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Abstract. We consider the scheduling problem of minimizing the average weighted completion
time of n jobs with release dates on a single machine. We first study two linear programming
relaxations of the problem, one based on a time-indexed formulation, the other on a completion-
time formulation. We show their equivalence by proving that a O(n logn) greedy algorithm leads to
optimal solutions to both relaxations. The proof relies on the notion of mean busy times of jobs, a
concept which enhances our understanding of these LP relaxations. Based on the greedy solution, we
describe two simple randomized approximation algorithms, which are guaranteed to deliver feasible
schedules with expected objective function value within factors of 1.7451 and 1.6853, respectively, of
the optimum. They are based on the concept of common and independent α-points, respectively. The
analysis implies in particular that the worst-case relative error of the LP relaxations is at most 1.6853,
and we provide instances showing that it is at least e/(e − 1) ≈ 1.5819. Both algorithms may be
derandomized; their deterministic versions run in O(n2) time. The randomized algorithms also apply
to the on-line setting, in which jobs arrive dynamically over time and one must decide which job to
process without knowledge of jobs that will be released afterwards.
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1. Introduction. We study the single-machine scheduling problem with release
dates in which the objective is to minimize a weighted sum of completion times. It is
defined as follows. A set N = {1, 2, . . . , n} of n jobs has to be scheduled on a single
disjunctive machine. Job j has a processing time pj > 0 and is released at time rj ≥ 0.
We assume that release dates and processing times are integral. The completion time
of job j in a schedule is denoted by Cj . The goal is to find a nonpreemptive schedule
that minimizes

∑
j∈N wjCj , where the wj ’s are given positive weights. In the classical

scheduling notation [12], this problem is denoted by 1| rj |
∑

wjCj . It is strongly NP-
hard, even if wj = 1 for all jobs j [17].
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One of the key ingredients in the design and analysis of approximation algorithms
as well as in the design of implicit enumeration methods is the choice of a bound on
the optimal value. Several linear programming-based as well as combinatorial lower
bounds have been proposed for this well-studied scheduling problem; see, for example,
Dyer and Wolsey [9], Queyranne [22], and Queyranne and Schulz [23], as well as
Belouadah, Posner, and Potts [4]. The LP relaxations involve a variety of different
types of variables which, e. g., express whether either job j is completed at time t
(nonpreemptive time-indexed relaxation), or whether it is being processed at time t
(preemptive time-indexed relaxation), or when job j is completed (completion time
relaxation). Dyer and Wolsey show that the nonpreemptive time-indexed relaxation
is stronger than the preemptive time-indexed relaxation. We will show that the latter
relaxation is equivalent to the completion time relaxation that makes use of the so-
called shifted parallel inequalities. In fact, it turns out that the polyhedron defined
by these inequalities is supermodular, and hence one can optimize over it by using
the greedy algorithm. A very similar situation arises in [24]. The greedy solution may
actually be interpreted in terms of the following preemptive schedule, which we call
the LP schedule: at any point in time it schedules among the available jobs one with
the largest ratio of weight to processing time. Uma and Wein [38] point out that the
value of this LP solution coincides with one of the combinatorial bounds of Belouadah,
Posner, and Potts based on the idea of allowing jobs to be split into smaller pieces
that can be scheduled individually.

We show that the optimal value of 1| rj |
∑

wjCj is at most 1.6853 times the
lower bound given by any of these three equivalent relaxations—the preemptive time-
indexed relaxation, the completion time relaxation, or the combinatorial relaxation
in [4]. We prove this result on the quality of these relaxations by converting the
(preemptive) LP schedule into a nonpreemptive schedule. This technique leads to
approximation algorithms for 1| rj |

∑
wjCj . Recall that a ρ-approximation algorithm

is a polynomial-time algorithm guaranteed to deliver a solution of cost at most ρ times
the optimal value. A randomized ρ-approximation algorithm is a polynomial-time
algorithm that produces a feasible solution whose expected objective function value is
within a factor of ρ of the optimal value.

The technique of converting preemptive schedules to nonpreemptive schedules
in the design of approximation algorithms was introduced by Phillips, Stein, and
Wein [21]. More specifically, for 1| rj |

∑
wjCj they showed that list scheduling in

order of the completion times of a given preemptive schedule produces a nonpreemp-
tive schedule while increasing the total weighted completion time by at most a factor
of 2. In the same paper they also introduced a concept of α-points. This notion was
also used by Hall, Shmoys, and Wein [14] in connection with the nonpreemptive time-
indexed relaxation of Dyer and Wolsey to design approximation algorithms in various
scheduling environments. For our purposes, the α-point of job j in a given preemp-
tive schedule is the first point in time at which an α-fraction of j has been completed.
When one chooses different values of α, sequencing in order of nondecreasing α-points
in the same preemptive schedule may lead to different nonpreemptive schedules. This
increased flexibility led to improved approximation algorithms: Chekuri et al. [6] for
1| rj |

∑
Cj and Goemans [11] for 1| rj |

∑
wjCj chose α at random and analyzed the

expected performance of the resulting randomized algorithms. We will show that,
using a common value of α for all jobs and an appropriate probability distribution,
sequencing in order of α-points of the LP schedule has expected performance no worse
than 1.7451 times the optimal preemptive time-indexed LP value. We also prove that
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Table 1
Summary of approximation bounds for 1| rj |

∑
wjCj . An α-schedule is obtained by sequenc-

ing the jobs in order of nondecreasing α-points of the LP schedule. The use of job-dependent αj ’s
yields an (αj)-schedule. The results discussed in this paper are below the second double line. Subse-
quently, Anderson and Potts [2] gave a deterministic 2-competitive algorithm. For the unit-weight
problem 1| rj |

∑
Cj , the first constant-factor approximation algorithm is due to Phillips, Stein, and

Wein [21]. It has performance ratio 2, and it also works on-line. Further deterministic 2-competitive
algorithms were given by Stougie [36] and Hoogeveen and Vestjens [15]. All these algorithms are
optimal for deterministic on-line algorithms [15]. Chekuri et al. [6] gave a randomized e/(e − 1)-
approximation algorithm, which is optimal for randomized on-line algorithms [37, 39].

Reference and/or Off-line On-line
type of schedule deterministic randomized deterministic

Phillips et al. [21] 16 + ε
Hall et al. [14] 4 4 + ε
Schulz [26] 3
Hall et al. [13] 3 3 + ε
Chakrabarti et al. [5] 2.8854 + ε 2.8854 + ε
Combining [5] and [13] 2.4427 + ε 2.4427 + ε

α-schedule

for α = 1/
√

2
[11] 2.4143 2.4143

[11] 2
Best α-schedule

1.7451
(random) (αj)-schedule 1.6853 1.6853

by selecting a separate value αj for each job j, one can improve this bound to a
factor of 1.6853. Our algorithms are inspired by and partly resemble the algorithms
of Hall, Shmoys, and Wein [14] and Chekuri et al. [6]. In contrast to Hall, Shmoys,
and Wein we exploit the preemptive time-indexed LP relaxation, which, on the one
hand, provides us with highly structured optimal solutions and, on the other hand,
enables us to work with mean busy times. We also use random α-points. The algo-
rithm of Chekuri et al. starts from an arbitrary preemptive schedule and makes use
of random α-points. They relate the value of the resulting α-schedule to that of the
given preemptive schedule and not to that of an underlying LP relaxation. While
their approach gives better approximations for 1| rj |

∑
Cj and structural insights on

limits of the power of preemption, the link of the LP schedule to the preemptive time-
indexed LP relaxation helps us to obtain good approximations for the total weighted
completion time.

Variants of our algorithms also work on-line when jobs arrive dynamically over
time and, at each point in time, one has to decide which job to process without
knowledge of jobs that will be released afterwards. Even in this on-line setting, we
compare the value of the computed schedule to the optimal (off-line) schedule and
derive the same bounds (competitive ratios) as in the off-line setting. See Table 1 for
an account of the evolution of off-line and on-line approximation results for the single
machine problem under consideration.

The main ingredient to obtain the results presented in this paper is the ex-
ploitation of the structure of the LP schedule. Not surprisingly, the LP sched-
ule does not solve the strongly NP-hard [16] preemptive version of the problem,
1| rj , pmtn |∑wjCj . However, we show that the LP schedule solves optimally the
preemptive problem with the related objective function

∑
j wjMj , where Mj is the

mean busy time of job j, i.e., the average point in time at which the machine is busy
processing j. Observe that, although 1| rj , pmtn |∑wjCj and 1| rj , pmtn |∑wjMj

are equivalent optimization problems in the nonpreemptive case (since Cj = Mj+
pj

2 ),
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they are not equivalent when considering preemptive schedules.

The approximation techniques presented in this paper have also proved useful
for more general scheduling problems. For the problem with precedence constraints
1| rj , prec |

∑
wjCj , sequencing jobs in order of random α-points based on an opti-

mal solution to a time-indexed LP relaxation leads to a 2.7183-approximation algo-
rithm [27]. A 2-approximation algorithm for identical parallel machine scheduling
P | rj |

∑
wjCj is given in [28]; the result is based on a time-indexed LP relaxation, an

optimal solution of which can be interpreted as a preemptive schedule on a fast single
machine; jobs are then assigned randomly to the machines and sequenced in order
of random αj-points of this preemptive schedule. For the corresponding scheduling
problem on unrelated parallel machines R | rj |

∑
wjCj , a performance guarantee of 2

can be obtained by randomized rounding based on a convex quadratic programming
relaxation [33], which is inspired by time-indexed LP relaxations like the one discussed
herein [28]. We refer to [32] for a detailed discussion of the use of α-points for machine
scheduling problems.

Significant progress has recently been made in understanding the approximability
of scheduling problems with the average weighted completion time objective. Skutella
and Woeginger [34] developed a polynomial-time approximation scheme for scheduling
identical parallel machines in the absence of release dates, P | |∑wjCj . Subsequently,
several research groups have found polynomial-time approximation schemes for prob-
lems with release dates such as P | rj |

∑
wjCj and Rm | rj |

∑
wjCj ; see the resulting

joint conference proceedings publication [1] for details.

We now briefly discuss some practical consequences of our work. Savelsbergh,
Uma, and Wein [25] and Uma and Wein [38] performed experimental studies to
evaluate, in part, the quality of the LP relaxation and approximation algorithms
studied herein for 1| rj |

∑
wjCj and related scheduling problems. The first authors

report that, except for instances that were deliberately constructed to be hard for
this approach, the present formulation and algorithms “deliver surprisingly strong
experimental performance.” They also note that “the ideas that led to improved
approximation algorithms also lead to heuristics that are quite effective in empirical
experiments; furthermore [. . . ] they can be extended to give improved heuristics for
more complex problems that arise in practice.” While the authors of the follow-up
study [38] report that when coupled with local improvement the LP-based heuristics
generally produce the best solutions, they also find that a simple heuristic often out-
performs the LP-based heuristics. Whenever the machine becomes idle, this heuristic
starts nonpreemptively processing an available job of largest wj/pj ratio. By an-
alyzing the differences between the LP schedule and this heuristic schedule, Chou,
Queyranne, and Simchi-Levi [7] have subsequently shown the asymptotic optimality
of this on-line heuristic for classes of instances with bounded job weights and bounded
processing times.

The contents of this paper are as follows. Section 2 is concerned with the LP
relaxations and their relationship. We begin with a presentation and discussion of the
LP schedule. In section 2.1 we then review a time-indexed formulation introduced by
Dyer and Wolsey [9] and show that it is solved to optimality by the LP schedule. In
section 2.2 we present the mean busy time relaxation (or completion time relaxation)
and prove, among other properties, its equivalence to the time-indexed formulation.
Section 2.3 explores some polyhedral consequences, in particular the fact that the
mean busy time relaxation is (up to scaling by the job processing times) a super-
modular linear program and that the “job-based” method for constructing the LP



SINGLE MACHINE SCHEDULING WITH RELEASE DATES 169

�
�
�

�
�
�

�
�
�

�
�
�

4 3 4
2

1
2

4

r4 r3 r2 r1

Fig. 1. An LP schedule for a 4-job instance given by r1 = 11, p1 = 1, r2 = 7, p2 = 5,
r3 = 2, p3 = 3, r4 = 0, p4 = 5. Higher rectangles represent jobs with larger weight to
processing time ratio. Time is shown on the horizontal axis.

schedule is equivalent to the corresponding greedy algorithm. Section 3 then deals
with approximation algorithms derived from these LP relaxations. In section 3.1 we
present a method for constructing (αj)-schedules, which allows us to analyze and
bound the job completion times in the resulting schedules. In section 3.2 we derive
simple bounds for α-schedules and (αj)-schedules, using a deterministic common α or
uniformly distributed random αj ’s. Using appropriate probability distributions, we
improve the approximation bound to the value of 1.7451 for α-schedules in section 3.3
and to the value of 1.6853 for (αj)-schedules in section 3.4. We also indicate how
these algorithms can be derandomized in O(n2) time for constructing deterministic
schedules with these performance guarantees. In section 3.5 we show that our ran-
domized approximations also apply in an on-line setting, and in section 3.6 we present
a class of “bad” instances for which the ratio of the optimal objective function value
and our LP bound is arbitrarily close to e

e−1 ≈ 1.5819. This constant defines a lower
bound on the approximation results that can be obtained by the present approach.
We conclude in section 4 by discussing some related problems and open questions.

2. Relaxations. In this section, we present two linear programming relaxations
for 1| rj |

∑
wjCj . We show their equivalence and discuss some polyhedral conse-

quences.
For both relaxations, the following preemptive schedule plays a crucial role: at any

point in time, schedule (preemptively) the available job with the highest wj/pj ratio.
We assume (throughout the paper) that the jobs are indexed in order of nonincreasing
ratios w1

p1
≥ w2

p2
≥ · · · ≥ wn

pn
, and ties are broken according to this order. Therefore,

whenever a job is released, the job being processed (if any) is preempted if the released
job has a smaller index. We refer to this preemptive schedule as the LP schedule. See
Figure 1 for an example of an LP schedule.

Notice that this LP schedule does not in general minimize
∑

j wjCj over all
preemptive schedules. This should not be surprising since the preemptive problem
1| rj , pmtn |∑wjCj is (strongly) NP-hard [16]. It can be shown, however, that the
total weighted completion time of the LP schedule is always within a factor of 2 of
the optimal value for 1| rj , pmtn |∑wjCj , and this bound is tight; see [29].

The LP schedule can be constructed in O(n log n) time. To see this, we now
describe an implementation, which may be seen as “dynamic” (event-oriented) or,
using the terminology of [19], “machine-based,” and can even be executed on-line
while the jobs dynamically arrive over time. The algorithm keeps a priority queue [8]
of the currently available jobs that have not yet been completely processed, with the
ratio wj/pj as the key and with another field indicating the remaining processing time.
A scheduling decision is made at only two types of events: when a job is released and
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when a job completes its processing. In the former case, the released job is added to
the priority queue. In the latter case, the completed job is removed from the priority
queue. Then, in either case, the top element of the priority queue (the one with the
highest wj/pj ratio) is processed; if the queue is empty, then move on to the next
job release; if there is none, then all jobs have been processed and the LP schedule is
complete. This implementation results in a total of O(n) priority queue operations.
Since each such operation can be implemented in O(logn) time [8], the algorithm runs
in O(n log n) time.

The LP schedule can also be defined in a somewhat different manner, which may
be seen as “static” or “job-based” [19]. Consider the jobs one at a time in order
of nonincreasing wj/pj . Schedule each job j as early as possible starting at rj and
preempting it whenever the machine is busy processing another job (that thus came
earlier in the wj/pj ordering). This point of view leads to an alternate O(n log n)
construction of the LP schedule; see [10].

2.1. Time-indexed relaxation. Dyer and Wolsey [9] investigate several types
of relaxations of 1| rj |

∑
wjCj , the strongest ones being time-indexed. We consider

the weaker of their two time-indexed formulations, which they call formulation (D).
It uses two types of variables: yjτ = 1 if job j is being processed during time in-
terval [τ, τ + 1), and zero otherwise; and tj represents the start time of job j. For
simplicity, we add pj to tj and replace the resulting expression by Cj ; this gives an
equivalent relaxation.

ZD = min
∑
j∈N

wjCj

subject to

(D)
∑

j:rj≤τ

yjτ ≤ 1, τ = 0, 1, . . . , T − 1,

T−1∑
τ=rj

yjτ = pj , j ∈ N,

Cj =
1

2
pj +

1

pj

T−1∑
τ=rj

(
τ +

1

2

)
yjτ , j ∈ N,(2.1)

0 ≤ yjτ , j ∈ N, τ = rj , . . . , T − 1,

where T is an upper bound on the makespan of an optimal schedule. (For example,
T = maxj∈N rj+

∑
j∈N pj .) We refer to this relaxation as the preemptive time-indexed

relaxation. The expression for Cj given in (2.1) corresponds to the correct value of
the completion time if job j is not preempted; an interpretation in terms of mean
busy times is given in the next section for the case of preemptions. Observe that
the number of variables of this formulation is pseudopolynomial. If we eliminate Cj

from the relaxation by using (2.1), we obtain a transportation problem [9] and, as a
result, yjτ can be assumed to be integral.

Lemma 2.1. There exists an optimal solution to (D) for which yjτ ∈ {0, 1} for
all j and τ .

As indicated in [9], (D) can be solved in O(n log n) time. Actually, one can derive
a feasible solution to (D) from the LP schedule by letting yLPjτ be equal to 1 if job j
is being processed in [τ, τ + 1), and 0 otherwise.
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Theorem 2.2. The solution yLP derived from the LP schedule is an optimal
solution to (D).

Proof. The proof is based on an interchange argument. Consider any optimal 0/1-
solution y∗ to (D). If there exist j < k and σ > τ ≥ rj such that y∗jσ = y∗kτ = 1,
then by replacing y∗jσ and y∗kτ by 0, and y∗jτ and y∗kσ by 1, we obtain another feasible

solution with an increase in the objective function value of (σ − τ)(wk

pk
− wj

pj
) ≤ 0.

The resulting solution must therefore also be optimal. By repeating this interchange
argument, we derive that there exists an optimal solution y∗ such that there do not
exist j < k and σ > τ ≥ rj such that y∗jσ = y∗kτ = 1. This implies that the solution y∗

must correspond to the LP schedule.
In particular, despite the pseudopolynomial number of variables in the LP Re-

laxation (D) an optimal solution can be obtained efficiently. We will make use of
this fact as well as of the special structure of the LP schedule in the design and
analysis of the approximation algorithms; see section 3. We note again that in spite
of its nice properties the preemptive time-indexed LP Relaxation (D) solves neither
1| rj |

∑
wjCj nor 1| rj , pmtn |∑wjCj . In the former case, the processing of a job in

the LP solution may fail to be consecutive; in the latter case (2.1) does not necessarily
define the completion time of a job in the preemptive LP schedule, as will be shown
in the next lemma.

2.2. Mean busy time relaxation. Given any preemptive schedule, let Ij be
the indicator function of the processing of job j at time t; i.e., Ij(t) is 1 if the machine
is processing j at time t, and 0 otherwise. To avoid pathological situations, we require
that, in any preemptive schedule, when the machine starts processing a job, it does
so for a positive amount of time. Given any preemptive schedule, we define the mean
busy time Mj of job j to be the average time at which the machine is processing j,
that is,

Mj :=
1

pj

∫ T

rj

Ij(t) t dt.

For instance, in the example given in Figure 1, which will be used throughout this
paper, the mean busy time of job 4 is 5.5.

We first establish some important properties of Mj in the next two lemmas.
Lemma 2.3. For any preemptive schedule, let Cj and Mj denote the completion

and mean busy time, respectively, of job j. Then for any job j, we haveMj+
1
2pj ≤ Cj,

with equality if and only if job j is not preempted.
Proof. If job j is processed without preemption, then Ij(t) = 1 if Cj − pj ≤ t <

Cj , and 0 otherwise; therefore, Mj +
1
2pj = Cj . Otherwise, job j is not processed

during some interval(s) of total length L > 0 between times Cj − pj and Cj . Since∫ T

rj
Ij(t) dt = pj , job j must be processed during some time interval(s) of the same

total length L before Cj − pj . Therefore,

Mj =
1

pj

∫ Cj

rj

Ij(t) t dt <
1

pj

∫ Cj

Cj−pj

t dt = Cj − 1

2
pj

and the proof is complete.
Let S ⊆ N denote a set of jobs and define

p(S) :=
∑
j∈S

pj and rmin(S) := min
j∈S

rj .
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Let IS(t) :=
∑

j∈S Ij(t). Since, by the machine capacity constraint, IS(t) ∈ {0, 1} for
all t, we may view IS as the indicator function for job set S. We can thus define the

mean busy time of set S as MS := 1
p(S)

∫ T

0
IS(t) t dt. Note that we have

p(S)MS =

∫ T

0

∑
j∈S

Ij(t)

 t dt =
∑
j∈S

∫ T

0

Ij(t) t dt =
∑
j∈S

pjMj .(2.2)

So, unlike its start and completion time, the mean busy time of a job set is a simple
weighted average of the mean busy times of its elements. One consequence of this
observation is the validity of the shifted parallel inequalities (2.3) (see, e.g., [10, 23, 24])
below.

Lemma 2.4. For any set S of jobs and any preemptive schedule with mean busy
time vector M , we have∑

j∈S
pjMj ≥ p(S)

(
rmin(S) +

1

2
p(S)

)
,(2.3)

and equality holds if and only if all jobs in S are scheduled without interruption
from rmin(S) to rmin(S) + p(S).

Proof. Note that
∑

j∈S pjMj = p(S)MS =
∫ T

rmin(S)
IS(t) t dt, that IS(t) = 0

for t < rmin(S) and IS(t) ≤ 1 for t ≥ rmin(S), and that
∫ T

rmin(S)
IS(t)dt = p(S). Under

these constraints, MS is minimized when IS(t) = 1 for rmin(S) ≤ t < rmin(S) + p(S),
and 0 otherwise. Therefore, MS is uniquely minimized among all feasible preemptive
schedules when all jobs in S are continuously processed from rmin(S) to rmin(S)+p(S).
This minimal value is p(S)(rmin(S) +

1
2p(S)) and is a lower bound for

∑
j∈S pjMj in

any feasible preemptive schedule.
As a result of Lemma 2.4, the following linear program provides a lower bound

on the optimal value of 1| rj , pmtn |∑wjCj , and hence on that of 1| rj |
∑

wjCj .

ZR = min
∑
j∈N

wj

(
Mj +

1

2
pj

)
(R) subject to ∑

j∈S
pjMj ≥ p(S)

(
rmin(S) +

1

2
p(S)

)
, S ⊆ N.

The proof of the following theorem and later developments use the notion of
canonical decompositions [10]. For a set S of jobs, consider the schedule which pro-
cesses jobs in S as early as possible, say, in order of their release dates. This schedule
induces a partition of S into {S1, . . . , Sk} such that the machine is busy processing
jobs in S exactly in the disjoint intervals [rmin(S�), rmin(S�) + p(S�)] for  = 1, . . . , k.
We refer to this partition as the canonical decomposition of S. A set is canonical if it
is identical to its canonical decomposition, i.e., if its canonical decomposition is {S}.
Thus a set S is canonical if and only if it is feasible to schedule all its jobs in the time
interval [rmin(S), rmin(S)+ p(S)). Note that the set N = {1, 2, 3, 4} in our example is
canonical, whereas the subset {1, 2, 3} is not; it has the decomposition {{3}, {1, 2}}.
Let

h(S) :=

k∑
�=1

p(S�)

(
rmin(S�) +

1

2
p(S�)

)
,(2.4)
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where {S1, . . . , Sk} is the canonical decomposition of S ⊆ N . Then Lemma 2.4

implies that
∑

j∈S pjMj =
∑k

�=1

∑
j∈S�

pjMj ≥ h(S) is a valid inequality for the
mean busy time vector of any preemptive schedule. In other words, Relaxation (R)
may be written as

min

∑
j∈N

wj

(
Mj +

1

2
pj

)
:
∑
j∈S

pjMj ≥ h(S) for all S ⊆ N

 .

Theorem 2.5. Let MLP
j be the mean busy time of job j in the LP schedule.

Then MLP is an optimal solution to (R).
Proof. By Lemma 2.4, MLP is a feasible solution for (R).
To prove optimality of MLP , we construct a lower bound on the optimal value

of (R) and show that it is equal to the objective function value of MLP . Recall that
the jobs are indexed in nonincreasing order of the wj/pj ratios; let [i] := {1, 2, . . . , i},
and let Si

1, . . . , S
i
k(i) denote the canonical decomposition of [i]. Observe that for any

vector M = (Mj)j∈N we have

∑
j∈N

wjMj =

n∑
i=1

(
wi

pi
− wi+1

pi+1

)∑
j∈[i]

pjMj =

n∑
i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
�=1

∑
j∈Si

�

pjMj ,(2.5)

where we let wn+1/pn+1 := 0. We have therefore expressed
∑

j∈N wjMj as a non-
negative combination of expressions

∑
j∈Si

�
pjMj over canonical sets. By construction

of the LP schedule, the jobs in any of these canonical sets Si
� are continuously pro-

cessed from rmin(S
i
�) to rmin(S

i
�) + p(Si

�) in the LP schedule. Thus, for any feasible
solution M to (R) and any such canonical set Si

� we have∑
j∈Si

�

pjMj ≥ h(Si
�) = p(Si

�)

(
rmin(S

i
�) +

1

2
p(Si

�)

)
=
∑
j∈Si

�

pjM
LP
j ,

where the last equation follows from Lemma 2.4. Combining this with (2.5), we derive
a lower bound on

∑
j wjMj for any feasible solution M to (R), and this lower bound

is attained by the LP schedule.
From Theorems 2.2 and 2.5, we derive that the values of the two Relaxations (D)

and (R) are equal.
Corollary 2.6. The LP Relaxations (D) and (R) of 1 | rj |

∑
wjCj yield the

same optimal objective function value, i.e., ZD = ZR, for any weights w ≥ 0. This
value can be computed in O(n log n) time.

Proof. For the equivalence of the two lower bounds, note that the mean busy
time MLP

j of any job j in the LP schedule can be expressed as

MLP
j =

1

pj

T−1∑
τ=rj

yLPjτ

(
τ +

1

2

)
,(2.6)

where yLP is the solution to (D) derived from the LP schedule. The result then follows
directly from Theorems 2.2 and 2.5. We have shown earlier that the LP schedule can
be constructed in O(n log n) time.

Although the LP schedule does not necessarily minimize the objective func-
tion

∑
j wjCj over the preemptive schedules, Theorem 2.5 implies that it minimizes



174 GOEMANS, QUEYRANNE, SCHULZ, SKUTELLA, AND WANG∑
j wjMj over the preemptive schedules. In addition, by Lemma 2.3, the LP schedule

is also optimal for both preemptive and nonpreemptive problems 1| rj , pmtn |∑wjCj ,
and 1| rj |

∑
wjCj whenever it does not preempt any job. For example, this is the case

if all processing times are equal to 1 or if all jobs are released at the same date. Thus,
the LP schedule provides an optimal solution to problems 1| rj , pj = 1 |∑wjCj and
to 1| |∑wjCj . This was already known. In the latter case it coincides with Smith’s
ratio rule [35]; see Queyranne and Schulz [24] for the former case.

2.3. Polyhedral consequences. We now consider some polyhedral consequen-
ces of the preceding results. Let P∞

D be the feasible region defined by the constraints
of Relaxation (D) when T = ∞, i.e.,

P∞
D :=

 y ≥ 0 :
∑

j:rj≤τ

yjτ ≤ 1 for τ ∈ N;
∑
τ≥rj

yjτ = pj for all j ∈ N

 .

In addition, we denote by PR := {M ∈ R
N :

∑
j∈S pjMj ≥ h(S) for all S ⊆ N} the

polyhedron defined by the constraints of Relaxation (R).
Theorem 2.7.
(i) Polyhedron PR is the convex hull of the mean busy time vectors M of all

preemptive schedules. Moreover, every vertex of PR is the mean busy time
vector of an LP schedule.

(ii) Polyhedron PR is also the image of P
∞
D in the space of the M -variables under

the linear mapping M : y → M(y) ∈ R
N defined by

M(y)j =
1

pj

∑
τ≥rj

yjτ

(
τ +

1

2

)
for all j ∈ N.

Proof. (i) Lemma 2.4 implies that the convex hull of the mean busy time vectorsM
of all feasible preemptive schedules is contained in PR. To show the reverse inclusion,
it suffices to show that (a) every extreme point of PR corresponds to a preemptive
schedule; and (b) every extreme ray of PR is a direction of recession for the convex
hull of mean busy time vectors. Property (a) and the second part of statement (i)
follow from Theorem 2.5 and the fact that every extreme point of PR is the unique
minimizer of

∑
j∈N wjMj for some w ≥ 0. For (b), note that the extreme rays of PR

are the n unit vectors of R
N . An immediate extension to preemptive schedules and

mean busy times of results in Balas [3] implies that these unit vectors of R
N are

directions of recession for the convex hull of mean busy time vectors. This completes
the proof of (i).

(ii) We first show that the image M(P∞
D ) of P∞

D is contained in PR. For this,
let y be a vector in P∞

D and S ⊆ N with canonical decomposition {S1, . . . , Sk}. By
definition of M(y)j , we have∑

j∈S
pjM(y)j =

∑
j∈S

∑
τ≥rj

yjτ

(
τ +

1

2

)

≥
k∑

�=1

rmin(S�)+p(S�)−1∑
τ=rmin(S�)

(
τ +

1

2

)

=
k∑

�=1

p(S�)

(
rmin(S�) +

1

2
p(S�)

)
= h(S).
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The inequality follows from the constraints defining P∞
D and the interchange argument

which we already used in the proof of Theorem 2.2. This shows M(y) ∈ PR and thus
M(P∞

D ) ⊆ PR.
To show the reverse inclusion, we use the observation from the proof of part (i)

that PR can be represented as the sum of the convex hull of the mean busy time
vectors of all LP schedules and the nonnegative orthant. Since, by (2.6), the mean
busy time vector MLP of any LP schedule is the projection of the corresponding 0/1-
vector yLP , it remains to show that every unit vector ej is a direction of recession
for M(P∞

D ). For this, fix an LP schedule and let yLP and MLP = M(yLP ) denote the
associated 0/1 y-vector and mean busy time vector, respectively. For any job j ∈ N
and any real λ > 0, we need to show that MLP + λ ej ∈ M(P∞

D ).
Let τmax := argmax{yLPkτ = 1 : k ∈ N}. Choose θ such that yLPjθ = 1, choose an

integer µ > max{λ pj , τmax − θ}, and define y′ by y′jθ = 0, y′j,θ+µ = 1, and y′kτ = yLPkτ
otherwise. In the associated preemptive schedule, the processing of job j that was done
in interval [θ, θ+1) is now postponed, by µ time units, until interval [θ+µ, θ+µ+1).
Therefore, its mean busy time vector M ′ = M(y′) satisfies M ′

j = MLP
j + µ/pj and

M ′
k = MLP

k for all k �= j. Let λ′ := µ/pj ≥ λ, so M ′ = MLP + λ′ej . Then the vector
MLP + λ ej is a convex combination of MLP = M(yLP ) and M ′ = M(y′). Let y
be the corresponding convex combination of yLP and y′. Since P∞

D is convex, then
y ∈ P∞

D and, since the mapping M is linear, MLP + λ ej = M(y) ∈ M(P∞
D ).

In view of earlier results for single machine scheduling with identical release
dates [22], as well as for parallel machine scheduling with unit processing times and
integer release dates [24], it is interesting to note that the feasible set PR of the mean
busy time relaxation is, up to scaling by the job processing times, a supermodular
polyhedron.

Proposition 2.8. The set function h defined in (2.4) is supermodular.
Proof. Consider any two elements j, k ∈ N and any subset S ⊆ N \ {j, k}. We

may construct an LP schedule minimizing
∑

i∈S∪{k} piMi using the job-based method

by considering first the jobs in S and then job k. (Note that considering the jobs in any
sequence leads to a schedule minimizing

∑
i piMi because jobs are weighted by their

processing times in this objective function.) By Definition (2.4) the resulting mean
busy times MLP satisfy

∑
i∈S piM

LP
i = h(S) and

∑
i∈S∪{k} piM

LP
i = h(S ∪ {k}).

Note that job k is scheduled, no earlier than its release date, in the first pk units of
idle time left after the insertion of all jobs in S. Thus MLP

k is the mean of all these pk
time units. Similarly, we may construct an LP schedule, whose mean busy time vector

will be denoted by M̃LP , minimizing
∑

i∈S∪{j, k} piMi by considering first the jobs in

S, so M̃LP
i = MLP

i for all i ∈ S; then job j, so
∑

i∈S∪{j} piM̃
LP
i = h(S ∪ {j}); and

then job k, so
∑

i∈S∪{j, k} piM̃
LP
i = h(S ∪{j, k}). Since job j has been inserted after

subset S was scheduled, job k cannot use any idle time interval that is earlier than
those it used in the former LP schedule MLP—and some of the previously available
idle time may now be occupied by job j, causing a delay in the mean busy time of
job k; thus we have M̃LP

k ≥ MLP
k and therefore

h(S ∪ {j, k})− h(S ∪ {j}) = pkM̃
LP
k ≥ pkM

LP
k = h(S ∪ {k})− h(S).

This suffices to establish that h is supermodular.
An alternate proof of the supermodularity of h can be derived, as in [10], from the

fact, observed by Dyer and Wolsey and already mentioned above, that Relaxation (D)
becomes a transportation problem after elimination of the Cj ’s. Indeed, from an
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interpretation of Nemhauser, Wolsey, and Fisher [20] of a result of Shapley [31],
it then follows that the value of this transportation problem as a function of S is
supermodular. One of the consequences of Proposition 2.8 is that the job-based
method to construct an LP schedule is just a manifestation of the greedy algorithm
for minimizing

∑
j∈N wjMj over the supermodular polyhedron PR.

We finally note that the separation problem for the polyhedron PR can be solved
combinatorially. One can separate over the family of inequalities

∑
j∈S pjMj ≥

p(S)(rmin(S) + p(S)) by trying all possible values for rmin(S) (of which there are at
most n) and then applying a O(n log n) separation routine of Queyranne [22] for the
problem without release dates. The overall separation routine can be implemented in
O(n2) time by observing that the bottleneck step in Queyranne’s algorithm—sorting
the mean busy times of the jobs—needs to be done only once for the whole job set.

3. Provably good schedules and LP relaxations. In this section, we derive
approximation algorithms for 1| rj |

∑
wjCj that are based on converting the preemp-

tive LP schedule into a feasible nonpreemptive schedule whose value can be bounded
in terms of the optimal LP value ZD = ZR. This yields results on the quality of both
the computed schedule and the LP relaxations under consideration since the value of
the computed schedule is an upper bound and the optimal LP value is a lower bound
on the value of an optimal schedule.

In section 3.6, we describe a family of instances for which the ratio between the
optimal value of the 1| rj |

∑
wjCj problem and the lower bounds ZR and ZD is

arbitrarily close to e
e−1 > 1.5819. This lower bound of e

e−1 sets a target for the design
of approximation algorithms based on these LP relaxations.

In order to convert the preemptive LP schedule into a nonpreemptive schedule we
make use of so-called α-points of jobs. For 0 < α ≤ 1 the α-point tj(α) of job j is the
first point in time when an α-fraction of job j has been completed in the LP schedule,
i.e., when j has been processed for αpj time units. In particular, tj(1) is equal to the
completion time and we define tj(0

+) to be the start time of job j. Notice that, by
definition, the mean busy time MLP

j of job j in the LP schedule is the average over
all its α-points

MLP
j =

∫ 1

0

tj(α) dα.(3.1)

We will also use the following notation: For a fixed job j and 0 < α ≤ 1 we denote
the fraction of job k that is completed in the LP schedule by time tj(α) by ηk(α); in
particular, ηj(α) = α. The amount of idle time that occurs between time 0 and the
start of job j in the LP schedule is denoted by τidle. Note that ηk and τidle implicitly
depend on the fixed job j. By construction, there is no idle time between the start
and completion of job j in the LP schedule; therefore we can express j’s α-point as

tj(α) = τidle +
∑
k∈N

ηk(α)pk.(3.2)

For a given 0 < α ≤ 1, we define the α-schedule as the schedule in which jobs
are processed nonpreemptively as early as possible and in the order of nondecreasing
α-points. We denote the completion time of job j in this schedule by Cα

j . The idea
of scheduling nonpreemptively in the order of α-points in a preemptive schedule was
introduced by Phillips, Stein, and Wein [21] and used in many of the subsequent
results in the area.
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Fig. 2. A nonpreemptive α-schedule (for α = 1/2) and an (αj)-schedule shown above
and below the LP schedule, respectively. Notice that there is no common α value that would
lead to the latter schedule.

This idea can be further extended to individual, i.e., job-dependent αj-points
tj(αj), for j ∈ N and 0 < αj ≤ 1. We denote the vector consisting of all αj ’s by
ααα := (αj) := (α1, . . . , αn). Then, the (αj)-schedule is constructed by processing the
jobs as early as possible and in nondecreasing order of their αj-points; the completion
time of job j in the (αj)-schedule is denoted by C ααα

j . Figure 2 compares an α-schedule
to an (αj)-schedule both derived from the LP schedule in Figure 1.

In what follows we present several results on the quality of α-schedules and (αj)-
schedules. These results also imply bounds on the quality of the LP relaxations
discussed in the previous section. The main result is the construction of a random
(αj)-schedule whose expected value is at most a factor 1.6853 of the optimal LP value
ZD = ZR. Therefore, the LP Relaxations (D) and (R) deliver a lower bound which is
at least 0.5933 (≈ 1.6853−1) times the optimal value. The corresponding randomized
algorithm can be implemented on-line; it has competitive ratio 1.6853 and running
time O(n log n); it can also be derandomized to run off-line in O(n2) time. We also
investigate the case of a single common α and show that the best α-schedule is always
within a factor of 1.7451 of the optimum.

3.1. Bounding the completion times in (αj)-schedules. To analyze the
completion times of jobs in (αj)-schedules, we consider nonpreemptive schedules of
similar structure that are, however, constructed by a slightly different conversion
routine which we call (αj)-Conversion.

Consider the jobs j ∈ N in order of nonincreasing αj-points tj(αj)
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Fig. 3. Illustration of the individual iterations of (αj)-Conversion.

and iteratively change the preemptive LP schedule to a nonpreemp-
tive schedule by applying the following steps:
(i) remove the αj pj units of job j that are processed before tj(αj)

and leave the machine idle during the corresponding time inter-
vals; we say that this idle time is caused by job j;

(ii) delay the whole processing that is done later than tj(αj) by pj ;
(iii) remove the remaining (1−αj)-fraction of job j from the machine

and shrink the corresponding time intervals; shrinking a time
interval means to discard the interval and move earlier, by the
corresponding amount, any processing that occurs later;

(iv) process job j in the released time interval [tj(αj), tj(αj) + pj).

Figure 3 contains an example illustrating the action of (αj)-Conversion starting
from the LP schedule of Figure 1. Observe that in the resulting schedule jobs are
processed in nondecreasing order of αj-points, and no job j is started before time
tj(αj) ≥ rj . The latter property will be useful in the analysis of on-line (αj)-schedules.
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Lemma 3.1. The completion time of job j in the schedule constructed by (αj)-
Conversion is equal to

tj(αj) +
∑

k
αk≤ηk(αj)

(
1 + αk − ηk(αj)

)
pk.

Proof. Consider the schedule constructed by (αj)-Conversion. The completion
time of job j is equal to the idle time before its start plus the sum of processing times
of jobs that start no later than j. Since the jobs are processed in nondecreasing order
of their αj-points, the amount of processing before the completion of job j is∑

k
αk≤ηk(αj)

pk.(3.3)

The idle time before the start of job j can be written as the sum of the idle time τidle
that already existed in the LP schedule before j’s start plus the idle time before the
start of job j that is caused in step (i) of (αj)-Conversion; notice that step (iii) does
not create any additional idle time since we shrink the affected time intervals. Each
job k that is started no later than j, i.e., such that ηk(αj) ≥ αk, contributes αk pk
units of idle time; all other jobs k only contribute ηk(αj) pk units of idle time. As a
result, the total idle time before the start of job j can be written as

τidle +
∑

k
αk≤ηk(αj)

αk pk +
∑

k
αk>ηk(αj)

ηk(αj) pk.(3.4)

The completion time of job j in the schedule constructed by (αj)-Conversion is
equal to the sum of the expressions in (3.3) and (3.4); the result then follows from
(3.2).

It follows from Lemma 3.1 that the completion time Cj of each job j in the
nonpreemptive schedule constructed by (αj)-Conversion satisfies Cj ≥ tj(αj)+pj ≥
rj+pj ; hence is a feasible schedule. Since the (αj)-schedule processes the jobs as early
as possible and in the same order as the (αj)-Conversion schedule, we obtain the
following corollary.

Corollary 3.2. The completion time of job j in an (αj)-schedule can be bounded
by

C ααα
j ≤ tj(αj) +

∑
k

αk≤ηk(αj)

(
1 + αk − ηk(αj)

)
pk.

3.2. Bounds for α-schedules and (αj)-schedules. We start with a result on
the quality of the α-schedule for a fixed common value of α.

Theorem 3.3. For fixed α, (i) the value of the α-schedule is within a factor
max

{
1 + 1

α , 1 + 2α
}
of the optimal LP value; in particular, for α = 1/

√
2 the bound

is 1+
√
2. Simultaneously, (ii) the length of the α-schedule is within a factor of 1+α

of the optimal makespan.
Proof. While the proof of (ii) is an immediate consequence of (3.2) and Corol-

lary 3.2, it follows from the proof of Theorem 2.5 that for (i) it is sufficient to prove
that, for any canonical set S, we have

∑
j∈S

pjC
α
j ≤ max

(
1 +

1

α
, 1 + 2α

)p(S)

(
rmin(S) +

1

2
p(S)

)
+

1

2

∑
j∈S

p2
j

 .(3.5)
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Indeed, using (2.5) and Lemma 2.4 it would then follow that

∑
j∈N

wjC
α
j =

n∑
i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
�=1

∑
j∈Si

�

pjC
α
j

≤ max

(
1 +

1

α
, 1 + 2α

) n∑
i=1

(
wi

pi
− wi+1

pi+1

) k(i)∑
�=1

∑
j∈Si

�

pj

(
MLP

j +
pj
2

)
= max

(
1 +

1

α
, 1 + 2α

)∑
j∈N

wj

(
MLP

j +
pj
2

)
= max

(
1 +

1

α
, 1 + 2α

)
ZR,

thus proving the result.

Now consider any canonical set S and let us assume that, after renumbering
the jobs, S = {1, 2, . . . ,  } and t1(α) < t2(α) < · · · < t�(α) (so the ordering is not
necessarily anymore in nonincreasing order of wj/pj). Now fix any job j ∈ S. From
Corollary 3.2, we derive that

Cα
j ≤ tj(α) +

∑
k:α≤ηk

(1 + α− ηk) pk,(3.6)

where ηk := ηk(α) represents the fraction of job k processed in the LP schedule
before tj(α). Let R denote the set of jobs k such that tk(α) < rmin(S) (and thus
α ≤ ηk). Since S is a canonical set, the jobs in S are processed continuously in
the LP schedule between rmin(S) and rmin(S) + p(S), and therefore every job k with
α ≤ ηk is either in S or in R. Observe that

∑
k∈R αpk ≤ rmin(S) implies that

p(R) ≤ 1
α rmin(S). We can thus simplify (3.6) with

Cα
j ≤ tj(α) +

1

α
rmin(S) +

j∑
k=1

(1 + α− ηk) pk.(3.7)

Since the jobs in S are scheduled with no gaps in [rmin(S), rmin(S) + p(S)], we have
that

tj(α) = rmin(S) +
∑
k∈S

ηkpk ≤ rmin(S) +

j∑
k=1

ηkpk +

�∑
k=j+1

αpk.(3.8)

Combining (3.7) and (3.8), we derive that

Cα
j ≤

(
1 +

1

α

)
rmin(S) + αp(S) +

j∑
k=1

pk.

Multiplying by pj and summing over S, we get
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∑
j∈S

pjC
α
j ≤

(
1 +

1

α

)
rmin(S)p(S) + αp(S)2 +

∑
j∈S

j∑
k=1

pjpk

=

(
1 +

1

α

)
rmin(S)p(S) +

(
1

2
+ α

)
p(S)2 +

1

2

∑
j∈S

p2
j ,

which implies (3.5).

In what follows we will compare the completion time C ααα
j of every job j with its

“completion time” MLP
j + 1

2pj in the LP schedule. However, for any fixed common
value of α, there exist instances which show that this type of job-by-job analysis can
give a bound no better than 1 +

√
2 > 2.4142. One can also show that, for any

given value of α, there exist instances for which the objective function value of the
α-schedule can be as bad as twice the LP lower bound.

In view of these results, it is advantageous to use several values of α, as it appears
that no instance can be simultaneously bad for all choices of α. In fact, α-points
develop their full power in combination with randomization, i.e., when a common α or
even job-dependent αj ’s are chosen randomly from (0, 1] according to an appropriate
density function. This is also motivated by (3.1) which relates the expected α-point
of a job under a uniform distribution of α to the LP variable MLP

j . For random
values αj , we analyze the expected value of the resulting (αj)-schedule and compare
it to the optimal LP value. Notice that a bound on the expected value proves the
existence of a vector (ᾱj) such that the corresponding (ᾱj)-schedule meets this bound.
Moreover, for our results we can always compute such an (ᾱj) in polynomial time by
derandomizing our algorithms with standard methods; see Propositions 3.8 and 3.13.

Although the currently best known bounds can be achieved only for (αj)-schedules
with job-dependent αj ’s, we investigate α-schedules with a single common α as well.
On the one hand, this helps to better understand the potential advantages of (αj)-
schedules; on the other hand, the randomized algorithm that relies on a single α
admits a natural derandomization. In fact, we can easily compute an α-schedule of
least objective function value over all α between 0 and 1; we refer to this schedule as
the best-α-schedule. In Proposition 3.8 below, we will show that there are at most
n different α-schedules. The best-α-schedule can be constructed in O(n2) time by
evaluating all these different schedules.

As a warm-up exercise for the kind of analysis we use, we start by proving a
bound of 2 on the expected worst-case performance ratio of uniformly generated (αj)-
schedules in the following theorem. This result will then be improved by using more
intricate probability distributions and by taking advantage of additional insights into
the structure of the LP schedule.

Theorem 3.4. Let the random variables αj be pairwise independently and uni-
formly drawn from (0, 1]. Then, the expected value of the resulting (αj)-schedule is
within a factor 2 of the optimal LP value ZD = ZR.

Proof. Remember that the optimal LP value is given by
∑

j wj(M
LP
j + 1

2pj). To

get the claimed result, we prove that EU [C
ααα
j ] ≤ 2(MLP

j + 1
2pj) for all jobs j ∈ N ,

where EU [F (ααα)] denotes the expectation of a function F of the random variable ααα
when the latter is uniformly distributed. The overall performance follows from this
job-by-job bound by linearity of expectations.

Consider an arbitrary, but fixed job j ∈ N . To analyze the expected completion
time of j, we first keep αj fixed and consider the conditional expectation EU [C

ααα
j |αj ].

Since the random variables αj and αk are independent for each k �= j, Corollary 3.2
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and (3.2) yield

EU [C
ααα
j |αj ] ≤ tj(αj) +

∑
k �=j

pk

∫ ηk(αj)

0

(
1 + αk − ηk(αj)

)
dαk + pj

= tj(αj) +
∑
k �=j

(
ηk(αj)− ηk(αj)

2

2

)
pk + pj

≤ tj(αj) +
∑
k �=j

ηk(αj)pk + pj ≤ 2

(
tj(αj) +

1

2
pj

)
.

To obtain the unconditional expectation EU [C
ααα
j ] we integrate over all possible choices

of αj

EU [C
ααα
j ] =

∫ 1

0

EU [C
ααα
j |αj ] dαj ≤ 2

(∫ 1

0

tj(αj) dαj +
1

2
pj

)
= 2

(
MLP

j +
1

2
pj

)
;

the last equation follows from (3.1).

We turn now to deriving improved results. We start with an analysis of the
structure of the LP schedule. Consider any job j and assume that, in the LP schedule,
j is preempted at time s and its processing resumes at time t > s. Then all jobs which
are processed between s and t have a smaller index; as a result, these jobs will be
completely processed between times s and t. Thus, in the LP schedule, between the
start time and the completion time of any job j, the machine is constantly busy,
alternating between the processing of portions of j and the complete processing of
groups of jobs with a smaller index. Conversely, any job preempted at the start
time tj(0

+) of job j will have to wait at least until job j is complete before its
processing can be resumed.

We capture this structure by partitioning, for a fixed job j, the set of jobs N \{j}
into two subsets N1 and N2: Let N2 denote the set of all jobs that are processed
between the start and completion of job j. All remaining jobs are put into subset N1.
Notice that the function ηk is constant for jobs k ∈ N1; to simplify notation we write
ηk := ηk(αj) for those jobs. For k ∈ N2, let 0 < µk < 1 denote the fraction of job j
that is processed before the start of job k; the function ηk is then given by

ηk(αj) =

{
0 if αj ≤ µk,

1 if αj > µk

for k ∈ N2.

We can now rewrite (3.2) as

tj(αj) = τidle +
∑
k∈N1

ηkpk +
∑
k∈N2
αj>µk

pk + αj pj = tj(0
+) +

∑
k∈N2
αj>µk

pk + αj pj .

(3.9)

Plugging (3.9) into (3.1) yields

MLP
j = tj(0

+) +
∑
k∈N2

(1− µk)pk +
1

2
pj ,(3.10)
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and Corollary 3.2 can be rewritten as

C ααα
j ≤ tj(0

+) +
∑
k∈N1
αk≤ηk

(1 + αk − ηk) pk +
∑
k∈N2
αj>µk

(1 + αk) pk + (1 + αj) pj ,

(3.11)

where, for k ∈ N2, we have used the fact that αk ≤ ηk(αj) is equivalent to αj > µk.
The expressions (3.9), (3.10), and (3.11) reflect the structural insights that we need
for proving stronger bounds for (αj)-schedules and α-schedules in what follows.

As mentioned above, the second ingredient for an improvement on the bound of 2
is a more sophisticated probability distribution of the random variables αj . In view
of the bound on C ααα

j given in (3.11), we have to cope with two contrary phenomena:
On the one hand, small values of αk keep the terms of the form (1 + αk − ηk) and
(1 + αk) on the right-hand side of (3.11) small; on the other hand, choosing larger
values decreases the number of terms in the first sum on the right-hand side of (3.11).
The balancing of these two effects contributes to reducing the bound on the expected
value of C ααα

j .

3.3. Improved bounds for α-schedules. In this subsection we prove the fol-
lowing theorem.

Theorem 3.5. Let γ ≈ 0.4675 be the unique solution to the equation

1− γ2

1 + γ
= γ + ln(1 + γ)

satisfying 0 < γ < 1. Define c := 1+γ
1+γ−e−γ < 1.7451 and δ := 1− γ2

1+γ ≈ 0.8511. If α
is chosen according to the density function

f(α) =

{
(c− 1)eα if α ≤ δ,

0 otherwise,

then the expected value of the resulting random α-schedule is bounded by c times the
optimal LP value ZD = ZR.

Before we prove Theorem 3.5 we state two properties of the density function f
that are crucial for the analysis of the corresponding random α-schedule.

Lemma 3.6. The function f given in Theorem 3.5 is a density function with the
following properties:

(i)
∫ η

0
f(α)(1 + α− η) dα ≤ (c− 1) η for all η ∈ [0, 1],

(ii)
∫ 1

µ
f(α)(1 + α) dα ≤ c (1− µ) for all µ ∈ [0, 1].

Property (i) is used to bound the delay of job j caused by jobs in N1, which
corresponds to the first summation on the right-hand side of (3.11). The second
summation reflects the delay of job j caused by jobs in N2 and will be bounded by
property (ii).

Proof of Lemma 3.6. A short computation shows that δ = ln c
c−1 . The function

f is a density function since∫ 1

0

f(α) dα = (c− 1)

∫ δ

0

eα dα = (c− 1)
( c

c− 1
− 1

)
= 1.
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In order to prove property (i), observe that for η ∈ [0, δ]∫ η

0

f(α)(1 + α− η) dα = (c− 1)

∫ η

0

eα(1 + α− η) dα = (c− 1)η.

For η ∈ (δ, 1] we therefore get∫ η

0

f(α)(1 + α− η) dα <

∫ δ

0

f(α)(1 + α− δ) dα = (c− 1)δ < (c− 1)η.

Property (ii) holds for µ ∈ (δ, 1] since the left-hand side is 0 in this case. For µ ∈ [0, δ]
we have∫ 1

µ

f(α)(1 + α) dα = (c− 1)

∫ δ

µ

eα(1 + α) dα = (c− 1)(eδδ − eµµ)

= c

(
1− γ2

1 + γ
− eµ−γµ

1 + γ

)
≤ c

(
1− γ2 + (1 + µ− γ)µ

1 + γ

)
= c

(
1− (γ − µ)2 + (1 + γ)µ

1 + γ

)
≤ c (1− µ).

This completes the proof of the lemma.
Proof of Theorem 3.5. In Lemma 3.6, both (i) for η = 1 and (ii) for µ = 0 yield

Ef [α] ≤ c − 1, where Ef [α] denotes the expected value of a random variable α that
is distributed according to the density function f given in Theorem 3.5. Thus, using
inequality (3.11) and Lemma 3.6 we derive that

Ef

[
Cα
j

] ≤ tj(0
+) + (c− 1)

∑
k∈N1

ηkpk + c
∑
k∈N2

(1− µk)pk + c pj

≤ c tj(0
+) + c

∑
k∈N2

(1− µk)pk + c pj = c

(
MLP

j +
1

2
pj

)
;

the last inequality follows from the definition of N1 and ηk, and the last equality
follows from (3.10).

Notice that any density function satisfying properties (i) and (ii) of Lemma 3.6
for some value c′ directly leads to the job-by-job bound Ef [C

α
j ] ≤ c′

(
MLP

j + 1
2pj

)
for

the corresponding random α-schedule. It is easy to see that the unit function satisfies
Lemma 3.6 with c′ = 2, which establishes the following variant of Theorem 3.4.

Corollary 3.7. Let the random variable α be uniformly drawn from (0, 1].
Then, the expected value of the resulting α-schedule is within a factor 2 of the optimal
LP value ZD = ZR.

The use of an exponential density function is motivated by the first property
in Lemma 3.6; notice that the function α → (c − 1)eα satisfies it with equality.
On the other hand, the exponential function is truncated in order to reduce the term∫ 1

µ
f(α)(1+α) dα in the second property. In fact, the truncated exponential function f

in Theorem 3.5 can be shown to minimize c′; it is therefore optimal for our analysis.
In addition, there exists a class of instances for which the ratio of the expected cost of
an α-schedule, determined using this density function, to the cost of the optimal LP
value is arbitrarily close to 1.745; this shows that the preceding analysis is essentially
tight in conjunction with truncated exponential functions.
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Theorem 3.5 implies that the best-α-schedule has a value of at most 1.7451ZR.
The following proposition shows that the randomized algorithm that yields the α-
schedule can be easily derandomized because the sample space is small.

Proposition 3.8. There are at most n different α-schedules; they can be com-
puted in O(n2) time.

Proof. As α goes from 0+ to 1, the α-schedule changes only whenever an α-point,
say for job j, reaches a time at which job j is preempted. Thus, the total number of
changes in the α-schedule is bounded from above by the total number of preemptions.
Since a preemption can occur in the LP schedule only whenever a job is released, the
total number of preemptions is at most n − 1, and the number of α-schedules is at
most n. Since each of these α-schedules can be computed in O(n) time, the result on
the running time follows.

3.4. Improved bounds for (αj)-schedules. In this subsection, we prove the
following theorem.

Theorem 3.9. Let γ ≈ 0.4835 be the unique solution to the equation

γ + ln(2− γ) = e−γ
(
(2− γ)eγ − 1

)
satisfying 0 < γ < 1. Define δ := γ+ln(2−γ) ≈ 0.8999 and c := 1+ e−γ/δ < 1.6853.
Let the αj’s be chosen pairwise independently from a probability distribution over (0, 1]
with the density function

g(α) =

{
(c− 1)eα if α ≤ δ,

0 otherwise.

Then, the expected value of the resulting random (αj)-schedule is bounded by c times
the optimal LP value ZD = ZR.

The bound in Theorem 3.9 also yields a bound on the quality of the LP relaxations.
Corollary 3.10. The LP Relaxations (D) and (R) deliver in O(n log n) time a

lower bound which is at least 0.5933 (≈ 1.6853−1) times the objective function value
of an optimal schedule.

Following the lines of the last subsection, we state two properties of the density
function g that are crucial for the analysis of the corresponding random (αj)-schedule.

Lemma 3.11. The function g given in Theorem 3.9 is a density function with the
following properties:

(i)
∫ η

0
g(α)(1 + α− η) dα ≤ (c− 1) η for all η ∈ [0, 1],

(ii) (1 + Eg[α])
∫ 1

µ
g(α) dα ≤ c (1− µ) for all µ ∈ [0, 1],

where Eg[α] denotes the expected value of a random variable α that is distributed
according to g.

Notice the similarity of Lemma 3.11 and Lemma 3.6 of the last subsection. Again,
properties (i) and (ii) are used to bound the delay of job j caused by jobs in N1 and
N2, respectively, in the right-hand side of inequality (3.11). Property (i) for η = 1 or
property (ii) for µ = 0 again yield Eg[α] ≤ c− 1.

Proof of Lemma 3.11. A short computation shows that δ = ln c
c−1 . It thus follows

from the same arguments as in the proof of Lemma 3.6 that g is a density function
and that property (i) holds. In order to prove property (ii), we first compute

Eg[α] =

∫ 1

0

g(α)α dα = (c− 1)

∫ δ

0

eαα dα = c δ − 1.
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Property (ii) certainly holds for µ ∈ (δ, 1]. For µ ∈ [0, δ] we get

(1 + Eg[α])

∫ 1

µ

g(α) dα = c δ (c− 1)

∫ δ

µ

eα dα

= c e−γ
(
(2− γ)eγ − eµ

)
= c (2− γ − eµ−γ)

≤ c
(
2− γ − (1 + µ− γ)

)
= c (1− µ).

This completes the proof of the lemma.

Proof of Theorem 3.9. Our analysis of the expected completion time of job j
in the random (αj)-schedule follows the line of argument developed in the proof of
Theorem 3.4. First we consider a fixed choice of αj and bound the corresponding
conditional expectation Eg[C

ααα
j |αj ]. In a second step we bound the unconditional ex-

pectation Eg[C
ααα
j ] by integrating the product g(αj)Eg[C

ααα
j |αj ] over the interval (0, 1].

For a fixed job j and a fixed value αj , the bound in (3.11) and Lemma 3.11 (i)
yield

Eg[C
ααα
j |αj ] ≤ tj(0

+) + (c− 1)
∑
k∈N1

ηk pk +
∑
k∈N2
αj>µk

(1 + Eg[αk])pk + (1 + αj)pj

≤ c tj(0
+) + (1 + Eg[α1])

∑
k∈N2
αj>µk

pk + (1 + αj)pj .

The last inequality follows from (3.9) and Eg[αk] = Eg[α1] for all k ∈ N . Using
property (ii) and (3.10) yields

Eg[C
ααα
j ] ≤ c tj(0

+) + (1 + Eg[α1])
∑
k∈N2

pk

∫ 1

µk

g(αj) dαj + (1 + Eg[αj ])pj

≤ c tj(0
+) + c

∑
k∈N2

(1− µk)pk + c pj = c

(
MLP

j +
1

2
pj

)
.

The result follows from linearity of expectations.

While the total number of possible orderings of jobs is n! = 2O(n logn), we show
in the following lemma that the maximal number of (αj)-schedules is at most 2n−1.
We will use the following observation. Let qj denote the number of different pieces of
job j in the LP schedule; thus qj represents the number of times job j is preempted
plus 1. Since there are at most n− 1 preemptions, we have that

∑n
j=1 qj ≤ 2n− 1.

Lemma 3.12. The maximal number of (αj)-schedules is at most 2
n−1, and this

bound can be attained.

Proof. The number of (αj)-schedules is given by s =
∏n

j=1 qj . Notice that

q1 = 1 since this job is not preempted in the LP schedule. Thus, s =
∏n

j=2 qj , while∑n
j=2 qj ≤ 2(n− 1). By the arithmetic-geometric mean inequality, we have that

s =
n∏

j=2

qj ≤
(∑n

j=2 qj

n− 1

)n−1

≤ 2n−1.
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Furthermore, this bound is attained if qj = 2 for j = 2, . . . , n, and this is achieved,
for example, for the instance with pj = 2, wj = n − j + 1, and rj = n − j for all
j.

Therefore, and in contrast to the case of random α-schedules, we cannot afford
to derandomize the randomized 1.6853-approximation algorithm by enumerating all
(αj)-schedules. We instead use the method of conditional probabilities [18].

From inequality (3.11) we obtain for every vector ααα = (αj) an upper bound on
the objective function value of the corresponding (αj)-schedule,

∑
j wjC

ααα
j ≤ UB(ααα),

where UB(ααα) =
∑

j wj RHSj(ααα) and RHSj(ααα) denotes the right-hand side of in-
equality (3.11). Taking expectations and using Theorem 3.9, we have already shown
that

Eg

∑
j∈N

wjC
ααα
j

 ≤ Eg[UB(ααα)] ≤ cZD,

where c < 1.6853. For each job j ∈ N let Qj = {Qj1, . . . , Qjqj} denote the set of
intervals for αj corresponding to the qj pieces of job j in the LP schedule. We consider
the jobs one by one in arbitrary order, say, j = 1, . . . , n. Assume that, at step j of
the derandomized algorithm, we have identified intervals Qd

1 ∈ Q1, . . . , Q
d
j−1 ∈ Qj−1

such that

Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1] ≤ cZD .

Using conditional expectations, the left-hand side of this inequality is

Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1]

=

qj∑
�=1

Prob{αj ∈ Qj�}Eg

[
UB(ααα) |αi ∈ Qd

i for i = 1, . . . , j − 1 and αj ∈ Qj�

]
.

Since
∑qj

�=1 Prob{αj ∈ Qj�} = 1, there exists at least one interval Qj� ∈ Qj such that

Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1 and αj ∈ Qj�]

≤ Eg[UB(ααα) |αi ∈ Qd
i for i = 1, . . . , j − 1].

(3.12)

Therefore, it suffices to identify such an interval Qd
j = Qj� satisfying (3.12), and we

may conclude that

Eg

[∑
h∈N

whC
ααα
h |αi ∈ Qd

i for i = 1, . . . , j

]
≤ Eg[UB(ααα) |αi ∈ Qd

i for i = 1, . . . , j] ≤ cZD .

Having determined in this way an interval Qd
j for every job j = 1, . . . , n, we then

note that the (αj)-schedule is the same for all ααα ∈ Qd
1 × Qd

2 × · · · × Qd
n. The (now

deterministic) objective function value of this (αj)-schedule is∑
j∈N

wjC
ααα
j ≤ Eg[UB(ααα) |αi ∈ Qd

i for i = 1, . . . , n]

≤ Eg[UB(ααα)] ≤ c ZD < 1.6853ZD ,
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Fig. 4. The on-line schedule for the previously considered instance and αj-points. The
LP schedule is shown above for comparison.

as desired. For every j = 1, . . . , n, checking whether an interval Qd
j satisfies in-

equality (3.12) amounts to evaluating O(n) terms, each of which may be computed
in constant time. Since, as observed just before Lemma 3.12, we have a total of∑n

j=1 qj ≤ 2n − 1 candidate intervals, it follows that the derandomized algorithm

runs in O(n2) time.

Proposition 3.13. The randomized 1.6853-approximation algorithm can be de-
randomized; the resulting deterministic algorithm runs in O(n2) time and has perfor-
mance guarantee 1.6853 as well.

3.5. Constructing provably good schedules on-line. In this subsection we
show that our randomized approximation results also apply in an on-line setting.
There are several different on-line paradigms that have been studied in the area of
scheduling; we refer to [30] for a survey. We consider the setting where jobs continually
arrive over time, and, for each time t, we must construct the schedule until time t
without any knowledge of the jobs that will arrive afterwards. In particular, the
characteristics of a job, i.e., its processing time and its weight, become known only at
its release date.

It has already been shown in section 2 that the LP schedule can be constructed on-
line. Unfortunately, for a given vector (αj), the corresponding (αj)-schedule cannot
be constructed on-line. We learn only about the position of a job k in the sequence
defined by nondecreasing αj-points at time tk(αk); therefore, we cannot start job k
at an earlier point in time in the on-line setting. On the other hand, however, the
start time of k in the (αj)-schedule can be earlier than its αk-point tk(αk).

Although an (αj)-schedule cannot be constructed on-line, the above discussion
reveals that the following variant, which we call the on-line-(αj)-schedule, can be
constructed on-line: For a given vector (αj), process the jobs as early as possible in
the order of their αj-points, with the additional constraint that no job k may start
before time tk(αk). See Figure 4 for an example. We note that this idea of delaying
the start of jobs until sufficient information for a good decision is available was in this
setting introduced by Phillips, Stein, and Wein [21].



SINGLE MACHINE SCHEDULING WITH RELEASE DATES 189

Notice that the nonpreemptive schedule constructed by (αj)-Conversion ful-
fills these constraints; its value is therefore an upper bound on the value of the on-
line-(αj)-schedule. Our analysis in the last subsections relies on the bound given in
Corollary 3.2, which also holds for the schedule constructed by (αj)-Conversion by
Lemma 3.1. This yields the following results.

Theorem 3.14. For any instance of the scheduling problem 1| rj |
∑

wjCj,

(a) choosing α = 1/
√
2 and constructing the on-line-α-schedule yields a determin-

istic on-line algorithm with competitive ratio 1 +
√
2 ≤ 2.4143 and running

time O(n log n);
(b) choosing the αj’s randomly and pairwise independently from (0, 1] according

to the density function g of Theorem 3.9 and constructing the on-line-(αj)-
schedule yields a randomized on-line algorithm with competitive ratio 1.6853
and running time O(n log n).

The competitive ratio 1.6853 in Theorem 3.14 beats the deterministic on-line lower
bound 2 for the unit-weight problem 1| rj |

∑
Cj [15, 36]. For the same problem,

Stougie and Vestjens [37] (see also [39]) proved the lower bound e
e−1 > 1.5819 for

randomized on-line algorithms.

3.6. Bad instances for the LP relaxations. In this subsection, we describe a
family of instances for which the ratio between the optimal value of the 1| rj |

∑
wjCj

problem and the lower bounds ZR and ZD is arbitrarily close to e
e−1 > 1.5819.

These instances In have n ≥ 2 jobs as follows: one large job, denoted job n, and
n− 1 small jobs, denoted j = 1, . . . , n− 1. The large job has processing time pn = n,
weight wn = 1

n , and release date rn = 0. Each of the n − 1 small jobs j has zero
processing time, weight wj =

1
n(n−1) (1 +

1
n−1 )

n−j , and release date rj = j.

Throughout the paper, we have assumed that processing times are nonzero. In
order to satisfy this assumption, we could impose a processing time of 1/k for all small
jobs, multiply all processing times and release dates by k to make the data integral,
and then let k tend to infinity. For simplicity, however, we just let the processing time
of all small jobs be 0.

The LP solution has job n start at time 0, preempted by each of the small jobs;
hence its mean busy times are MLP

j = rj for j = 1, . . . , n − 1 and MLP
n = n

2 . Its

objective function value is ZR = (1 + 1
n−1 )

n − (1 + 1
n−1 ). Notice that the completion

time of each job j is in fact equal to MLP
j + 1

2pj such that the actual value of the
preemptive schedule is equal to ZR.

Now consider an optimal nonpreemptive schedule C∗ and let k = �C∗
n� − n ≥ 0,

so k is the number of small jobs that can be processed before job n. It is then optimal
to process all these small jobs 1, . . . , k at their release dates and to start processing
job n at date rk = k just after job k. It is also optimal to process all remaining jobs
k + 1, . . . , n− 1 at date k + n just after job n. Let Ck denote the resulting schedule;
that is, Ck

j = j for all j ≤ k, and Ck
j = k + n otherwise. Its objective function value

is (1+ 1
n−1 )

n− 1
n−1 − k

n(n−1) . Therefore, the optimal schedule is Cn−1 with objective

function value (1 + 1
n−1 )

n − 1
n−1 − 1

n . As n grows large, the LP objective function
value approaches e− 1 while the optimal nonpreemptive cost approaches e.

4. Conclusion. Even though polynomial-time approximation schemes have now
been discovered for the problem 1| rj |

∑
wjCj [1], the algorithms we have developed,

or variants of them, are likely to be superior in practice. The experimental studies
of Savelsbergh, Uma, and Wein [25] and Uma and Wein [38] indicate that LP-based



190 GOEMANS, QUEYRANNE, SCHULZ, SKUTELLA, AND WANG

relaxations and scheduling in order of αj-points are powerful tools for a variety of
scheduling problems.

Several intriguing questions remain open. Regarding the quality of linear pro-
gramming relaxations, it would be interesting to close the gap between the upper
(1.6853) and lower (1.5819) bound on the quality of the relaxations considered in
this paper. We should point out that the situation for the strongly NP-hard [16]
problem 1| rj , pmtn |∑wjCj is similar. It is shown in [29] that the completion time
relaxation is in the worst case at least a factor of 8/7 and at most a factor of 4/3 off
the optimum; the latter bound is achieved by scheduling preemptively by LP-based
random α-points. Chekuri et al. [6] prove that the optimal nonpreemptive value is at
most e/(e− 1) times the optimal preemptive value; our example in section 3.6 shows
that this bound is tight.

Dyer and Wolsey [9] also propose a (nonpreemptive) time-indexed relaxation
which is stronger than the preemptive version studied here. This relaxation involves
variables for each job and each time representing whether this job is being completed
(rather than simply processed) at that time. This relaxation is at least as strong as
the preemptive version, but its worst-case ratio is not known to be strictly better.

For randomized on-line algorithms, there is also a gap between the known upper
and lower bound on the competitive ratios that are given at the end of section 3.5.
For deterministic on-line algorithms, the 2-competitve algorithm of Anderson and
Potts [2] is optimal.

Acknowledgment. The authors are grateful to an anonymous referee whose
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