
An FPTAS for Flows over Time with Aggregate
Arc Capacities?

Daniel Dressler and Martin Skutella

Institute for Mathematics, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany,
{dressler, skutella}@math.tu-berlin.de

Abstract. We study flows over time in networks with transit times on
the arcs. Transit times describe how long it takes to traverse an arc.
A flow over time specifies for each arc a time-dependent flow rate that
must always be bounded by the arc’s capacity. Only recently, Melkonian
introduced an alternative model where so-called bridge capacities bound
the total amount of flow traveling along an arc, at any point of time.
The contribution of this paper is twofold. Firstly, we introduce a com-
mon generalization of both the classical flow over time model and Melko-
nian’s model. Secondly, we present a non-trivial extension of an FPTAS
by Fleischer and Skutella to our new flow model. Prior to this, no ap-
proximation algorithm was known for Melkonian’s model.

Key words: network flow, dynamic flow, arc capacity, approximation
algorithm

1 Introduction

Network flows are a key concept in combinatorial optimization and their model-
ing abilities are fundamental in logistics. Already Ford and Fulkerson introduced
flows over time (or dynamic flows) that model flow moving through a network
over time [2]. (Classical flows without this temporal dimension are often called
static flows.) In a flow over time model, each arc has a transit time and flow
entering the tail of an arc leaves its head only after the transit time has passed.
Flows over time are given by a function for each arc that specifies the rate at
which flow enters the arc at each point in time. Flow originates at sources and
leaves the network at sinks. Traditionally, capacities limit the rate at which flow
enters an arc. In a street network, for example, these capacities can model the
number of lanes of a road.

Melkonian [7] introduced an alternative model with bridge capacities. At any
point in time, bridge capacities limit the amount of flow that has entered but
not yet left an arc. This can be used to model a load limit on a bridge that
supports fewer cars and trucks than the number of lanes might suggest.

In this paper we generalize bridge capacities such that they bound the total
flow entering an arc within a sliding time window. The fixed length of the window
? Supported by the DFG research center Matheon in Berlin and the Federal Ministry

for Education and Research (BMBF) under grant 03SKPAI6 “Advest”.

2 Daniel Dressler and Martin Skutella

is independent from the transit time of an arc. In particular, this allows mixing
bridge capacities (time window as long as transit time) with flow rate capacities
(very short/infinitesimal window), and arcs that may be used only by a certain
amount of flow in total (infinite window) in the same network. If necessary, one
can even combine several of such capacity constraints on a single arc.

We refer to this general type of capacity constraints as aggregate capacities. In
this general setting, we study the Dynamic Transshipment Problem which
asks whether there is a flow over time that balances the supplies of the sources
with the demands of the sinks. Besides the aggregate arc capacities, the flow is
restricted by a given time horizon.

Related Work. Already classical flows over time tend to be algorithmically harder
than static flows, beyond merely containing the static problem as a special case.
For traditional flow rate capacities, the Dynamic Transshipment Problem
for a network with a single source and a single sink can be solved efficiently by
computing a minimum cost static circulation [2]. Hoppe and Tardos [3] give a
polynomial-time algorithm for the Dynamic Transshipment Problem with
multiple sources and sinks. As soon as arc costs come into play, even the case
with a single source and a single sink restricted to series-parallel graphs becomes
NP-complete, as shown by Klinz and Woeginger [5].

Fleischer and Skutella [1] present a simple 2-approximation algorithm for a
general class of problems including the Quickest Transshipment Problem,
which is the optimization version of the Dynamic Transshipment Problem,
asking for the minimum feasible time horizon. This result can be generalized to
the setting with aggregate arc capacities in a straightforward way. Moreover, a
fully polynomial time approximation scheme for these problems is given in [1].

For bridge capacities, Melkonian [7] proves that already the Dynamic Trans-
shipment Problem with a single source and sink is weakly NP-complete, but
can be decided by solving a linear program of pseudo-polynomial size. Melkonian
also suggests a heuristic approach where the capacity on each arc is replaced by
traditional capacities equal to the average sustainable flow on the arc. Finally,
he mentions networks with mixed capacities as an interesting research direction,
which we pursue with our model.

A related capacity model has earlier been proposed by Klinz and Woegin-
ger [4]: They study dedicated arcs that are entirely blocked as long as even a
small amount of flow is traveling along them. (As for bridge capacities, the dura-
tion of the block and the transit time are identical.) All their flows are discrete,
meaning that flow travels in whole packets sent once per time step as opposed
to continuous flow rates. They also restrict to integral flow functions, which of-
ten prohibits the use of linear programming techniques. They derive interesting
complexity results for their setting: For instance, even for a fixed time horizon
of 3, one of their variants of the Dynamic Transshipment Problem is NP-
hard. They also translate a complexity result of Papadimitriou, Serafini, and
Yannakakis [8] into the language of flows over time. This implies that the Dy-
namic Transshipment Problem for integral flows and dedicated arcs with
unit capacities is strongly NP-complete.

Flows over Time with Aggregate Arc Capacities 3

Köhler and Skutella [6] study flows over time with load-dependent transit
times. In their model, the speed at which flow travels along an arc always depends
on the current amount of flow (load) on that arc. The model of Melkonian can
be considered as a special case by letting the speed on an arc be constant up to
its capacity and infinite if the load exceeds the capacity.

Our Contribution. In Section 2, we introduce the flow model with aggregate
arc capacities which is a direct generalization of Melkonian’s bridge capacities.
For this new model, we discuss important properties of flows over time, namely
integrality and whether storage at vertices can improve the flow value, and show
that forbidding storage or forcing integrality qualitatively restricts the set of so-
lutions. We argue that our model also generalizes traditional flow rate capacities.

Our main contribution, a fully polynomial time approximation scheme for
the Dynamic Transshipment Problem, is presented in Section 3. If there is
a feasible flow for the original instance, for all ε > 0, we can compute a flow
over time satisfying the same set of demands, but violating the capacities and
the time bound by a factor of at most 1 + ε.

We mention, that the presented FPTAS can be generalized in a straight-
forward way to the setting with multiple commodities and costs. Due to space
limitations, however, we restrict our presentation to the Dynamic Transship-
ment Problem in this extended abstract and omit some details and proofs.

2 Aggregate Arc Capacities

We consider finite directed graphs G = (V,A), possibly with loops and parallel
arcs. For a ∈ A, let tail(a) denote the start vertex and head(a) the end vertex
of a. For v ∈ V , we use Ain(v) := {a ∈ A : head(a) = v} and Aout(v) := {a ∈
A : tail(a) = v} for the set of arcs entering and leaving v, respectively.

Each arc a ∈ A has a transit time τa ∈ R≥0, a capacity ua ∈ R≥0 and a length
of the sliding window `a ∈ R≥0. Some vertices belong to the sources S+ ⊂ V ,
some to the sinks S− ⊂ V , and we assume S+ ∩ S− = ∅. The elements of the
set S+ ∪ S− of sources and sinks are called terminals. We assume w. l. o. g. that
sources have no incoming arcs and sinks no outgoing arcs. This can be achieved
by adding a new vertex for each source s+ with a single outgoing arc that points
towards s+ and making it the new source (and similarly for sinks). The tuple
N := (V,A, S+, S−, τ, u, `) forms a flow network.

We can now define a flow over time on the network N . For this, consider
a function f : A × R≥0 → R≥0, where each f(a, ·) is Lebesgue-measurable. For
notational convenience, we extend the domain of the flow functions by setting
f(a, t) = 0 for all t < 0. The value f(a, t) denotes the rate at which flow enters
arc a at time t. The transit times prescribe that the same flow rate must leave
the arc at time t + τa. The balance of a vertex v is the net flow rate entering v
at time t

balf (v, t) :=
∑

a∈Ain(v)

f(a, t− τa)−
∑

a∈Aout(v)

f(a, t)

4 Daniel Dressler and Martin Skutella

and the excess is

exf (v, t) :=
∫ t

0

balf (v, θ) dθ ,

that is, the net amount of flow available at v at time t. Flow conservation gen-
erally demands that the amount of flow traveling through the network should
not change, except at the terminals. There are two competing models for flow
conservation in flows over time. Strict flow conservation demands that all flow
entering a non-terminal vertex immediately leaves it again:

balf (v, t) = 0 ∀t ∈ R≥0 ∀v ∈ V \ (S+ ∪ S−) .

In contrast, weak flow conservation allows for storage at non-terminal vertices.
That is, an unlimited amount of flow may remain at a vertex arbitrarily long,
which we can express as follows:

exf (v, t) ≥ 0 ∀t ∈ R≥0 ∀v ∈ V \ (S+ ∪ S−) .

Since we assume that sources have no incoming arcs, their excess will always
be non-positive. Similarly, the excess of a sink will always be non-negative. We
do not restrict these vertices any further. If at least weak flow conservation is
satisfied, we call the function f a flow over time on N , or simply a flow.

A flow has time horizon T ∈ R≥0 if the network is “empty” for all t > T .
In particular, all flow functions must be 0 after time T , but this is a too weak
requirement. Instead we demand that no flow may be on an arc after time T ,
i. e., f(a, t) = 0 for all t > T − τa, a ∈ A. Additionally, no flow may be stored at
a non-terminal vertex after time T , i. e., exf (v, T) = 0 for all v ∈ V \ (S+ ∪S−).

For a flow with finite time horizon T , one can look at how much flow is being
sent from the sources to the sinks. This is conveniently given by the excess of the
terminals. Thus, a flow satisfies demands d ∈ RV if dv = exf (v, T) for all v ∈ V .
In particular, the demands of sources have to be non-positive, the demands of
sinks non-negative, and other vertices must have demand 0.

So far, there is no upper limit on f . In our setting, the novelty is that aggregate
arc capacities restrict how much flow can be sent. The total amount of flow
entering arc a must be bounded by ua in every time window of length `a. That
is, we require ∫ t+`a

t

f(a, θ) dθ ≤ ua ∀t ∈ R≥0 ∀a ∈ A .

A flow obeying these capacity constraints is called feasible. Note that this con-
dition is trivially satisfied if `a = 0, and these arcs effectively have no capacity.
Traditional flow rate capacities, however, are of the form f(a, t) ≤ ua, and this
cannot be expressed precisely with aggregate arc capacities. This is no serious
drawback, as we will soon see that a small enough `a can essentially model
traditional capacities.

We now have everything in place to state our main problem precisely.

Flows over Time with Aggregate Arc Capacities 5

Dynamic Transshipment Problem
Input: A flow network N , a time horizon T , and a demand vector d.
Question: Is there a feasible flow over time in N with time horizon T satisfying
demands d?

2.1 Discretizations

From now on we assume that τ , u, `, as well as T , and d are integral. This can
be achieved by scaling, provided that the data was rational to begin with.

When dealing with flows over time algorithmically, most tasks require a rep-
resentation of the actual flow functions. Clearly, every finite representation must
be based on assumptions on the flow function. The most common way is to dis-
cretize the problem into a finite number of time steps. This usually involves a
time-expanded network, which handily reduces many problems involving time to
well-studied static flow problems. We essentially do the same, but avoid introduc-
ing the full machinery of static flows on time-expanded networks, as this plays a
minor role here. Instead we will state our results on piecewise constant functions
that change only at multiples of some parameter. For details on time-expanded
networks we refer to the survey [9].

We quickly fix some notation for rounding: For a,∆ ∈ R, ∆ > 0, we use
dae∆ to denote a rounded up to the next multiple of ∆. Analogously, bac∆
rounds down to multiples of ∆. If ∆ is omitted, we assume ∆ = 1.

Now, a function g : R→ R is called ∆-constant if g restricted to [i∆, (i+1)∆)
is constant for all i ∈ Z. A flow over time is ∆-constant if each f(a, ·) is. Thus,
we need only dT/∆e values for each arc to describe a ∆-constant flow with time
horizon T .

When dealing with ∆-constant flows on networks with transit times that are
multiples of ∆, we can replace integration by summation in all expressions so far.
Another crucial property is that, assuming a finite time horizon, we need only
finitely many constraints to ensure that the infinitely many flow conservation and
capacity conditions are satisfied. We omit the proof due to space constraints.

Lemma 1. Let N = (V,A, S+, S−, τ, u, `) and assume all τa are multiples of
some ∆ > 0. Let f : A × R≥0 → R≥0 be a ∆-constant function for all first
arguments a ∈ A.

(i) Function f is a flow on N satisfying weak (strict) flow conservation if and
only if it satisfies weak (strict) flow conservation for all t = i∆ with i ∈ Z.

(ii) For a ∈ A, the flow f obeys the aggregate arc capacity on a if and only if
the capacity constraints are obeyed for t1 = i∆ and for t2 = i∆ − `a for
all i ∈ Z.

Next we show that 1-constant flows are precise enough for integral transit
times and capacity windows. More generally, ∆-constant flows suffice for data
rounded to multiples of ∆. This lemma is well-known for traditional capacities [1]
and requires only little more work in our setting.

6 Daniel Dressler and Martin Skutella

Lemma 2. Let N = (V,A, S+, S−, τ, u, `) be a flow network and f a feasible
flow over time with time horizon T ∈ R≥0. If the parameters τ and ` are multiples
of ∆ > 0, then there is a ∆-constant feasible flow over time f̄ with time horizon
dT e∆ with the same demands as f . If strict flow conservation holds for f , then
it also holds for f̄ .

Proof (Sketch). It suffices to average f over each interval [i∆, (i+1)∆), for i ∈ Z,
to obtain the desired ∆-constant flow:

f̄(a, t) :=
1
∆

∫ btc∆+∆

btc∆
f(a, θ) dθ ∀t ∈ R≥0 ∀a ∈ A .

The required properties of f̄ can easily be verified. ut

Since we assume that τ , `, and T are integral (u and d may be rational), these
lemmata show that the Dynamic Transshipment Problem can be formulated
as a linear program and thus be solved in time polynomial in the size of the
network and T . Of course, this only yields a pseudo-polynomial time algorithm.

Corollary 1. For integral τ , `, and T , the Dynamic Transshipment Prob-
lem can be decided in pseudo-poylnomial time.

The lemmata also imply that arcs with `a = 1 can be used to limit the flow
rate to at most ua, modeling traditional capacities. While there may be flows
that exceed the traditional capacity momentarily, we can always construct the
equivalent 1-constant flow f̄ that obeys them.

Corollary 2. For integral τ , `, and T , only flows obeying the traditional capac-
ities f(a, t) ≤ ua for all arcs with `a = 1 need to be considered.

2.2 Path Decompositions

One common tool from network flow theory, that we will need, are path decompo-
sitions and flows along paths. A path over time P = (AP , hP) consists of a finite
sequence of arcs AP = a1, . . . , aq ∈ A and starting times hP = h1, . . . , hq ∈ R≥0.
The path begins at tail(a1) and ends at head(aq). The arcs in between must
form a walk, that is, head(ai) = tail(ai+1) for i = 1, . . . , q − 1. The time hi
states when the path continues on ai. Thus, hi+1 ≥ hi + τai must hold if a flow
unit should travel along P . This is therefore required of all paths over time.

In general, we want to send a certain time-dependent flow rate along a path:
Let xP : R≥0 → R≥0 be a Lebesgue-measurable function. Then we call xP the
inflow rate into P and it yields a flow fP satisfying weak flow conservation as
follows:

fP (a, t) :=
∑

i∈{1,...,q}:a=ai

xP (t− hi) .

Put another way, the flow rate xP (t) is sent along P and enters ai at time t+hi.
We want to restrict ourselves to paths over time that do not visit any vertex v

Flows over Time with Aggregate Arc Capacities 7

more than once. This can easily be achieved by removing the subpath starting at
the first arc with tail(ai) = v and ending with head(aj) = v. The path continues
with aj+1 at time hj+1. The next lemma summarizes that flow traveling along
P is indeed a flow over time. Such a flow is called a path flow. We omit a more
detailed proof.

Lemma 3. Let P and fP be as described above and assume tail(a1) ∈ S+ and
head(aq) ∈ S−. If xP (t) = 0 for all t ≥ T for some fixed T ∈ R≥0, then fP is
a flow over time that satisfies weak flow conservation and has time horizon at
most T + hq + τaq .

A path decomposition describes a flow by the paths over time the flow units
take. More precisely, a flow f has a path decomposition if there is a finite set of
paths over time P and functions xP : R≥0 → R≥0, for P ∈ P, such that f is the
sum of the path flows fP , i. e., f(a, ·) =

∑
P∈P fP (a, ·) for all a ∈ A.

A major advantage is that path decompositions can be readily manipulated
while ensuring flow conservation. However, in general, a flow over time cannot
be decomposed into path flows because flow units may travel in cycles. Omitting
such cycles and possibly storing flow at an intermediate vertex instead does
not have any drawbacks in our setting, and thus we can always obtain a path
decomposition of a flow that is just-as-good. In the following, for a, b ∈ R, let
χ[a,b) : R→ R be the characteristic function of time interval [a, b).

Lemma 4. Let τ be integral and f a 1-constant flow on N with time horizon
T ∈ Z≥0. Then there is a 1-constant flow f ′ ≤ f on N with the same demand
vector as f and the same time horizon T such that f ′ has a path decomposition
with inflow rates of the form dPχ[0,1)(t) for some constants dP ∈ R≥0, for P ∈ P.
Each path P ∈ P contains no vertex more than once.

This follows from slightly rephrased techniques for time-expanded networks.
Notice that the demands of the decomposed flow are the sum of the demands of
the path flows.

2.3 Understanding the Problem

Flows with bridge capacities can always be interpreted as flows over time for
larger traditional capacities: For 1-constant flows, the flow rates never exceed ua.
But this is a weak bound on the average capacity of an arc over a long period
of time, which is essentially ua/`a. The effect of the aggregate arc capacities is
clearly visible if the capacity windows are close to the time horizon. For instance,
consider a network consisting of a single arc a with length τa = 0, capacity ua =
1, and window `a. The time horizon is T > 0. With traditional capacities, the
flow rate is limited by ua, and a flow can send only T flow units in this instance.
Bridge capacities, however, allow flow value 1 for any arbitrarily small time
horizon T > 0 in this network. This is achieved by sending a short impulse with
a high flow rate.

8 Daniel Dressler and Martin Skutella

Flow Conservation and Flow Value. It is useful to think of bridge flows as
flows that tend to send impulses as opposed to more uniform flow rates, that
traditional flow capacities necessitate. One might even wonder what reason there
could be not to use the full capacity of an arc within a single interval ∆ and
then pause until the full capacity is available again `a time units later. We now
discuss the small example in Figure 1. In the case of strict flow conservation, it
already exhibits somewhat unexpected solutions that follow no such simple rule.

yx
`(x,y) = 2

v `(v,x) = 3

w `(w,x) = 6

Fig. 1. The sources are v and w, the sink is y. All capacities are 1 and all transit times
are 0. The capacity windows are given on the arcs.

First note that arcs (v, x) and (w, x) together have an average capacity of
1
3+ 1

6 = 1
2 , which equals the average capacity of (x, y). Thus, continuously sending

flow with a rate of 1
3 on (v, x) and 1

6 on (w, x), then 1
2 on (x, y) yields a flow of

value T/2, and this is optimal for average capacities (but need not be optimal
for bridge capacities). This solution also satisfies strict flow conservation.

In contrast, a “pulsed” flow sends flow at a rate of ua for one time unit, and
then waits for at least `a − 1 time units. Since u equals 1 for all arcs in our
example, pulsed flows are exactly the integral flows.

A flow that satisfies only weak flow conservation can send a flow of value
⌈
T
2

⌉
.

For this, one simply pulses flow into (v, x) and (w, x). These pulses start arriving
at x at times {0, 3, 6, 9, 12, . . .} and {0, 6, 12, . . .}. They can be forwarded to y at
times {0, 2, 4, 6, 8, 10, 12, . . . } and this repeats with a periodicity of 12. Due to
the capacity on (x, y), this is the optimum flow value for integral time horizon.

Finally, a flow that satisfies strict flow conservation and uses only integral
values cannot send 4 units of flow within time T = 7. For this, the first flow
particles from each pulse would have to arrive at x exactly at times {0, 2, 4, 6}.
At most two of these could be contributed by the more restricted arc (w, x),
but the remaining time steps always contain a pair less than 3 apart. Therefore,
they cannot all be supplied by (v, x). On the other hand, the flow sending the
average capacities achieves a flow value of 3.5, but this is not the optimum value
of a fractional flow without storage. A flow of value 11

3 is the true optimum, but
showing this is best left to an LP-solver.

From this we can see that weak flow conservation really increases the set of
feasible Dynamic Transshipment Problem instances and we will not consider
strict flow conservation in the remainder of this paper. The proof of our main
result also depends on weak flow conservation.

With respect to integrality, we want to draw attention to the complexity re-
sults from Papadimitriou et al. [8] (also described in [4]): Their problem can be

Flows over Time with Aggregate Arc Capacities 9

seen as an integral flow on a network with dedicated arcs (that are blocked en-
tirely as long as flow travels on them) with unit capacities. For ua = 1, aggregate
arc capacities and dedicated arcs behave the same, just like the pulsed flows in
the example above. We immediately obtain strong NP-hardness for integral flows
with aggregate arc capacities. However, the Dynamic Transshipment Prob-
lem is only weakly NP-hard. Because of this, there must be instances where
there is no integral but a fractional solution (assuming P 6= NP).

Corollary 3. The Dynamic Transshipment Problem restricted to integral
flow functions is strongly NP-hard, even for unit capacities.

3 Approximation Scheme

Our main result states that while it is NP-complete to decide whether an in-
stance of the Dynamic Transshipment Problem is feasible, one can find an
approximate solution that exceeds the time horizon and the capacities by a fac-
tor of (1 + ε), if the instance is feasible. For infeasible instances we might either
prove they are infeasible or find feasible approximate solutions. Our approach
is a non-trivial extension of the work of Fleischer and Skutella [1] on standard
flows over time.

Throughout this section we consider an instance of the Dynamic Trans-
shipment Problem consisting of N = (V,A, S+, S−, τ, u, `), time horizon T ,
and demands d. All parameters are integers, so that we only need to consider
1-constant flows.

The actual algorithm is quite natural. For given ε > 0, as in [1], we choose
a suitable discretization ∆ ∈ Z>0 such that T/∆ is polynomially bounded in
the input size and ε−1. The transit times are rounded up to multiples of ∆, the
rounded transit times are denoted by τ ′a := dτae∆, for a ∈ A. Moreover, the time
horizon and capacities are increased slightly, while the lengths `a of the sliding
windows remain the same. With Lemma 1, we can formulate the resulting new
instance as a polynomial-sized linear program. If the new instance is infeasible, so
is the original one. Otherwise, one obtains a ∆-constant flow that approximately
satisfies the Dynamic Transshipment Problem instance.

We have to prove two directions in order to show correctness of this algo-
rithm. The easier one is that any solution to the rounded instance is indeed
an approximate solution to the original instance. Intuitively, this is true since
weak flow conservation is maintained when the flow is interpreted in the original
network with shorter transit times.

Lemma 5. If f is a feasible flow on N ′ := (V,A, S+, S−, τ ′, u, `) with time
horizon T ′, then f is a feasible flow on N with the same time horizon, satisfying
weak flow conservation and the same demands.

Proof (Sketch). Any condition not involving transit times is identical for both
networks. When we decrease the transit times from τ ′ to τ , this affects the
balance of the vertices in a one-sided way: Flow on an arc may arrive earlier,
and then has to wait at the head vertex for an additional τ ′a− τa time units. ut

10 Daniel Dressler and Martin Skutella

For the other direction we need to show that the existence of a feasible
solution to the original instance implies feasibility of the rounded instance. The
first problem here is that we increase transit times and, thus, need to rearrange
the flow. Otherwise, flow conservation is violated since flow units will be sent
onwards before they arrive at an intermediate vertex.

The main idea is to consider a path decomposition of a given feasible flow,
as in [1], before we change transit times. Then we can reassemble the flow paths
(now with longer transit times) and are guaranteed weak flow conservation. How-
ever, this might violate the capacities by a large factor: If multiple paths for the
original transit times enter the same arc one after each other, they can possibly
all be delayed to arrive simultaneously according to the rounded transit times.
The solution is to make sure that the flow along each path is distributed over
a larger time interval than flow units can possibly be delayed by the rounding.
This new “smoothed” flow will still be congested, but the collisions are spread
out equally in order to keep the violation of capacities bounded.

Lemma 6. Let f be a feasible 1-constant flow for the given Dynamic Trans-
shipment Problem instance. Let 0 < ε < 1 with ε−1 ∈ Z and ∆ := bε2T/|V |c.
If ∆ > 0, then there is a feasible ∆-constant flow f̄ on N ′ = (V,A, S+, S−, τ ′, (1+
ε)u, `) with time horizon T̄ := (1 + 2ε)T satisfying the same demands as f .

Proof. According to Lemma 4, we can replace f by a flow that has a path
decomposition consisting of a set of paths over time P and flow rates into the
paths of the form xP (t) = dPχ[0,1)(t) with dP ∈ R≥0, for P ∈ P. Moreover, each
path uses every vertex at most once and thus consists of q ≤ |V | − 1 arcs.

We now define for each path P = (AP , hP) ∈ P a path P ′ = (AP
′
, hP

′
)

with the same sequence of arcs AP
′

= AP that matches the transit times τ ′. To
simplify notation, we denote hP

′

i simply by h′i, for i = 1, . . . , q. Let h′1 := dhP1 e∆
and h′i := max{dhPi e∆, h′i−1 + τ ′ai−1

}, for i = 2, . . . , q. This yields a path over
time, i. e., the starting times are compatible with the transit times. They are also
multiples of ∆ and h′i ≥ hPi , for all i. On the other hand, a simple induction yields
h′i − hPi ≤ i∆. Since q ≤ |V | − 1, we can generalize this to 0 ≤ h′i − hPi ≤ |V |∆,
for all i.

Instead of sending flow according to the original function dPχ[0,1) into path P ′,
we smooth the flow as follows (in contrast to the approach in [1], we use a dif-
ferent, somewhat simpler smoothing here). Let z := |V |/ε, which is in Z. We
distribute the flow over an interval of length z∆ ≤ εT . This can be accom-
plished by sending flow according to the function x′P (t) := dP

z∆ · χ[0,z∆)(t) into
path P ′. The corresponding path flow is f ′P ′ and we claim that the flow f̄ de-
fined by f̄(a, ·) :=

∑
P ′:P∈P f

′
P ′(a, ·), for a ∈ A, has the desired properties. It

certainly satisfies weak flow conservation. The time horizon of each f ′P ′ is at
most T + z∆ + |V |∆ ≤ (1 + ε + ε2)T ≤ (1 + 2ε)T . Each path flow f ′P ′ still
satisfies a demand of dP . Since the inflow rates into the paths are ∆-constant,
and τ ′ was rounded to multiples of ∆, each path flow and f̄ are ∆-constant. The
important task left is to show that capacities (1 + ε)u are obeyed.

Flows over Time with Aggregate Arc Capacities 11

For a = ai ∈ AP we have f ′P ′(a, t) = dP
z∆χ[0,z∆)(t− h′i). We can conveniently

relate these smoothed flow rates to fP (a, t).

f ′P ′(a, t) =
dP
z∆

χ[0,z∆)(t− h′i) =
dP
z∆

χ[h′i−hi,z∆+h′i−hi)(t− hi)

≤ dP
z∆

χ[0,z∆+|V |∆)(t− hi)

=
dP
z∆

z∆+|V |∆−1∑
θ=0

χ[θ,θ+1)(t− hi) .

We continue by assuming t ∈ Z, so we know that t − hi ∈ Z. For integral
arguments, we can express χ[θ,θ+1)(t) more convoluted as

∫ t−θ+1

t−θ χ[0,1)(1−µ) dµ
and reassemble the last sum into one integral:

f ′P ′(a, t) ≤
dP
z∆

∫ t−hi+z∆+|V |∆

t−hi
χ[0,1)(1− µ) dµ

=
1
z∆

∫ z∆+|V |∆

0

fP (a, t+ 1− µ) dµ .

As promised, by smoothing the flow, the new path flow is still close to the
averaged original flow, and importantly, the delayed flow units corresponding to
[z∆, z∆+ |V |∆) only weigh in at 1

z∆ their original rate.
For a ∈ A, we can now determine the capacity needed by the flow f̄ resulting

from the path flows. For t ∈ Z, it holds that∫ t+`a

t

f̄(a, θ) dθ =
∫ t+`a

t

∑
P ′:P∈P

f ′P ′(a, θ) dθ

≤ 1
z∆

∫ t+`a

t

∫ z∆+|V |∆

0

∑
P∈P

fP (a, θ + 1− µ) dµdθ

=
1
z∆

∫ z∆+|V |∆

0

∫ t+`a

t

f(a, θ + 1− µ) dθ dµ

≤ 1
z∆

∫ z∆+|V |∆

0

ua dµ =
z∆+ |V |∆

z∆
ua .

Since z = |V |/ε, the last term is exactly (1 + ε)ua. We satisfy these capacities
for all t ∈ Z. This covers all required test points i∆ and j∆ − la. Thus, f̄ is a
feasible ∆-constant flow on N ′ with time horizon (1 + 2ε)T , satisfying the same
demands as f . ut

Finally, our main theorem falls into place.

Theorem 1. Given a feasible instance of the Dynamic Transshipment Prob-
lem and ε > 0, one can determine, in time polynomial in the input size and ε−1,
a feasible flow on N̄ = (V,A, S+, S−, τ, (1 + ε)u, `) with time horizon (1 + ε)T
satisfying the given demands d.

12 Daniel Dressler and Martin Skutella

Proof. We can assume ε < 1 and use Lemma 6 for ε′ chosen such that 1
4ε < ε′ ≤

1
2ε and 1/ε′ ∈ Z. If ∆ = 0, then T ≤ n/ε′2, and we can solve the exact problem
for ∆ = 1. Otherwise, we can compute f̄ on (V,A, S+, S−, τ ′, (1 + ε′)u, `) with
time horizon (1 + 2ε′)T ≤ (1 + ε)T . Since T/∆ ∈ O(|V |/ε2), the flow f̄ can be
obtained efficiently by solving a linear program of polynomial size. According
to Lemma 5, f̄ is also a feasible flow for transit times τ , and increasing the
capacities from (1 + ε′)u to (1 + ε)u is no problem, either. ut

Note that simple examples exist showing that the slightly stronger approach
of Fleischer and Skutella for the classical flow over time model (that does not
require a violation of capacities) cannot be generalized to the setting of aggregate
capacities.

4 Conclusion

We have introduced a generalized model of flows over time and presented a
fully polynomial time approximation scheme with resource augmentation for
the problem of computing optimal flows for this model. We only mention that
the FPTAS can easily be generalized to the setting with multiple commodities,
costs on the arcs and a given bound on the total flow cost.

Acknowledgements The authors are indebted to Martin Guenther, Ronald
Koch, and José Verschae for many helpful comments and discussions.

References

1. L. Fleischer and M. Skutella. Quickest flows over time. SIAM Journal on Computing,
36:1600–1630, 2007.

2. L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419–433, 1958.

3. B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of
Operations Research, 25:36–62, 2000.

4. B. Klinz and G. J. Woeginger. One, two, three, many, or: complexity aspects of
dynamic network flows with dedicated arcs. Operations Research Letters, 22:119–
127, 1998.

5. B. Klinz and G. J. Woeginger. Minimum-cost dynamic flows: The series-parallel
case. Networks, 43:153–162, 2004.

6. E. Köhler and M. Skutella. Flows over time with load-dependent transit times.
SIAM Journal on Optimization, 15:1185–1202, 2005.

7. V. Melkonian. Flows in dynamic networks with aggregate arc capacities. Informa-
tion Processing Letters, 101:30–35, 2007.

8. C. H. Papadimitriou, P. Serafini, and M. Yannakakis. Computing the throughput
of a network with dedicated lines. Discrete Applied Mathematics, 42:271–278, 1993.

9. M. Skutella. An introduction to network flows over time. In W. Cook, L. Lovász, and
J. Vygen, editors, Research Trends in Combinatorial Optimization, pages 451–482.
Springer, 2009.

