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Abstract. In many scheduling applications it is required that the processing of some job be
postponed until some other job, which can be chosen from a pregiven set of alternatives, has been
completed. The traditional concept of precedence constraints fails to model such restrictions. There-
fore, the concept has been generalized to so-called and/or precedence constraints which can cope
with this kind of requirement. In the context of traditional precedence constraints, feasibility, tran-
sitivity, and the computation of earliest start times for jobs are fundamental, well-studied problems.
The purpose of this paper is to provide efficient algorithms for these tasks for the more general model
of and/or precedence constraints. We show that feasibility as well as many questions related to tran-
sitivity can be solved by applying essentially the same linear-time algorithm. In order to compute
earliest start times we propose two polynomial-time algorithms to cope with different classes of time
distances between jobs.
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1. Introduction.

Definition and motivation of AND/OR precedence constraints. For a
given set V of jobs, a precedence constraint comprehends the requirement that a
job j cannot be started before another job i has been completed. Precedence con-
straints are usually given by a set A of ordered pairs (i, j), i �= j ∈ V , inducing
an acyclic digraph D = (V,A) where each node corresponds to a job and each arc
represents a precedence constraint. In a feasible implementation of the project, the
jobs have to be executed in accordance with the partial order defined by D. Since,
in this setting, each job j can only start after the completion of all its predeces-
sors in D, we call these precedence constraints and-constraints. However, there are
many applications where jobs can be executed as soon as any of its predecessors has
been completed; we refer to such temporal restrictions as or-constraints. Traditional
precedence constraints fail to model this requirement and consequently, the model
has been generalized to so-called and/or precedence constraints. and/or precedence
constraints can be represented by a set W of pairs (X, j) with the meaning that job
j ∈ V cannot be executed before some job i ∈ X ⊆ (V \{j}) has been completed. We
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call such (X, j) pairs waiting conditions and job j the waiting job for (X, j). Notice
that for a singleton X = {i}, the constraint (X, j) is a traditional and-constraint
(i, j).

An intuitive motivation for and/or precedence constraints is noted by Gillies
and Liu [12]. An engine head has to be fixed by four bolts. However, one of the
bolts may secure the engine head well enough to allow further work on it. If the
set X consists of the four jobs to secure the bolts and j represents the further work
on the engine head, then the waiting condition (X, j) obviously models the desired
temporal dependencies among the jobs. Another motivation is studied by Goldwasser
and Motwani [13]. They consider the problem of partially disassembling a given
product to reach a single part (or component). In order to remove a certain part,
one previously may have to remove other parts which can be modeled by traditional
(and) precedence constraints. However, one may choose to remove that same part of
the product from another geometric direction, in which case some other parts must be
removed previously. This freedom of choice can be modeled by and/or precedence
constraints. A third motivation is given by Dinic [6], who considers the setup of new
technologies and products. In his model, a new technology requires certain products;
on the other hand, a new product can be obtained as an output of one of several
new technologies. The latter requirement leads to an or-constraint, while the first
requirement is a classical and-constraint.

Our research is motivated by problems occurring in resource-constrained project
scheduling. Resource constraints can be represented by so-called minimal forbidden
sets, i.e., inclusion-minimal sets of jobs that cannot be scheduled simultaneously. In
order to resolve the resource conflict that occurs due to a minimal forbidden set
F , one may choose a job j ∈ F to be a waiting job for F \ {j} and introduce the
corresponding waiting condition (F \ {j}, j). Thus, we are able to represent solutions
of project scheduling problems by a set W of waiting conditions. For details we refer
to [26].

Connections to other fields and related work. The combinatorial structure
of a system W of waiting conditions occurs in different fields of discrete mathematics
and theoretical computer science. In the context of directed hypergraphs each (X, j) ∈
W represents a hyperarc with a set X of source nodes and a single target node j.
Ausiello, d’Atri, and Saccà [3] (see also [4]) generalize transitive closure and reduction
algorithms from directed graphs to directed hypergraphs. Another related class of
combinatorial objects are antimatroids (special greedoids) which can be defined via
a set of waiting conditions; see, e.g., [17, page 22]. Furthermore, many problems
stemming from artificial intelligence can be formulated by hierarchies of subproblems
where different alternatives exist to solve these subproblems; see, e.g., [23]. There, a
graphical representation of such hierarchies is called an and/or graph.

In the context of scheduling, Goldwasser and Motwani [13] derive inapproxima-
bility results for two single-machine scheduling problems with and/or precedence
constraints. Gillies and Liu [12] consider single- and parallel-machine scheduling
problems with different structures of and/or precedence constraints; they prove
NP-completeness of finding feasible schedules in some settings that are polynomially
solvable with traditional precedence constraints. Moreover, they give approximation
algorithms for some makespan minimization problems.

A basic, important task in scheduling applications is the computation of earliest
start times of jobs. The research on this topic will be discussed in more detail in
section 7.1.
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Contribution of this paper. For and-constraints, fundamental problems such
as deciding feasibility, finding transitive and-constraints, and computing earliest start
times of jobs can be solved efficiently by applying simple well-known graph algorithms.
Most important for the algorithmic treatment is the fact that and-constraints define
acyclic structures on the set V of jobs such that many problems can be solved by
considering jobs in the order of a topological sort. Since this is not the case for
and/or precedence constraints, the algorithms for and-constraints cannot be applied
in that setting.

In the first part of the paper we provide efficient algorithms and structural insights
for the more general and complex model of and/or precedence constraints. We show
that feasibility as well as questions related to generalized transitivity can be solved by
applying essentially the same linear-time algorithm. Moreover, we discuss a natural
generalization of and/or precedence constraints and prove that the same problems
become NP-complete in this setting.

The second part of this paper is concerned with the computation of earliest start
times if and/or precedence constraints are imposed among jobs. We consider differ-
ent ranges of minimal time distances (or time lags) dij between the start times of two
jobs i and j that are coupled within a precedence constraint. For and/or precedence
constraints, the problem then reduces to finding a solution to a system of min-max-
inequalities which also has applications in many other fields. We discuss polynomial
equivalence to finding optimal strategies for a class of two-person games played on
directed graphs. For the case that such time lags are strictly positive (nonnegative)
we devise polynomial-time algorithms.

Outline. The paper is organized as follows. After stating some basic require-
ments in section 2, we discuss feasibility and aspects of transitivity as well as an
application thereof in sections 3 to 5. A generalization of and/or precedence con-
straints is considered in section 6. While we consider only the combinatorial structure
of and/or precedence constraints in sections 3 to 6, we additionally deal with tem-
poral data such as job processing times or time lags between jobs in section 7, where
we provide algorithms for computing earliest job start times.

2. Preliminaries. In order to illustrate the presentation we use the following
example throughout the paper.

Example 1. Let V := {j1, . . . , j7} be the set of jobs and W := {w1 = ({j1, j5}, j4),
w2 = ({j2, j6}, j4), w3 = ({j4, j3}, j6), w4 = ({j4}, j5), w5 = ({j4, j5, j6}, j7)} the set
of waiting conditions.

Graph representation. We use a natural representation of and/or precedence
constraints by a directed graph D on the set V = V ∪W of nodes. The set A of arcs
is constructed in the following way: For every waiting condition w = (X, j) ∈ W, we
introduce arcs (i, w), for each i ∈ X, and one additional arc (w, j). Notice that the size
of the resulting digraph D is linear in the input size of the problem. The sets V and W
form a bipartition of D. Similar digraphs are used to represent directed hypergraphs;
see, e.g., [10] and [9]. For a node j ∈ V ∪W, we use in(j) and out(j) to denote the
sets {i ∈ V ∪ W : (i, j) ∈ A} and {i ∈ V ∪ W : (j, i) ∈ A}, respectively. We also
sometimes use the notation inD(j) and outD(j) to stress the underlying digraph D.

The digraph resulting from Example 1 is depicted in Figure 2.1. For the moment,
the numbers associated with the arcs can be ignored; they come into play in section 7
when earliest job start times are computed. As usual, a cycle in D is a sequence
(v0, v1, . . . , vk, v0), v� ∈ V, where (v0, v1, . . . , vk) is a directed path and there exists an
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Fig. 2.1. The digraph resulting from Example 1. Circular nodes correspond to jobs (and-
nodes), while square nodes represent waiting conditions (or-nodes). Numbers associated with arcs
define time lags used in section 7 (the time lags of arcs without a number are 0).

arc from vk to v0. We also consider generalized cycles, which are induced subgraphs
D′ of D that consist of node sets V ′ ⊆ V and W ′ ⊆ W such that inD(j)∩W ′ �= ∅ for
each j ∈ V ′ and ∅ �= inD(w) ⊆ V ′ for each w ∈ W ′.

Realizations. Given a set V of jobs and a set W of waiting conditions, an imple-
mentation of the corresponding project requires a decision for each waiting condition
(X, j): One has to determine a job i ∈ X that job j should wait for. The entirety
of these decisions must lead to a partial order R = (V,≺R) on the set V of jobs (the
introduction of a cycle would lead to infeasibility) such that

for each (X, j) ∈ W, there exists an i ∈ X with i ≺R j.(2.1)

Conversely, every partial order R with property (2.1) defines an implementation of
the project and is therefore called a realization for the set W of waiting conditions.
In what follows, a set W of waiting conditions is called feasible if and only if there
exists a realization for W. Since any extension R′ = (V,≺R′) of a realization R (i.e.,
if i ≺R j, then i ≺R′ j) fulfills property (2.1), R′ is also a realization. In particular,
a set of and/or precedence constraints is feasible if and only if there exists a total
order of the jobs which is a realization; we call such a realization linear.

Possible linear realizations of Example 1 are, for instance, j1 ≺ · · · ≺ j7 and
j3 ≺ j6 ≺ j7 ≺ j2 ≺ j1 ≺ j4 ≺ j5.

3. Feasibility. In order to check whether a given set W of and/or precedence
constraints is feasible, we try to construct a linear realization L in a greedy way:
While there exists a job i ∈ V that is not a waiting job of any waiting condition
in W, it is inserted at the end of L. Whenever a waiting condition (X, j) becomes
satisfied (which is the case if some i ∈ X is being added to L), (X, j) is deleted from
W. Computational details are provided in Algorithm 1. We use a data structure Q
to temporarily store jobs from V . Implementing Q as a stack or a queue leads to a
linear-time algorithm.

Theorem 3.1. A set of and/or precedence constraints is feasible if and only if
the list L obtained from Algorithm 1 contains all jobs of V .
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Algorithm 1: Feasibility check of a set of waiting conditions.

Input : A set V of jobs and waiting conditions W.

Output: A list L of jobs from V .

Q := ∅; L := ∅;
for jobs j ∈ V do

a(j) := |{(X, j) ∈ W}|;
if a(j) = 0 then add j to Q;

while Q �= ∅ do
remove a job i from Q;
insert i at the end of L;

1 for waiting conditions (X, j) ∈ W with i ∈ X do
decrease a(j) by 1;
if a(j) = 0 then add j to Q;
remove (X, j) from W;

return L;

Proof. If L contains all jobs, it follows from the construction of Algorithm 1
that, for each waiting condition (X, j) ∈ W, there is at least one job i ∈ X with
i ≺L j; therefore, according to (2.1), L is a linear realization. Suppose now that
the algorithm returns an incomplete list L although the set of waiting conditions is
feasible. Consider a linear realization R and let j ∈ V \L be minimal with respect to
the total order ≺R. Since the algorithm was not able to add j to L, there is a waiting
condition (X, j) ∈ W with X ⊆ V \ L. Since R is a realization, there exists a job
i ∈ X with i ≺R j which is a contradiction of the minimal choice of j.

As a consequence of Theorem 3.1 we can formulate the following structural char-
acterization of feasible waiting conditions. The lemma appears implicitly already in
the work of Igelmund and Radermacher [14] within the context of stochastic resource-
constrained project scheduling.

Lemma 3.2. A set of and/or precedence constraints is feasible if and only if
there exists no generalized cycle in the associated digraph D.

Note that Example 1 is feasible (recall that we already stated two linear realiza-
tions). However, if w1 = ({j1, j5}, j4) is replaced by ({j5}, j4), the instance becomes
infeasible because V ′ = {j4, j5} and W ′ = {({j5}, j4), ({j4}, j5)} form a generalized
cycle.

The following corollary states an algorithmic consequence of the structural insight
of Lemma 3.2.

Corollary 3.3. Job j ∈ V is not contained in the list L returned by Algorithm 1
if and only if j is contained in a set V ′ ⊆ V such that for all i ∈ V ′ there is a waiting
condition (X, i) ∈ W with X ⊆ V ′.

In particular, L as a set does not depend on the individual jobs chosen from Q
in the while-loop of Algorithm 1.

In the proof of Theorem 3.1 we have shown that, for a feasible set of and/or

precedence constraints W, the list L returned by Algorithm 1 is a linear realization
of W. In fact, it is an easy observation that Algorithm 1 can generate every linear
realization of W through an appropriate choice of jobs from Q in the while-loop.

Remark. The problem of checking feasibility of W can alternatively be solved
by transforming it into a satisfiability problem (Sat) where each clause is of Horn
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type. Such Sat instances are well known to be solvable in linear time; see [7]. The
transformation and more details can be found in [26].

4. Detecting implicit AND/OR precedence constraints.

4.1. Problem definition and related work. We now focus on detecting “new”
waiting conditions that can be deduced from the given set W of constraints. For
U ⊂ V and j ∈ V \U , we say that the waiting condition (U, j) is implied by W if and
only if

for every realization R = (V,≺R) of W, there exists some i ∈ U with i ≺R j.(4.1)

By property (2.1), this is equivalent to the requirement that adding the waiting con-
dition (U, j) to W does not change the set of realizations for W. Notice that it is
sufficient to claim property (4.1) for every linear realization of W.

For traditional precedence constraints the detection of implied waiting condi-
tions is an easy task because the transitive closure which represents all such implicit
constraints can be efficiently computed by standard graph algorithms. However, in
general, the total number of implicit and/or precedence constraints is exponential
in the input size of V and W. In particular, it is not possible to compute all implicit
constraints efficiently. For the restricted case of and/or precedence constraints where
the associated digraph D is acyclic, Gillies [11] proposes an algorithm to determine
jobs that have to wait for a single job i.

In the context of directed hypergraphs, Ausiello, d’Atri, and Saccà [3] (see also
[4]) consider problems similar to those discussed in this section and in section 5 below.
However, the results we present are not contained in their work because their definition
of implicit hyperarcs differs from our definition of implicit waiting conditions. Their
definition is based on three rules which are known as Armstrong’s axioms within
the context of functional dependencies in relational databases (see, e.g., [27]). In
particular, [3, Definition 4] does not cover implications that can be deduced from the
requirement of feasibility. For instance, in Example 1, the waiting condition ({j1}, j4)
is implied by W, but it is not implied according to [3, Definition 4].

4.2. Result. For a given set U ⊆ V we show that Algorithm 1 can be used
to detect all implicit waiting conditions of the form (U, j). For an arbitrary subset
Y ⊆ V the set WY of induced waiting conditions is given by WY := {(X ∩ Y, j) |
(X, j) ∈ W, j ∈ Y }. For (X, j) ∈ W with j ∈ Y and X ∩ Y = ∅, the resulting waiting
condition (∅, j) ∈ WY means that job j cannot be planned at all with respect to WY ;
in particular, WY is infeasible in this case.

Theorem 4.1. For given U ⊂ V let L be the output of Algorithm 1 with input
V \ U and WV \U . The set of waiting conditions of the form (U, j) which are implied
by W is precisely {(U, j) | j ∈ V \ (L ∪ U)}.

The proof is deferred to section 4.3 below. For Example 1 and U := {j2, j3},
the algorithm computes L = {j1}, while for U := {j1, j2} we obtain L = {j3, j6, j7}.
Thus, the waiting condition ({j2, j3}, j7) is implied by W, while ({j1, j2}, j7) is not.

We can directly deduce the following corollary.
Corollary 4.2. Given U ⊂ V , the set of waiting conditions of the form (U, j)

that are implied by W can be computed in linear time.

4.3. Correctness. We next state some rather technical lemmas which directly
show the validity of Theorem 4.1. The theorem can alternatively be proved by a
simpler argumentation (similar to the proof of Theorem 3.1), but we need the lemmas
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to establish other results in section 5 below. In addition, with the extended argu-
mentation, we are able to strengthen Theorem 4.1 slightly (see Corollary 4.6). The
following definition will be useful throughout the discussion: For a given feasible set
W of waiting conditions and a set U ⊆ V let

YU := {j ∈ V \ U | (U, j) is not implied by W},
ZU := {j ∈ V \ U | (U, j) is implied by W} = V \ (U ∪ YU ) .

Lemma 4.3. Let W be a feasible set of waiting conditions and let U ⊆ V . Then
there exists a (linear) realization R = (V,≺R) of W such that YU is an order ideal of
R; i.e., R “starts” with the jobs in YU .

Proof. Let R′ = (V,≺R′) be a linear realization of W that maximizes the car-
dinality of the largest order ideal J of R′ with J ⊆ YU . To show that J = YU , by
contradiction, we assume that there is a job j′ ∈ YU \J . Since, by definition of YU , the
waiting condition (U, j′) is not implied by W, there is a linear realization R = (V,≺R)
of W with j′ ≺R U (j′ precedes all elements in U). Let j ∈ YU \ J be minimal with
respect to R. By maximality of J , job j cannot be moved to the position directly
after J in R′ without violating a waiting condition. Thus, there exists (X, j) ∈ W
with X ⊆ V \ J . By (2.1), there exists an i ∈ X with i ≺R j. Notice that we have
i �∈ U because i ≺R j 	R j′ ≺R U . Moreover, due to the minimal choice of j and the
fact that i �∈ J it follows that i �∈ YU . As a consequence we obtain i ∈ X \ (U ∪ YU ).
By definition of ZU , this yields i ∈ ZU . Thus, the waiting condition (U, i) is implied
by W, which is a contradiction of i ≺R j 	R j′ ≺R U .

Let us call a set Y ⊆ V feasible with respect to W if and only if the induced set
WY of waiting conditions is feasible. The result in Corollary 3.3 can then be restated
as follows.

Corollary 4.4. Algorithm 1 returns the unique maximal feasible subset of V
with respect to W.

In conjunction with the following lemma, Corollary 4.4 provides an efficient way of
detecting waiting conditions implied by W. This concludes the proof of Theorem 4.1
(in fact, the lemma essentially is a reformulation of Theorem 4.1).

Lemma 4.5. Let W be a feasible set of and/or precedence constraints, U ⊂ V ,
and j ∈ V \ U . Then the waiting condition (U, j) is implied by W if and only if j is
not contained in the unique maximal feasible subset of V \ U with respect to WV \U .

Proof. We have to show that YU is the unique maximal feasible subset F of V \U
with respect to WV \U . By Lemma 4.3, there exists a linear realization R of W starting
with the jobs in YU . This induces a linear realization of WYU

and consequently, by
definition, YU is feasible with respect to W. Moreover, since WYU

= (WV \U )YU
, the

subset YU is feasible with respect to WV \U , which yields YU ⊆ F .
To show that F ⊆ YU , by contradiction, assume that F \YU �= ∅. Since F ∩U = ∅

we then have F ∩ZU �= ∅. Let R′ = (F,≺R′) be a linear realization of WF and choose
i ∈ F ∩ZU minimal with respect to R′. Since i ∈ ZU , by definition of ZU , the waiting
condition (U, i) is implied by W. Therefore, moving job i to the position directly after
YU in R violates a waiting condition (X, i) ∈ W with X ⊆ U ∪ ZU . Let us consider
the induced waiting condition (X ∩F, i) ∈ WF . It follows from the minimal choice of
i that i′ �∈ F ∩ ZU for all i′ with i′ ≺R′ i. With F ∩ U = ∅, this implies i′ �∈ X ∩ F ,
which is a contradiction of the fact that R′ is a realization for WF .

Finally, notice that there may exist (implicit) waiting conditions (X, j) inside the
considered set U , i.e., X ⊂ U and j ∈ U \X. Theorem 4.1 can be strengthened in the
following way. Consider the situation after the execution of Algorithm 1 with input
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V \ U and WV \U and let L be the resulting list of jobs. Furthermore, let U ′ ⊆ U
denote the set of jobs from U that can be added to L without violating any waiting
condition of W.

Corollary 4.6. For given U ⊆ V the set of waiting conditions (U ′, j) which is
implied by W is precisely {(U ′, j) | j ∈ V \ (L ∪ U ′)}.

Proof. We show that the maximal feasible subsets F and F ′ of V \U and V \U ′,
respectively, coincide. The corollary then follows from Lemma 4.5. It is clear that
F ⊆ F ′ since U ′ ⊆ U . Conversely, suppose by contradiction that F ′ \ F �= ∅. Denote
by R = (V,≺R) and R′ = (V,≺R′) linear realizations of W where F and F ′ are order
ideals, respectively (the existence of R and R′ follows from Lemmas 4.3 and 4.5). Let
j ∈ F ′ \ F be the smallest job in F ′ \ F with respect to R′. Since j �∈ F , moving
job j in R to the position directly after F violates a waiting condition (X, j) with
X ∩ F = ∅. Since R′ is a realization there must exist some i ∈ X with i ≺R′ j. But
i ∈ F ′ \ F , which contradicts the minimal choice of j.

The results presented in this section turn out to be useful in the context of minimal
representations of and/or precedence constraints discussed in section 5. Besides this,
Corollary 4.6 led to a considerable speedup of computation time within branch-and-
bound procedures for stochastic resource-constrained project scheduling; see [26] for
details.

5. Minimal representations of AND/OR precedence constraints. While
for traditional precedence constraints a minimal representation without redundancies
is given by the transitive reduction and can be computed by simply removing re-
dundant (i.e., transitive) constraints, the situation is slightly more complicated for
and/or precedence constraints. In order to obtain a unique minimal representation,
it is not sufficient to iteratively remove redundant waiting conditions that are implied
by the others.

Definition 5.1. A set W of waiting conditions is called minimal if
(i) no waiting condition (X, j) ∈ W is implied by W \ {(X, j)}, and
(ii) for each waiting condition (X, j) ∈ W, the set X is minimal with respect to

inclusion; i.e., for all i ∈ X, the waiting condition (X \ {i}, j) is not implied by
W.

Two sets W and W ′ of waiting conditions are called equivalent if their sets of (lin-
ear) realizations coincide. Moreover, if W ′ is minimal, then W ′ is called a minimal
reduction of W.

The set W from Example 1 is not minimal: If the waiting condition ({j4, j5, j6}, j7)
is replaced by ({j4, j6}, j7), the resulting instance is equivalent to Example 1. This
follows from waiting condition ({j4}, j5), which ensures that whenever j5 ≺R j7 in
some realization R = (V,≺R) we also have j4 ≺R j5 and j4 ≺R j7. Note that if we
additionally replace ({j1, j5}, j4) by ({j1}, j4), the resulting set of waiting conditions
is minimal (and still equivalent to Example 1).

Theorem 5.2. Each feasible set of waiting conditions has a unique minimal
reduction.

To prove the theorem we need the following technical lemma.
Lemma 5.3. Let W be a feasible set of waiting conditions with (U, j) ∈ W. The

waiting condition (U, j) is implied by W ′ := W \ {(U, j)} if and only if there exists
some (X, j) ∈ W ′ with X ⊆ U ∪ ZU .

Proof. If (U, j) is implied by W ′, then any ordering of V where YU is an ideal
and j is placed directly after YU is not a realization of W ′. Thus, there exists some
(X, j) ∈ W with X ⊆ U ∪ZU . Contrarily, suppose that there exists some (X, j) ∈ W ′
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Algorithm 2: Computation of a minimal reduction.

Input : A set V of jobs and waiting conditions W.

Output: A minimal reduction of W

for each (U, j) ∈ W do
L := call Algorithm 1 with input V \ U and WV \U and

compute a(i) for each i ∈ V ;
if a(j) > 1 then

delete (U, j) from W;

else for i ∈ U do
if a(i) > 0 then delete i from U ;

return W;

with X ⊆ U ∪ZU but (U, j) is not implied by W ′. Then there exists some h ∈ X \U
and a linear realization R′ = (V,≺R′) of W ′ with YU ≺R′ h ≺R′ j ≺R′ U . Since W
is feasible, there exists some i ∈ U that can be moved to the position directly after
h without violating a waiting condition of W ′ (this follows from Corollary 4.6). In
addition, the resulting linear realization R = (V,≺R) satisfies the waiting condition
(U, j) and thus should be a realization with respect to W. However, we have h ≺R

i ≺R j ≺R U \ {i}, which is a contradiction of h ∈ ZU .

Proof of Theorem 5.2. Let W and W ′ be equivalent and both minimal. It suffices
to show that (U, j) ∈ W implies (U, j) ∈ W ′. By Lemma 4.3, there exists a linear
realization R of W starting with YU . Since the order obtained by moving j to the
position directly after YU in R is not a realization, there exists a waiting condition
(X, j) ∈ W ′ with X ⊆ U ∪ZU . We show next that U ⊆ X. By minimality of W ′ this
implies X = U , which concludes the proof.

Assume that X �⊇ U and let i ∈ U \ X. We obtain a linear realization R′ by
moving i to the position directly after YU in R; otherwise, there exists a waiting
condition (Z, i) ∈ W with Z ⊆ U ∪ ZU . Since all jobs in ZU have to wait for a job in
U , the waiting condition (U \ {i}, i), and thus (U \ {i}, j), is implied by W, which is
a contradiction of the minimality of W.

Since moving j to the position directly after YU ∪ {i} in R′ violates the waiting
condition (X, j), there exists a waiting condition (Z, j) ∈ W with Z ⊆ (U \ {i})∪ZU .
However, by Lemma 5.3, the set W \ {(U, j)} implies the waiting condition (U, j),
which is a contradiction of the minimality of W.

Let us next consider the following straightforward polynomial-time algorithm to
compute a minimal reduction of a set W of waiting conditions. For each (X, j) ∈ W,
apply Algorithm 1 with input V \X and WV \X . If, besides (X, j), some other waiting
condition prevents j from being added to L, then remove (X, j) from W. Otherwise,
remove all i from X, which cannot be added to L because some waiting condition of W
is violated. Finally, output the resulting set of waiting conditions. An implementation
of this rough scheme is given in Algorithm 2. There, a(j), j ∈ V , denotes the number
of waiting conditions of the form (X, j) that are left in WV \U after Algorithm 1 was
called with input V \U and WV \U . Notice that a(j) is computed within the execution
of Algorithm 1. In the following theorem we prove the correctness of the algorithm
(as defined earlier, A is the set of arcs in the digraph induced by W).

Theorem 5.4. Algorithm 2 computes the minimal reduction of a set W of waiting
conditions in O( |W| · |A| ) time.
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Proof. We first show that, through the procedure, the transformed set of waiting
conditions is equivalent to W given as input. We then argue that, once the algorithm
has finished, the obtained set of waiting conditions is minimal.

Denote by Wk, k ∈ {1, . . . , |W|}, the set of waiting conditions after the kth
iteration of the outer for-loop of Algorithm 2. Furthermore, let W0 := W. Suppose
that some (U, j) is removed from Wk−1 in the kth iteration of the algorithm. Since
a(j) > 1 in the kth iteration, there exists a waiting condition (X, j) ∈ Wk−1 with
X �= U and X ⊂ U ∪ZU . With Lemma 5.3, (U, j) is implied by Wk = Wk−1 \{(U, j)}
and can thus be deleted from Wk−1. Now assume that, in (U, j), some job i was
deleted from U in the kth iteration. Then a(i) > 0 and with Corollary 4.6 it follows
that (U \ {i}, i) is implied by Wk−1. Together with (U, j) this shows that (U \ {i}, j)
is implied by Wk−1. Thus, Wk−1 is equivalent to Wk for all k ∈ {1, . . . , |W|}, which
directly implies that W and W ′ := W |W| are equivalent.

We now show that W ′ is minimal. Let us first suppose that some (U, j) ∈ W ′ is
implied by W ′ \{(U, j)}. Then, by Lemma 5.3, there exists another waiting condition
(X, j) ∈ W ′\{(U, j)} with X ⊆ U∪ZU . Notice that ZU in dependence of W ′\{(U, j)}
and all Wk, k ∈ {0, . . . , |W|}, is constant because the associated sets of realizations
coincide. The waiting conditions (U, j) and (X, j) have been constructed in some
iterations k and k′, respectively, in which waiting conditions (U ′, j) ∈ W with U ⊆ U ′

and (X ′, j) ∈ W with X ⊆ X ′ have been treated by the algorithm. If (X, j) ∈ Wk−1,
then, by Lemma 5.3, (U ′, j) would have been removed from Wk−1. Consequently,
k′ > k. Since U was obtained from U ′ (in the kth iteration of the algorithm), by
Corollary 4.6, there exists a linear realization R which starts with YU and is followed
first by an arbitrary job i ∈ U and then by job j. Since, by assumption, Wk−1 and
W ′ \ {(U, j)} are equivalent, (X, j) must be respected by R; hence U ⊆ X. But
then (X ′, j) is deleted in iteration k′ > k, a contradiction. Next, suppose that W ′

contains a waiting condition (U, j) such that, for some i ∈ U , the waiting condition
(U \ {i}, j) is implied by W ′. Since i was not removed from U ′ in the kth iteration of
the algorithm, it follows from Corollary 4.6 that (U ′ \ {i}, j) is not implied by Wk−1.
Thus there exists a linear realization R = (V,≺R) of Wk−1 with j ≺R (U ′ \ {i}) and
in particular j ≺R (U \{i}). Since R is also a realization for W ′, the waiting condition
(U \ {i}, j) is not implied by W ′—a contradiction.

The above argumentation shows that W ′ is minimal and thus Algorithm 2 com-
putes a minimal reduction of W. Finally, the running time follows from the fact that
Algorithm 1 is called |W| times.

Notice that the cardinality of a minimal set of waiting conditions might still be
exponential in the number of jobs |V |: Let V = {1, 2, . . . , 2� + 1}; in order to model
the constraint that job 2�+ 1 can be planned only after at least � other jobs, we need
exactly

(
2�
�

)
waiting conditions.

6. An NP-complete generalization. Suppose that we generalize the defini-
tion of waiting conditions from (X, j), X ⊂ V , j ∈ V \X to (X,X ′) with X,X ′ ⊂ V
and X ∩X ′ = ∅. The generalized waiting condition (X,X ′) is fulfilled if at least one
job j ∈ X ′ is waiting for at least one job i ∈ X. We show in the theorem below that
the problems considered in sections 3 and 4 become NP-complete in this generalized
setting.

Theorem 6.1. Given a set of jobs with generalized waiting conditions, it is NP-
complete to decide whether or not a waiting condition ({i}, {j}) is implied for two
jobs i and j.
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Proof. We construct a reduction from the satisfiability problem Sat. Given an
instance of Sat, we introduce for each Boolean variable x two jobs which correspond
to the two literals x and x̄ (negation of x); to keep notation simple, we denote these
jobs also by x and x̄. Moreover, for each clause C we introduce a corresponding job
(also denoted by C) and a waiting condition (XC , {C}), where XC denotes the set
of literals in clause C; in other words, job C may not be started before at least one
job corresponding to a literal of clause C has been completed. Finally, we introduce
two additional jobs s and t together with the following waiting conditions: For each
variable x, at least one of the jobs x and x̄ has to wait for s; i.e., we have the waiting
condition ({s}, {x, x̄}). For each clause C, job t has to wait for the corresponding job,
which is given by the waiting condition ({C}, {t}).

It is easy to check that in the constructed scheduling instance job t has to wait
for job s if and only if the underlying instance of Sat does not have a satisfying
truth assignment. If there is a satisfying truth assignment, then we can construct
a linear realization where t precedes s in the following way: First we take all jobs
corresponding to literals with value “true” in an arbitrary order; next we append all
jobs corresponding to clauses in some order; afterwards we add t, then s, and finally all
remaining jobs corresponding to literals with the value “false.” On the other hand, if
there is a linear realization where t precedes s, we can define a corresponding satisfying
truth assignment in the following way: For each variable x, assign x the value true
(false) if the job corresponding to x (x̄) precedes s; notice that at most one of the two
cases can happen: if neither job x nor x̄ precedes s, we assign an arbitrary value to
the variable x.

As a consequence of Theorem 6.1, we obtain that the problem of deciding fea-
sibility for a set of generalized waiting conditions is also NP-complete. To see this,
add to the construction in the proof the waiting condition ({t}, {s}). Then the given
instance of Sat is feasible if and only if the constructed instance of the scheduling
problem with generalized waiting conditions is feasible.

7. Computing earliest job start times. This section is concerned with the
computation of earliest job start times subject to and/or precedence constraints.
The underlying problem is to find a solution to a system of min-max-inequalities.
There are several other applications of such systems of inequalities; we will mention
some of them below.

7.1. Problem definition and related work. For the remainder of the paper
we assume that together with each waiting condition w = (X, j) ∈ W and each job
i ∈ X we are given an integral time lag −M < diw < M , M � 0. We aim at finding
a vector of earliest start times S = (S1, . . . , Sn) such that for each waiting condition
(X, j) ∈ W the constraint

Sj � min
i∈X

(Si + diw)(7.1)

is satisfied. Job processing times pi can be modeled by setting diw := pi for all
w = (X, j) with i ∈ X. Negative values diw represent so-called maximal time lags
that define latest possible start times of jobs i ∈ X relative to j.

In order to simplify the presentation, we sometimes interpret nodes of the digraph
D that represent waiting conditions as dummy jobs. We then assume that the vector
S also contains start times of these dummy jobs and constraint (7.1) is replaced by

Sw � min
i∈X

(Si + diw) and Sj � Sw.
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We call the jobs in V and-nodes and the jobs in W or-nodes of the digraph D. We
assume that a dummy and-node s precedes all other and-nodes; i.e., we introduce a
waiting condition ({s}, j) for all j ∈ V . In D, time lags can easily be integrated by
associating each diw as a weight to the arc (i, w); see Figure 2.1.

The problem of finding earliest start times can then be formulated on D as follows:
Find a componentwise minimal schedule S ∈ Z

|V| fulfilling Ss � 0 and

Sj � max
(w,j)∈A

(Sw + dwj), j ∈ V ,

Sw � min
(j,w)∈A

(Sj + djw), w ∈ W.
(ES)

In the above formula we added the term dwj for symmetry reasons. Without loss
of generality we assume that dwj = 0. The case dwj �= 0 can be handled by replacing
dwj �= 0 by 0 and diw by diw + dwj for all i ∈ in(w). Besides schedules S ∈ Z

|V|

we also consider partial schedules S ∈ (Z ∪ {∞})|V| where the start time of a job
may be infinite, meaning that the job is not planned. As usual, a (partial) schedule
fulfilling the constraints of (ES) is called feasible. In particular, the partial schedule
S = (∞, . . . ,∞) fulfills all inequalities of (ES) and is thus feasible. Moreover, it is
easy to see that if S′ and S′′ are feasible partial schedules, then their component-
wise minimum S := min{S′, S′′} is also feasible. In particular, there always exists a
(unique) componentwise minimal partial schedule S∗, called the optimal partial sched-
ule (notice that S∗ � 0 for all and-nodes). It follows that, instead of considering the
above system of inequalities, we alternatively may consider the corresponding system
of equations (which is obtained from (ES) by replacing each “�” by “=”).

Presuming different restrictions on the range of arc weights, several algorithms
have been suggested to solve (ES). Note that all restrictions on arc weights are meant
to refer to arcs (j, w) between and-nodes j and or-nodes w only. For the case
of nonnegative arc weights without cycles of zero length in D, a modification of
Dijkstra’s shortest path algorithm can be applied. An algorithm suggested by Knuth
[16] has running time O( |V| log |V|+ |A| ). Other approaches are proposed in [6], [10],
and, in the context of resource-constrained project scheduling, [14] (see also [22]).
Levner, Sung, and Vlach [18] consider a generalized model of and/or precedence
constraints where a so-called threshold value 1 � �w � |X| is associated with each
waiting condition w = (X, j), indicating that j may start if at least �w jobs from X
have been completed. They show that Dijkstra’s shortest path algorithm can also be
generalized to solve their model (with positive arc weights). For a discussion of the
case with nonnegative arc weights and cycles of zero length we refer to subsection 7.4.
The general case −M < djw < M is a frequently studied problem with applications in
many different areas, e.g., game theory [29] and interface timing verification (see [24]
and [20]). Moreover, there are applications stemming from online optimization; see
[29, section 7] for a collection of examples. Interestingly, although a pseudopolynomial
algorithm to solve this case of (ES) is easily obtained, no algorithm polynomial in |V|
and log(M) is currently known.

7.2. Arbitrary arc weights. In this section we study the case of arbitrary arc
weights −M < djw < M .

7.2.1. Feasibility. For arbitrary arc weights the feasibility results stated in sec-
tion 3 are no longer valid. They are based on the requirement that all djw = pj > 0,
and, consequently, an and-node j can start if and only if for all (X, j) ∈ W at least
one i ∈ X has previously been started (compare with condition (2.1)). However, if we



SCHEDULING WITH AND/OR PRECEDENCE CONSTRAINTS 405

allow djw � 0, this is no longer the case. In what follows we derive a necessary and
sufficient feasibility criterion for (ES) with arbitrary arc weights which generalizes the
feasibility criterion given in Lemma 3.2. For the remainder of the section we call a
set W of waiting conditions feasible if and only if there exists a feasible schedule for
(ES).

Before we derive the criterion, we discuss how a given instance can be simplified
without changing the optimal partial schedule S∗. First, we make the problem more
restrictive by removing all but one incoming arc of each or-node w. If the remaining
arc (j, w) fulfills S∗

j + djw � S∗
w, clearly, all inequalities of (ES) are still satisfied.

Consequently, S∗ and the optimal (partial) schedule of the more restrictive instance
coincide. In a similar fashion we can remove all but one incoming arc (w, j) of each
and-node j without changing the earliest start times. However, removing such arcs
means relaxing the problem, and some more work has to be done in order to obtain
the desired result.

Lemma 7.1. For each digraph D representing a set of and/or precedence con-
straints, there exists a subdigraph D̄ on the same set V of nodes with |inD̄(j)| � 1
for all and-nodes j ∈ V such that S∗ = S̄∗, where S̄∗ denotes the optimal (partial)
schedule of D̄.

Proof. We construct D̄ by iteratively removing arcs (w, j) from D that do not
affect the earliest start time of the and-node j. By contradiction, assume that once
all such arcs have been removed, there is some and-node j with |inD̄(j)| > 1. Thus,
removing any incoming arc of j reduces the earliest start time of j. Denote by S1 and
S2 the optimal (partial) schedules obtained if two different incoming arcs (w1, j) and
(w2, j) are removed from D̄; then S∗

j > S1
j and S∗

j > S2
j . Without loss of generality

let S1
j � S2

j ; we define a new (partial) schedule S through

Si := min{S1
i + S2

j − S1
j , S

2
i } for all i ∈ V.

By definition, S � S2 and Sj = S2
j . For each arc (w, j) with w �= w2 we have

S2
j � S2

w, which yields Sj = S2
j � S2

w � Sw. For w = w2 we get Sj = S1
j + S2

j − S1
j �

S1
w + S2

j − S1
j � Sw. We obtain Sj � max(w,j)∈A(Sw). Furthermore, S also fulfills all

other inequalities of (ES), because both S1 + S2
j − S1

j and S2 fulfill the inequalities
and so does its minimum S. Consequently, S is a feasible (partial) schedule, which is
a contradiction of the minimality of S∗ since Sj < S∗

j .
For the subsequent presentation, recall the definition of a (generalized) cycle from

section 2. Note that we assume all cycles to be directed cycles.
Corollary 7.2. Let D̄ be as in Lemma 7.1. Then all cycles in D̄ have strictly

positive length.
Proof. Assume that there is a cycle (w1, j1, w2, j2, . . . , wk, jk, w1) of nonpositive

length in D̄. By definition of D̄, (w�, j�) is the only incoming arc for node j�, � =
1, . . . , k. Thus, one can construct a feasible partial schedule for D̄ satisfying

Sw1 = Sj1 = −1 and Sw�
= Sj� = −1 +

�∑

q=2

djq−1wq for � = 2, . . . , k.

With Lemma 7.1, this is also possible for the original digraph D, which yields a
contradiction of the requirement S∗

j1
� 0.

Lemma 7.3. A set of and/or precedence constraints with arbitrary arc weights
is feasible if and only if each generalized cycle in D contains a cycle of nonpositive
length.
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Proof. Let C be a generalized cycle which contains only cycles of positive length
and suppose that some node v ∈ C can be scheduled at Sv < ∞. Since v has at least
one incoming arc, there must exist a node u ∈ in(v) with Sv � Su + duv. Iterating
this argument, since |C| is finite, we obtain a cycle in C with nonpositive length—a
contradiction.

Conversely, suppose that the given instance is infeasible. Let Z �= ∅ denote the set
of nodes whose earliest start times are ∞. By Lemma 7.1, we can relax the problem
by removing all but one incoming arc of each and-node such that the earliest start
times remain unchanged for the resulting digraph D̄. Remove all or-nodes from Z
whose out-degree is 0 in D̄ and denote the resulting set of nodes by Z ′. Then Z ′

induces a generalized cycle C in D. Moreover, by definition of Z ′, every cycle in C is
also contained in D̄ and therefore has positive length by Corollary 7.2.

Lemma 7.3 reduces to Lemma 3.2 if all the arc weights djw are strictly positive.
Lemma 7.3 enables us to show that the decision problem of (ES) is in both NP and
co-NP. The decision problem corresponding to (ES) is to decide whether or not a
feasible schedule S < ∞ for (ES) exists.

Lemma 7.4. The decision problem corresponding to (ES) is in NP ∩ co-NP.
Proof. It is clear that the decision problem corresponding to (ES) is in NP because,

for a given feasible schedule S of some instance I, it is easy to verify all constraints
of W. Moreover, it follows from Lemma 7.3 that the decision problem corresponding
to (ES) is in co-NP. We can guess a generalized cycle violating the condition in
Lemma 7.3, which can be verified in polynomial time by, for example, some standard
minimum mean weight cycle algorithm.

7.2.2. A simple pseudopolynomial time algorithm. For the case of (ES)
with arbitrary arc weights several pseudopolynomial algorithms (partly independent
of each other) have been proposed; see, e.g., [5] and [25] as well as [24] and [29].
A very simple (pseudopolynomial) algorithm is as follows: First, initialize Sj := 0
for all j ∈ V . Then, while S violates some waiting condition w = (X, j) ∈ W, set
Sj := mini∈X(Si + diw). If Sj becomes larger than a given time horizon T , then stop
and return that the given instance is infeasible. The time horizon T can be chosen
as T :=

∑
j∈V (maxw∈out(j) |djw|). One can show straightforwardly by induction that

S � S∗ in each iteration of the algorithm. If the recurrence stops with Sj � T for
all j ∈ V , then all constraints are obviously fulfilled. Hence S � S∗ and thus we
have S = S∗. Moreover, at least one start time of a job is increased by 1 in each
iteration. Thus the number of iterations is O( |V | · T ). Finding a violated waiting
condition obviously requires at most O( |A| ) time and thus the total complexity is
O( |V | · |A| · T ). Note that for the special case that D is acyclic, earliest job start
times can easily be computed in linear time along a topological sort. Moreover, if each
and-node (or-node) has at most one incoming arc, node start times can be computed
by, for example, a slight modification of the Bellman–Ford shortest (longest) path
algorithm in time O( |V | · |A| ).

7.2.3. A game-theoretic application. We next consider a class of two-player
games played on bipartite directed graphs which are directly related to the problem
(ES). There exists substantial literature on different variations of this game; see, e.g.,
[29], [8], [15], [28], and references therein. Each player is identified with one of the node
partitions of the graph. The game starts at a fixed node j0 and the player associated
with that node chooses an incoming arc (w0, j0). Then, at node w0, the other player
chooses an incoming arc (j1, w0) and so on. The objective and the stopping criterion
depend on the considered variation of the game.
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One variant is the so-called mean payoff game (MPG), where an integer weight
is associated to each arc of the digraph. Furthermore, it is assumed that each node
has at least one incoming arc. The MPG is finished as soon as the path P resulting
from the game contains a cycle and the outcome ν of the game is the mean weight of
the arcs of that cycle. One player wants to maximize the outcome, while the other
player wants to minimize it. It has been shown by Ehrenfeucht and Mycielski [8] that
both players have positional optimal strategies; that is, the decisions of both players
depend on neither previous choices nor the start node j0. In the following we always
assume that j0 is associated with the maximization player.

The decision problem corresponding to MPG is to decide whether the outcome
of the game is positive. Zwick and Paterson [29] have noted that this problem is in
NP ∩ co-NP. Even more, Jurdziński [15] showed that the problem is in UP ∩ co-UP.
It seems to be intuitively clear that MPG and (ES) are closely related. We next show
that this is indeed the case.

Lemma 7.5. The decision problems corresponding to MPG and (ES) are polyno-
mially equivalent.

Proof. Given an instance of (ES), we construct an instance of MPG in the follow-
ing way. First, we add an additional job t and a waiting condition wj = ({j}, t) with
djwj

= 0 for every job j ∈ V ; moreover, we add a waiting condition w = ({t}, s) with
dtw = −T , where T is the time horizon discussed in section 7.2.2. Notice that there
exists a feasible schedule for the original instance of (ES) if and only if the earliest
start time of the new job t is finite. The game digraph D is now the digraph represent-
ing the new scheduling instance. The starting node is j0 := t and the maximization
player starts. We show that the set of and/or precedence constraints is feasible if
and only if ν � 0.

Only if : Based on an optimal schedule S∗ < ∞, we give a strategy for the
minimization player which ensures ν � 0: In each or-node w, choose an incoming arc
(j, w) with S∗

j + djw = S∗
w. Then, for two vertices v1 and v2 on the path formed by

the game, the weight of the (directed) subpath from v1 to v2 is at most S∗
v2
−S∗

v1
(for

each arc (w, j) on the path we have S∗
j � S∗

w and for each arc (j, w) on the path we
have S∗

w = S∗
j + djw). In particular, the length of the cycle terminating the game is

at most 0 (choose v1 = v2).

If : For an infeasible scheduling instance it follows from Lemma 7.3 that there ex-
ists a generalized cycle C in D which contains only cycles of positive length. Without
loss of generality, C contains the node t (if t is not in C, then consider the generalized
cycle where all waiting conditions ({j}, t) with j in C are added to C). We give a
strategy for the maximization player which ensures ν > 0: In each step, choose an arc
which starts at a node in C. Such an arc always exists by the definition of general-
ized cycles. Moreover, again by the definition of generalized cycles, the minimization
player is not able to leave C. This yields ν > 0.

Given a digraph D representing an instance of MPG, we construct an instance I
of (ES) in the following way. First, we assume without loss of generality that every
node in D associated to the minimization player has out-degree one—it is an easy
observation that a node with out-degree q > 1 can be replaced by q copies with out-
degree one without changing the outcome of the game. Moreover, we assume that
the weight of the only arc (w, j) leaving a node w associated to the minimization
player is 0. The case of dwj �= 0 can be handled by replacing dwj �= 0 by 0 and diw
by diw + dwj for all i ∈ in(w); recall the transformation in the second paragraph of
section 7.1.
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The set V of jobs in the instance I of (ES) is the set of nodes associated to
the maximization player. For each node w of the minimization player, we introduce
a waiting condition w = (inD(w), j) where outD(w) = {j}. The time lag diw for
i ∈ inD(w) is given by the corresponding arc weight in D. Moreover, we add a dummy
start node a preceding all other and-nodes. We refer to this scheduling instance as
I ′. Finally, in order to obtain the instance I, we modify every waiting condition
w = (X, j) with j �= j0 and j0 �∈ X by adding j0 to X and setting dj0w = T + 1;
in other words, if job j0 can be planned, then all other jobs can be planned, too. In
particular, instance I is feasible if and only if the earliest start time S∗

j0
of job j0 in

instance I ′ is finite. Thus, it remains to show that S∗
j0

< ∞ if and only if ν � 0.

Only if : Consider instance I ′. Based on the optimal partial schedule S∗ of
instance I ′ (Sj0 < ∞), we give a strategy for the minimization player which ensures
ν � 0: In each or-node w with S∗

w < ∞, choose an incoming arc (j, w) with S∗
j +djw =

S∗
w. As a consequence, S∗

i < ∞ for all nodes i visited during the game. Moreover, for
two vertices v1 and v2 on the path formed by the game, the weight of the (directed)
subpath from v1 to v2 is at most S∗

v2
− S∗

v1
. In particular, the length of the cycle

terminating the game is at most 0.

If : For an infeasible scheduling instance I, by Lemma 7.3, there exists a general-
ized cycle C in the corresponding digraph DI which contains only cycles of positive
length. Without loss of generality, C contains the node j0. Notice that C also forms
a generalized cycle for the digraph D. We give a strategy for the maximization player
which ensures ν > 0: In each step, choose an arc which starts at a node in C. Such
an arc always exists by the definition of generalized cycles. Moreover, again by the
definition of generalized cycles, the minimization player is not able to leave C. This
yields ν > 0.

With Lemma 7.5, it follows from [15] that the decision problem corresponding
to the scheduling problem (ES) is in UP ∩ co-UP. Moreover, MPG and hence also
(ES) can be computed in subexponential time: Zwick and Paterson [29] have shown
that so-called simple stochastic games are at least as hard as MPGs. The outcome of
simple stochastic games can be computed in subexponential time, as has been shown
by Ludwig [19]. Despite these observations, there is no polynomial-time algorithm for
(ES) with arbitrary arc weights known.

7.3. Positive arc weights. In this section we restrict ourselves to the case
of positive arc weights or, more generally, nonnegative arc weights without cycles
of length 0 in D. As in [16] and [6] we basically obtain a slight generalization of
Dijkstra’s shortest path algorithm. During the course of the algorithm we call a job
planned as soon as its start time has been fixed.

The algorithm maintains a partial schedule S ∈ (Z ∪ {∞})|V| where initially
Sw = ∞ for all or-nodes w. All or-nodes which are not yet planned are maintained
in a heap where the sorting key for node w is its tentative start time Sw (initially
Sw = ∞).

Having set Ss = 0 (and also Sw = 0 for all w ∈ out(s)) we proceed over time by
always choosing an or-node w = (X, j) with minimum start time from the heap and
plan w at its tentative start time Sw. If all other or-nodes (X ′, j) preceding j have
already been planned, we also plan j at the current time. In this case, the start times
of all or-nodes w′ with w′ ∈ out(j) are updated to Sw′ := min{Sw′ , Sj + djw′}. If
after termination some or-node w is started at Sw = ∞, the considered instance is
infeasible. Implementational details are given in Algorithm 3.

If we apply Algorithm 3 to Example 1 (arc weights are given in Figure 2.1), we
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Algorithm 3: Computation of earliest job start times for digraphs without cycles
of length 0.

Input : A directed graph D representing a set V of jobs and waiting con-
ditions W with positive arc weights on the arcs in V ×W.

Output: A feasible (partial) schedule S ∈ (Z ∪ {∞})|V|.

Heap := ∅;
for and-nodes j ∈ V do a(j) := |in(j)|;

1 Ss := 0; // and-node s is planned at time 0
for or-nodes w ∈ W do

if w ∈ out(s) then insert w in Heap with key Sw := 0;
else insert w in Heap with key Sw := ∞;

while Heap �= ∅ do
2 remove next or-node w0 = (X, j) from Heap; // or-node is planned

reduce a(j) by 1;
if a(j) = 0 then

3 Sj := maxw∈in(j) Sw; // and-node is planned
for or-nodes w ∈ out(j) do

Sw := min{Sw, Sj + djw};
decrease key of w in Heap to Sw;

delete node w0 and all incident arcs from D;

return S;

obtain the start times (0, 0, 0, 2, 3, 2, 3) for and-nodes and (2, 1, 2, 3, 3) for or-nodes.
One possible order in which start times get fixed is j1 ≺ j2 ≺ j3 ≺ w2 ≺ w1 ≺ j4 ≺
w3 ≺ j6 ≺ w5 ≺ j7 ≺ w4 ≺ j5.

Theorem 7.6. For a given set of and/or precedence constraints represented by a
digraph D = (V ∪W, A) with nonnegative arc weights and without cycles of length 0,
Algorithm 3 computes an optimal partial schedule S. In particular, the instance is
infeasible if and only if Sw = ∞ for some or-node w.

Proof. In this proof we say that an and-node is planned if its start time is fixed
(lines 1 and 3), while an or-node is planned if it is removed from the heap (line 2).

By construction of Algorithm 3, S is a feasible partial schedule. Assume that S is
not optimal and let v be a node with Sv > S∗

v and S∗
v minimal. If v is an and-node,

then there must exist an or-node w = (X, v) with Sw = Sv > S∗
v � S∗

w and we set
v := w. Otherwise, if v is an or-node (X, j), then there must exist an and-node
i ∈ X with S∗

v = S∗
i + div (otherwise S∗ is not minimal). Moreover, Si > S∗

i . To see
this suppose that Si = S∗

i . Then, at the stage of Algorithm 3 where Si is planned, v
has already been removed from D. Since start times (in the order in which nodes are
planned) are nondecreasing we have Sv � S∗

i , and hence Sv � Sv+div � S∗
i +div = S∗

v ,
a contradiction of Sv > S∗

v .

Since v was chosen such that S∗
v is minimal, we have S∗

i � S∗
v = S∗

i + div. Thus
div = 0 and we set v := i. Iterating this argument, we can construct a cycle (since
there are only finitely many nodes) of length 0—a contradiction.

Lemma 7.7. Algorithm 3 can be implemented to run in O( |W| log |W|+|A|+|V | )
time.

Proof. Since each or-node enters the heap precisely once, the while-loop is exe-
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cuted |W| times. Each and-node is planned only once and therefore the inner for-loop
is executed at most |A| times. If we choose a Fibonacci-heap for maintaining the or-
nodes, the cost of line 2 is log |W| and we obtain the claimed running time.

In contrast to previously proposed algorithms, the heap data structure maintains
only or-nodes, which leads to the improved running time O( |W| log |W|+ |A|+ |V | )
instead of O( (|V | + |W|) log(|V | + |W|) + |A| ).

7.4. Nonnegative arc weights. As an extension of the case discussed in sec-
tion 7.3 we present an O( |V | + |A| · |W| ) algorithm that is capable of dealing with
arbitrary arc weights djw � 0 and thus with cycles of length 0 in D. Levner, Sung,
and Vlach [18] observed that the algorithm proposed by Knuth [16] fails to compute
earliest job start times when cycles of length 0 occur.

After submission of this paper for publication, we learned that Adelson-Velsky
and Levner [1] also discovered a polynomial-time algorithm for the problem. Their
algorithm proceeds over time starting at time t = 0. For each t, the algorithm
determines all jobs to be started at t by an appropriate labeling procedure which
runs in O( |A| ) time. Thereafter, t is increased to the next tentative start time of
some job. It may happen, however, that for some t considered, no job is started.
Adelson-Velsky and Levner [1], [2] show that the number of times t is increased is
bounded by |A|. Consequently, they obtain an O( |A|2 ) algorithm. Due to a more
careful update of (tentative) start times of jobs, our algorithm’s worst-case running
time is O( |V | + |A| · |W| ).

Adelson-Velsky and Levner [2] misleadingly claim that our algorithm solves only a
special case of the problem (in which only a single arc leaves each or-node). A digraph
D with multiple arcs (w, j) leaving an or-node w can obviously be polynomially
transformed into a digraph where only a single arc leaves each or-node as follows:
Add a new and-node i, a new arc (w, i), and add a waiting condition (i, {j}) for each
arc (w, j). Then remove all arcs (w, j). With this transformation our algorithm’s
worst-case complexity is also O( |A|2 ) in the original input size. However, in Lemma
7.9 below we argue that our algorithm can also handle the case of multiple arcs leaving
an or-node directly without a transformation.

A rough scheme of the algorithm is as follows. Analogously to Algorithm 3 we
maintain all or-nodes w in a heap where the sorting key is its tentative start time Sw

(initially Sw = ∞). Furthermore, whenever an and-node j is planned, the start times
of all or-nodes w ∈ out(j) are updated to Sw = min{Sw, Sj + djw}. We proceed over
time starting at t = 0. For the current time t we compute a set U of (nonstarted)
nodes that can be started at t. The set U is computed by maintaining the induced
subgraph D0 of D where all planned nodes and all arcs of positive weight have been
deleted. In D0, the set U is computed as a set of nodes such that for each and-node
j, all predecessors w ∈ inD0(j) are also in U , and for each or-node w, at least one
predecessor j ∈ inD0(w) is also in U . Then, as we will prove in Theorem 7.8 below,
all nodes of U can be started at the current time t. Next we remove a new or-node
w from the heap and increase t to Sw. If t = ∞, the algorithm stops. Then either no
or-node was left in the heap (and we have computed a feasible schedule) or all or-
nodes w in the heap fulfill Sw = ∞ (indicating that the given instance is infeasible).
Details are provided in Algorithm 4.

If we apply Algorithm 4 to Example 1 with arc weights as in Figure 2.1 except
d5w1

= 0 and d4w4
= 0, we get the following:

Iteration 1: U = {j1, j2, j3}, w = w2, t := 1.
Iteration 2: U = {j4, j5, w1, w4}, w = w3, t := 2.
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Algorithm 4: Computation of earliest job start times for nonnegative time lags.

Input : A directed graph D representing a set V of jobs and waiting con-
ditions W with nonnegative arc weights on the arcs in V ×W.

Output: A feasible (partial) schedule S ∈ (Z ∪ {∞})|V|.

set D0 := D and remove all arcs with positive weight from D0;
t := 0;
Heap := ∅;
for or-nodes w ∈ W do

Sw := ∞;
insert w in Heap with key Sw;

while t < ∞ do
compute U ⊆ V(D0) maximal with

1 (inD0(j) ⊆ U ∀ j ∈ U ∩ V ) and (inD0(w) ∩ U �= ∅ ∀w ∈ U ∩W);
for and-nodes j ∈ U (j ∈ U ∩ V ) do

Sj := t; // node j is planned at time t
for or-nodes w ∈ outD(j) do

2 Sw := min{Sw, Sj + djw};
3 decrease key of w in Heap to Sw;

for or-nodes w ∈ U (w ∈ U ∩W) do
4 Sw := t; // node w is planned at time t

remove w from Heap;

Delete all nodes from U in D and D0;
if Heap �= ∅ then

5 remove the next or-node w from Heap;
6 t := Sw;
7 remove w from D and D0; // node w is planned at time t

else t := ∞;

return S;

Iteration 3: U = {j6}, w = w5, t := 2.
Iteration 4: U = {j7}, Heap = ∅, t := ∞.

Thus, we obtain start times (0, 0, 0, 1, 1, 2, 2) for and-nodes and (1, 1, 2, 1, 2) for or-
nodes.

Theorem 7.8. For a given set of and/or precedence constraints represented by
a digraph D = (V ∪W, A) with nonnegative weights on the arcs, Algorithm 4 computes
an optimal partial schedule S. In particular, the instance is infeasible if and only if
Sw = ∞ for some or-node w.

Proof. We first prove that the variable t never decreases; i.e., the algorithm
proceeds over time and tries to plan the jobs (and remove them from D and D0)
as early as possible in order of nondecreasing start times. Assume that t decreases
in line 6 of the algorithm and let t0 denote its value before the decrease. Since the
or-node w determining t was not chosen in line 5 during the last iteration of the
while-loop (when t was set to t0), its tentative start time Sw has decreased during the
current iteration in lines 2 and 3. This is a contradiction of Sj = t0 and djw � 0.

Observe that the start time Si of any node i ∈ V is never changed after the node
is planned (and thus deleted from the graphs D and D0).
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We can now prove that the partial schedule S returned by Algorithm 4 is feasible
by verifying all constraints of (ES). By construction of the algorithm, for an and-node
j ∈ V , every or-node w ∈ in(j) either has been planned before or is planned together
with j in the same iteration of the while-loop; this follows from the first property of
U in line 1. Thus, the constraint in (ES) corresponding to j is fulfilled.

Consider now an arbitrary or-node w ∈ W. If w is planned as part of a subset
U in line 4, it follows from the second property of U in line 1 that there is a job
j ∈ in(w) with djw = 0, and j is planned at the same time as w. Otherwise, if w is
planned in line 7 and Sw < ∞, the start time Sw of w must have been decreased in
some iteration of the while-loop in line 2; since the start time Sj of the node j ∈ V
causing the last decrease of Sw has not changed since then, Sw = Sj +djw in the final
partial schedule S. Thus, the constraint in (ES) corresponding to w is fulfilled.

Next we prove that the partial schedule S returned by Algorithm 4 is optimal.
Let S∗ be the optimal partial schedule and assume that there are nodes i ∈ V with
S∗
i < Si; we choose such an i′ with minimum S∗

i′ and set t0 := S∗
i′ ; let U0 = {i ∈ V |

t0 = S∗
i < Si}. We distinguish two cases.

First case. In some iteration of Algorithm 4, t adopts the value t0. We consider
the iteration of the while-loop in which t is increased above t0 in line 6. Let D0 be the
digraph at the beginning of the iteration and U the set computed at the start of this
iteration. Then U ∩U0 = ∅ and, by maximality of U , the set U ∪U0 cannot satisfy the
conditions in line 1. Since S∗ is a feasible partial schedule, the first condition of line 1
is valid for U ∪ U0, i.e., inD0(j) ⊆ U ∪ U0 for all j ∈ (U ∪ U0) ∩ V . Thus, the second
condition is violated: there exists a node w ∈ U0 ∩W with inD0(w) ∩ (U ∪ U0) = ∅.
Moreover, by optimality of S∗, there exists a node j ∈ inD(w) with S∗

w = S∗
j + djw,

in particular S∗
j � t0. We next show that Sj = S∗

j . If S∗
j < t0, the claim follows from

the minimality of t0. Otherwise, observe that j �∈ U0 (if j ∈ U0, we have j ∈ inD0(w),
which contradicts inD0(w) ∩ (U ∪ U0) = ∅). Then with S∗

j = t0 and j �∈ U0 it follows
from the definition of U0 that Sj = S∗

j . In particular, Sw has been set to Sj+djw = S∗
w

in line 2 after j was planned. Since Sw is never increased in Algorithm 4, we get a
contradiction of Sw > S∗

w.

Second case. The variable t never adopts the value t0 in Algorithm 4; in particular,
t0 > 0 and U0 = {i ∈ V | S∗

i = t0}. Since S∗ is optimal, decreasing all start times
S∗
j for j ∈ U0 to t0 − 1 violates a constraint of (ES). Thus, there exists a node

w ∈ U0 ∩ W such that S∗
w = S∗

j + djw for some j ∈ V with djw > 0, i.e., S∗
j < t0.

Therefore, Sj = S∗
j and Sw has been set to Sj+djw = S∗

w in line 2 after j was planned.
Since Sw is never increased in Algorithm 4, we get a contradiction of Sw > S∗

w.

The bottleneck for the running time of Algorithm 4 is the computation of the
set U in each iteration of the while-loop. In fact, it turns out that the linear-time
algorithm for checking feasibility of a set of and/or precedence constraints (for the
case of positive arc weights) provides an elegant and fast solution for this problem.

Lemma 7.9. Given a bipartite digraph D with node set N ∪ M and arc set A,
the (unique) maximal set U ⊆ N ∪ M with inD(w) ⊆ U for all w ∈ U ∩ N and
inD(j) ∩ U �= ∅ for all j ∈ U ∩M can be computed in linear time.

Proof. First, for U and U ′ fulfilling the conditions given in the lemma, their union
U∪U ′ also fulfills those conditions. Therefore, such a unique maximal subset U exists.

We show that U can be computed by applying essentially Algorithm 1 to an
appropriately constructed instance. Define the set V = M of jobs and the following set
W of waiting conditions: For each w ∈ N and each j ∈ outD(w), introduce a waiting
condition (inD(w), j). Notice that the input size of this instance is not necessarily



SCHEDULING WITH AND/OR PRECEDENCE CONSTRAINTS 413

linear in the input size of the given digraph D since the set inD(w) is stored once
for every j ∈ outD(w). We can avoid this undesired increase in the input size by
storing, for each w ∈ N , the corresponding waiting conditions as (inD(w), outD(w))
with the interpretation that every job in the second set is a waiting job for the first
set. Algorithm 1 can easily be adapted to handle this compactified input in linear
time by replacing the for-loop starting in line 1 with

for waiting conditions (X,Y ) ∈ W with i ∈ X do
for j ∈ Y do

decrease a(j) by 1;
if a(j) = 0 then add j to Q;

remove (X,Y ) from W;

By Corollary 3.3, Algorithm 1 computes a set L ⊆ V such that V ′ := V \ L is a
maximal subset of V with the following property: For all j ∈ V ′ there exists a waiting
condition (X, j) ∈ W with X ⊆ V ′. Thus, the set

U =
(
{w ∈ N | in(w) ⊆ V ′} ∪ V ′) ⊆ N ∪M

fulfills the conditions given in the lemma, i.e., inD(w) ⊆ U for all w ∈ U ∩ N and
inD(j)∩U �= ∅ for all j ∈ U ∩M . Assume that there is a bigger set U∗ ⊃ U that also
fulfills these conditions. By construction of U , there exists a node j ∈ M ∩ (U∗ \ U).
Since the set U∗ ∩ M of jobs has the property described in Corollary 3.3, we get a
contradiction of the maximality of V ′.

With the help of this lemma, we can now give a bound on the running time of
Algorithm 4.

Corollary 7.10. Algorithm 4 can be implemented to run in O( |W| · |A|+ |V | )
time.

Proof. First, all isolated and-nodes are planned and thus removed from D0 in
the first iteration of the while-loop. Moreover, in each iteration, at least one or-node
is removed from D0 and the number of iterations is thus bounded by |W|. Finally,
the running time of each iteration is dominated by the computation of U , which can
be done in O( |A| ) time.

Notice that, in the sense of Lemma 7.9, Algorithm 4 and its worst-case complexity
(Corollary 7.10) are both valid for digraphs D where or-jobs have multiple outgoing
arcs (of length 0).

8. Concluding remarks. The contribution of the paper is twofold. On the one
hand we have provided efficient algorithms for various basic problems that occur when
scheduling jobs subject to and/or precedence constraints (i.e., generalized feasibil-
ity, transitivity, and the computation of earliest start times of jobs for nonnegative
arc weights). On the other hand we have provided further insights for solving the
problem (ES) with arbitrary arc weights (−M ≤ djw ≤ M) that may help to design
a polynomial-time algorithm for this important problem. In particular, the feasibility
criterion (Lemma 7.3) and the algorithm for nonnegative arc weights (Algorithm 4)
may be helpful.
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