreasing ordering of the representing edges within each variable segment. Conse-
quently, P2 cannot skip any of the ui , vi nodes and thus verifies that our assignment is
satisfying.

In Section 2.1 we have seen that the maximum uniform k-splittable s-t-flow problem
can be solved in polynomial time. However, as soon as we allow small differences in the
flow values on the paths, the problem becomes NP-hard again.

COROLLARY 16. For arbitrary ε > 0, it is strongly NP-hard to compute a maximum
2-splittable s-t-flow, already if the flow values on the two paths may differ by a factor of
no more than 1+ ε.

On the other hand, the problem described in Corollary 16 is easier to approximate
since a maximum uniform k-splittable s-t-flow is obviously a 1/(1 + ε)-approximate
solution.

Finally, we want to mention a closely related problem. Instead of looking for a max-
imum s-t-flow using at most k paths one can require an amount of flow and ask for the
minimal number of paths necessary to satisfy this demand on flow. The construction in
the proof of Theorem 15 shows that this problem is NP-hard as well. The SAT instance
is a yes-instance if and only if the minimal number of paths necessary to ship 3 units of
flow is 2.

COROLLARY 17. Computing an s-t-flow of given value using a minimal number of
paths is strongly NP-hard.
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