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Summary. Classical network flow problems do not impose restrictions on the choice of paths
on which flow is sent. Only the arc capacities of the network have to be obeyed. This scenario
is not always realistic. In fact, there are many problems for which, e.g., the number of paths
being used to route a commodity or the length of such paths has to be small. These restrictions
are considered in the length-boundedk-splittables-t-flow problem: The problem is a variant of
the well known classicals-t-flow problem with the additional requirement that the number of
paths that may be used to route the flow and the maximum length of those paths are bounded.
Our main result is that we can efficiently compute a length-boundeds-t-flow which sends one
fourth of the maximum flow value while exceeding the length bound by a factor of at most 2.
We also show that this result leads to approximation algorithms for dynamick-splittables-t-
flows.

1 Introduction

Problem Definition and Motivation

We consider generalizations of the classical maximums-t-flow problem where flow
must be sent through a given network (digraph)G = (V,E) with arc capacities
c : E → R+ from a sources ∈ V to a sinkt ∈ V .

k-Splittable Flows.The NP-hardmaximumk-splittables-t-flow problemintroduced
by Baier, K̈ohler, and Skutella [3] asks for a maximums-t-flow which can be decom-
posed into flow on at mostk paths. Herek is either a fixed constant or part of the in-
put2. A feasible solution to this problem is calledk-splittables-t-flow; it is specified
by a collectionP = (P1, . . . , Pk) of k paths froms to t with corresponding nonneg-
ative flow valuesf1, . . . , fk such that arc capacities are obeyed:

∑
i: e∈Pi

fi ≤ c(e)

? This work was partially supported by DFG Focus Program 1126, “Algorithmic Aspects of
Large and Complex Networks”, grant no. SK 58/4-1 and SK 58/5-3.

2 Since everys-t-flow can be decomposed into flow on at most|E| paths and cycles, we
always assume thatk ≤ |E|.
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for all e ∈ E. The value of this flow is
∑k

i=1 fi. Notice that some of the valuesfi

can be zero such that less thank paths are actually used to send flow.
A uniformk-splittables-t-flow is ak-splittables-t-flow where every path carries

the same amount of flowf , i.e.,f = f1 = · · · = fk. Thes-t-paths in collectionP
are not necessarily distinct, that is,P may contain several copies of the sames-t-
path such that the total amount of flow being sent along this path is a multiple of the
common valuef .

The notion ofk-splittable flows is motivated by transportation problems where
divisible goods have to be shipped through a network using a bounded number of
containers and each container must be routed along some path through the network.
In the more general context of multicommodity flows,k-splittable flows generalize
the notion of unsplittable flows which were introduced by Kleinberg [6]. A natural
restriction in the area of transportation is to bound the length of paths that might be
used to ship some commodity from its source to its destination. We therefore consider
a generalization ofk-splittables-t-flows by imposing bounds on the lengths of the
paths inP.

Length-Bounded Flows.In addition to the setting described above we assume that
there are alsoarc lengths̀ : E → R+. Then, ans-t-flow specified by a collection of
s-t-pathsP = (P1, . . . , Pk) and corresponding flow valuesf1, . . . , fk is calledL-
length-boundedfor someL ∈ R+ if

∑
e∈Pi

`(e) ≤ L for i = 1, . . . , k, that is, no
path inP is longer thanL. Baier [2] gives an extensive survey of what is known for
length-bounded flows. We consider themaximum length-boundedk-splittables-t-
flow problem: Givenk andL, find a maximumk-splittables-t-flow among the ones
which areL-length-bounded. This constitutes a natural combination and generaliza-
tion of k-splittable and length-boundeds-t-flows.

Dynamic Flows.A crucial characteristic of network flows occurring in real-world
applications is flow variation over time and the fact that flow does not travel instan-
taneously through a network but requires a certain amount of time (transit time) to
travel through each arc. Both characteristics are captured bydynamic flowswhich
specify a flow rate for each arc and each point in time. Thequickests-t-flow problem
is to send a given amount of flow froms to t such that the last unit of flow arrives at
the sinkt as early as possible, i.e., within minimum timeT . We consider thequick-
estk-splittables-t-flow problemwhere, as in the static setting described above, the
number ofs-t-paths used to send flow is bounded byk. This dynamic flow problem
is NP-hard since already its ‘static’ counterpart is NP-hard [3].

Related Results from the Literature

As mentioned abovek-splittable flows are introduced in [3]. Among other results
it is shown there that a maximum uniformk-splittables-t-flow can be computed in
polynomial time by a variant of the classical augmenting path algorithm. In con-
trast, it is NP-hard to find a maximumk-splittables-t-flow. The value of a maximum
k-splittables-t-flow is at most twice as large as the value of a maximum uniform
k-splittables-t-flow. That is, computing a maximum uniformk-splittables-t-flow
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yields a1/2-approximation algorithm for the maximumk-splittables-t-flow prob-
lem. Other results onk-splittable flows have been found, e.g., by Bagchi [1]. Ford and
Fulkerson [5] introduce dynamics-t-flows. It follows from their work that the quick-
ests-t-flow problem can be solved in polynomial time. Fleischer and Skutella [4]
show that certain NP-hard generalizations of the quickests-t-flow problem (with
multiple commodities or costs) can efficiently be approximated with constant perfor-
mance guarantees via static length-bounded flow computations.

Contribution of this Paper

In Section 2 we present the following bicriteria approximation result for computing
maximum length-boundedk-splittables-t-flows.

Theorem 1.There is a polynomial-time algorithm that computes a2L-length-
boundedk-splittables-t-flow whose flow value is at least one fourth of the value
of a maximumL-length-boundedk-splittables-t-flow.

In Section 3 we apply a variant of this result in order to obtain the following
approximation for the quickestk-splittables-t-flow problem.

Theorem 2.There is a(3 + 2
√

2)-approximation algorithm for the quickestk-
splittables-t-flow problem.

Due to space limitations, we only give an intuitive outline of the proof of Theo-
rem 2.We conclude by presenting an interesting open problem.

2 Length-Boundedk-Splittable Flows

In this section we derive a simple combinatorial algorithm with the property stated in
Theorem 1. Throughout this section, lengths of arcs are also interpreted as cost coef-
ficients. We first show that ak-splittables-t-flow obeying the given length boundL
only on average can be found in polynomial time.

Lemma 1. For givenk andL, a maximum uniformk-splittables-t-flow with average
path length at mostL can be computed in polynomial time.

The proof of Lemma 1 is similar to the proof of [3, Theorem 6]. It is based on
the insight that a uniformk-splittables-t-flow with flow valuekf is anf -integral
s-t-flow (a flow is calledf -integral for somef ∈ R+ if the flow value on each
arc is an integral multiple off ). Moreover, anyf -integrals-t-flow of valuekf in-
duces a uniformk-splittables-t-flow of the same value by constructing anf -integral
decomposition into paths and cycles and ignoring the cycles.

Proof (of Lemma 1).Consider a maximum uniformk-splittables-t-flow with av-
erage path length at mostL. There exists at least one arce ∈ E with a tight ca-
pacity constraint since otherwise a better solution can be obtained by increasing
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the common flow valuef on all k paths. Hence,f is equal to the capacityc(e)
of arc e divided by the number of paths using the arc. Thus,f = c(e)/i for some
arc e ∈ E and somei ∈ {1, . . . , k}. Based on this insight we formulate an algo-
rithm: For alle ∈ E andi ∈ {1, . . . , k}, compute ac(e)/i-integral min-costs-t-flow
of valueFe,i := kc(e)/i or find out that no such flow exists. Among all computed
flows whose total cost is at mostFe,iL output one with largest flow value. If no such
flow exists then output the zero flow. The running time of this algorithm is dominated
by k|E| min-costs-t-flow computations. ut

As discussed above, the flow described in Lemma 1 is anf -integrals-t-flow of
valuekf and cost at mostkfL for somef ∈ R+. It can be turned into a2L-length-
boundedk-splittables-t-flow while decreasing the flow value only by a factor1/2.

Lemma 2. Given anf -integral s-t-flow of valuekf and cost at mostkfL, a 2L-
length-bounded uniformk-splittables-t-flow of valuekf/2 can be found in polyno-
mial time.

Proof. The algorithm works as follows. First, the given flow is made acyclic by
repeatedly canceling flow on cycles. Notice that this step does not increase cost since
all cost coefficients (arc lengths) are nonnegative. Next, we cancelf/2 units of flow
along the currently longest flow-carryings-t-path and repeat this stepk times. The
resultings-t-flow is f/2-integral and has flow valuekf/2. Moreover, the length
of any flow-carryings-t-path is at most2L. Otherwise, all paths on which flow was
canceled have length strictly larger than2L. Sincekf/2 flow units were deleted from
these paths, the cost of the initial flow must have been strictly larger thankfL—a
contradiction. ut

Notice that the computeds-t-flow is not only 2L-length-bounded but has the
stronger property that the length ofanyflow-carrying path is at most2L. This means
that any path decomposition of this flow has the nice property of being2L-length-
bounded. It is easy to come up with examples showing that this does not hold for
arbitrary length-boundeds-t-flows.

We can now state the bicriteria approximation algorithm mentioned in Theo-
rem 1: In the first step, a maximum uniformk-splittables-t-flow with average path
length at mostL is computed (see Lemma 1). The second step turns this flow into a
2L-length-bounded uniformk-splittables-t-flow (Lemma 2). It remains to show the
performance guarantee1/4 for the value of the computed flow. This follows from
Lemma 2 and the following result.

Lemma 3. The value of a maximumL-length-boundedk-splittable s-t-flow is at
most twice as large as the value of a maximumL-length-bounded uniformk-
splittables-t-flow.

The proof of this result is identical to the proof of [3, Theorem 12] and there-
fore omitted. Since the problem solved in Lemma 1 is a relaxation of the maximum
L-length-bounded uniformk-splittables-t-flow problem, the value of the flow com-
puted in the first step of our algorithm is at least half as large as the optimum. Since
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the second step decreases the flow value by another factor1/2, this concludes the
proof of Theorem 1.

Using the same technique as in the proof of Lemma 2 one can show for anyε
with 0 < ε < 1 that given anf -integrals-t-flow of valuekf and cost at mostkfL,
a (1/ε)L-length-bounded uniformk-splittables-t-flow of value (1 − ε)kf can be
found in polynomial time. This result can be used in order to show that there is a
polynomial-time algorithm that computes a(1/ε)L-length-boundedk-splittables-t-
flow whose flow value is at least(1− ε)/2 times the value of a maximumL-length-
boundedk-splittables-t-flow.

A Note on the Complexity of Length-Boundedk-Splittable Flows

To emphasize that the maximum length-boundedk-splittables-t-flow problem is
indeed harder than the usual maximum length-boundeds-t-flow problem, we want to
point out that it is possible to find a maximum length-boundeds-t-flow in polynomial
time, if all arc lengths are equal to1 (see, e.g., [2]). It is also shown in [2] that it is
NP-complete to decide whether a digraph has a given number of length-bounded arc-
disjoints-t-paths with respect to unit arc lengths. This implies the following remark.

Proposition 1. Even in a network with unit arc lengths it is NP-complete to decide
whether there exists a length-boundedk-splittables-t-flow of given value.

Proof. It is easy to see that the problem is in NP. We reduce the NP-complete length-
bounded arc-disjoints-t-paths problem to it. One can decide whether a digraph has
a given numberM of length-bounded arc-disjoints-t-paths with respect to unit arc
lengths by checking if there exists a length-boundedM -splittables-t-flow of value
M in the network based upon this digraph with unit capacities.ut

3 Dynamick-Splittable Flows

The approximation algorithm in Theorem 1 can be used to construct an approxi-
mation algorithm for the quickestk-splittables-t-flow problem. An instance of this
problem consists of the same input as an instance of the maximumk-splittables-
t-flow problem. In addition, we are given transit timesτ : E → R+ on the arcs
and a prescribed demand valueD. The task is to sendD units of flow from the
sources to the sinkt on at mostk paths within minimal time horizonT . For an
exact definition of dynamics-t-flows we refer to [5, 4]. We sometimes use the no-
tion ‘static flow’ in order to emphasize that some flow is not dynamic. It follows
from the work of Fleischer and Skutella [4] that a dynamic (k-splittable)s-t-flow of
valueD with time horizonT yields a staticT -length-bounded (k-splittable)s-t-flow
of valueD/T (here we interpret transit times of arcs also as lengths). This static flow
can be obtained by essentially averaging the dynamic flow over time. In particular,
if the dynamic flow sends flow along at mostk paths, then the same holds for the
resulting static flow. On the other hand, a staticT -length-bounded (k-splittable)s-t-
flow of valued can be transformed into a dynamic (k-splittable)s-t-flow of valueD
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with time horizonT + D/d. The underlying transformation sends flow according to
the given static flow pattern into the network forD/d time units. Then one has to
wait for anotherT time units until the last unit of flow (traveling on a path of length,
i.e., transit time, at mostT ) has arrived at the sink. Notice that the resulting dynamic
flow uses exactly the sames-t-paths as the underlying static flow. For further details
we refer to [4].

We can now prove Theorem 2. The time horizon of an optimum solution to the
quickestk-splittables-t-flow problem is denoted byT ∗. Thus, there exists a static
T ∗-length-boundedk-splittables-t-flow of valueD/T ∗. If T ∗ was known, one could
compute a2T ∗-length-boundedk-splittables-t-flow of value at leastD/(4T ∗); see
Theorem 1. By slightly modifying the algorithm presented in Section 2 we can
find T ≤ T ∗ and a2T -length-boundedk-splittables-t-flow of value at leastD/(4T )
in polynomial time. (We omit further details due to space limitations.) Applying the
result of [4] thus yields a dynamick-splittables-t-flow of valueD with time hori-
zon2T + 4T ≤ 6T ∗.

Analogously we can use the general bicriteria approximation for length-bounded
k-splittables-t-flows in order to obtain a(1 + ε)/(ε− ε2)-approximation algorithm
for the dynamick-splittable flow problem for everyε with 0 < ε < 1. Optimizing
overε we obtain a minimum forε =

√
2−1 which yields a(3+2

√
2)-approximation

with 3 + 2
√

2 ≈ 5.828. This concludes the proof of Theorem 2.

Concluding Remark

We conclude by presenting a challenging open problem. Given a network with ca-
pacities and lengths on the arcs, a single source nodes, andk sink nodest1, . . . , tk
with demand valuesd1, . . . , dk. It is NP-hard to find an unsplittable flow that sendsdi

units of flow froms to ti along a single path of length at mostL for i = 1, . . . , k. It is
an open problem to find a bicriteria approximation algorithm which sends a constant
fraction of each demanddi along a singles-ti-path of lengthO(L).
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