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Abstract. Many approximation results for single machine scheduling problems
rely on the conversion of preemptive schedules into (preemptive or non-preemp-
tive) solutions. The initial preemptive schedule is usually an optimal solution to
a combinatorial relaxation or a linear programming relaxation of the scheduling
problem under consideration. It therefore provides a lower bound on the optimal
objective function value. However, it also contains structural information which
is useful for the construction of provably good feasible schedules. In this context,
list scheduling in order of so-called α-points has evolved as an important and
successful tool. We give a survey and a uniform presentation of several approxi-
mation results for single machine scheduling with total weighted completion time
objective from the last years which rely on the concept of α-points.

1 Introduction

We consider the following single machine scheduling problem. There is a set of n jobs
J = {1, . . . , n} that must be processed on a single machines. Each job j has a non-
negative integral processing time pj , that is, it must be processed during pj time units.
The machine can process at most one job at a time. Each job j has a non-negative
integral release date rj before which it cannot be processed. In preemptive schedules, a
job may repeatedly be interrupted and continued later. In non-preemptive schedules, a
job must be processed in an uninterrupted fashion. There may be precedence constraints
between jobs. If j ≺ k for j, k ∈ J , it is required that j is completed before k can start.
We denote the completion time of job j by Cj and seek to minimize the total weighted
completion time: A non-negative weight wj is associated with each job j and the goal
is to minimize

∑
j∈J wjCj . In order to keep the presentation simple, we will almost

always assume that the processing times pj are positive integers and that wj > 0, for
all jobs j ∈ J . However, all results can be carried over to the case with zero processing
times and weights.

In scheduling, it is quite convenient to refer to the respective problems using the
standard classification scheme of Graham, Lawler, Lenstra, and Rinnooy Kan [20]. The
problems that we consider are special variants of the single machine scheduling prob-
lem 1| rj , prec (, pmtn) |

∑
wjCj . The entry “1” in the first field indicates that the

scheduling environment provides only one machine. The second field can be empty or
contains some of the job characteristics rj , prec, and pmtn, indicating whether there
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are nontrivial release dates or precedence constraints, and whether preemption is al-
lowed. We put an item in brackets to indicate that we consider both variants of the
problem, with and without the corresponding feature. The third field refers to the ob-
jective function. We are interested in minimizing the total weighted completion time∑

wjCj or, for the special case of unit weights, the total completion time
∑

Cj .
Scheduling with the total weighted completion time objective has recently achieved

a great deal of attention, partly because of its importance as a fundamental problem in
scheduling, and also because of new applications, for instance, in compiler optimization
[9] and in parallel computing [6]. In the last years, there has been significant progress in
the design of approximation algorithms for various special cases of the general single
machine problems 1| rj , prec (, pmtn) |

∑
wjCj ; see, e.g., [29, 21, 16, 11, 35, 17, 18,

36, 10, 1, 3].
Recall that a ρ-approximation algorithm is a polynomial-time algorithm guaran-

teed to deliver a solution of cost at most ρ times the optimal value; the value ρ is
called performance guarantee or performance ratio of the algorithm. A randomized
ρ-approximation algorithm is a polynomial-time algorithm that produces a feasible so-
lution whose expected objective function value is within a factor of ρ of the optimal
value.

For problems without precedence constraints, we also consider the corresponding
on-line setting where jobs arrive over time and the number of jobs is unknown in ad-
vance. Each job j ∈ J becomes available at its release date, which is not known in
advance; at time rj , we learn both its processing time pj and its weight wj . Even in
the on-line setting, the value of the computed schedule is compared to the optimal (off-
line) schedule. The derived bounds are called competitive ratios. While all randomized
approximation algorithms discussed in this paper can be derandomized in the off-line
setting without loss in the performance guarantee, there is a significant difference in the
on-line setting. It is well-known that randomized on-line algorithms often yield better
competitive ratios than any deterministic on-line algorithm can achieve (see, e. g., the
positive and negative results on the problem 1| rj |

∑
Cj in Table 1).

The conversion of preemptive schedules to nonpreemptive schedules in order to get
approximation algorithms was introduced by Phillips, Stein and Wein [29] and was
subsequently also used in [7, 11], among others. Phillips et al. [29], and Hall, Shmoys,
and Wein [22] introduced the idea of list scheduling in order of α-points to convert
preemptive schedules to non-preemptive ones. Even earlier, de Sousa [46] used this
idea heuristically to turn ‘preemptive’ solutions to a time-indexed linear programming
relaxation into feasible nonpreemptive schedules. For α ∈ (0, 1], the α-point of a job
with respect to a preemptive schedule is the first point in time when an α-fraction of
the job has been completed. Independently from each other, Goemans [16] and Chekuri,
Motwani, Natarajan, and Stein [11] have taken up this idea, and showed that choosingα
randomly leads to better results. Later, α-points with individual values of α for different
jobs have been used by Goemans, Queyranne, Schulz, Skutella, and Wang [17].

Table 1 summarizes approximation and on-line results based on the concept of α-
points which were obtained for the single machine scheduling problems under consid-
eration. These results are compared with the best known approximation and on-line
results and also with corresponding hardness results. In the absence of precedence
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Table 1. Summary of approximation results and non-approximability results. In all cases, ε > 0
can be chosen arbitrarily small. The bounds marked with one and two stars refer to random-
ized and deterministic on-line algorithms, respectively. The second column contains the results
discussed in this paper while the third column gives the best currently known results. The last
column contains the best known lower bounds, that is, results on the hardness of approximation.

Approximation and hardness results for single machine scheduling problems

problem α-points best known lower bounds

1| rj | Cj 1.5820∗ [11]
1 + ε [1]
2∗∗ [29]

1.5820∗ [48, 50]
2∗∗ [23]

1| rj | wjCj
1.6853∗ [17]
2.4143∗∗ [16]

1 + ε [1]
2∗∗ [3]

1.5820∗ [48, 50]
2∗∗ [23]

1| rj , pmtn | wjCj
4
3

∗ [36]
1 + ε [1]
2∗∗ [36]

1.038∗ [14]
1.073∗∗ [14]

1| prec | wjCj 2 + ε [35] 2 [21] ?

1| rj , prec | wjCj e + ε [35] ?

1| rj , prec, pmtn | wjCj 2 + ε [35] 2 [21] ?

constraints, polynomial-time approximation schemes have recently been obtained by
Afrati et al. [1]; however, list scheduling in order of α-points still leads to the best
known randomized on-line algorithms for these problems. For problems with prece-
dence constraints, the concept of α-points either yields the best known approximation
result (for the problem 1| rj , prec |

∑
wjCj) or only slightly worse results. It is one of

the most interesting open problems in the area of machine scheduling to obtain non-
approximability results for these problems [38, 51].

We mention further work in the context of α-points: Schulz and Skutella [37] ap-
ply the idea of list scheduling in order of α-points to scheduling problems on identical
parallel machines, based on a single machine relaxation and random assignments of
jobs to machines. Savelsbergh, Uma, and Wein [32] give an experimental study of ap-
proximation algorithms for the problem 1| rj |

∑
wjCj . In particular, they analyze list

scheduling in order of α-points for one single α and for individual values of α for dif-
ferent jobs. They also test the approximation algorithms within a branch and bound
scheme and apply it to real world scheduling instances arising at BASF AG in Lud-
wigshafen. Uma and Wein [49] extend this evaluation and study the relationship be-
tween several linear programming based lower bounds and combinatorial lower bounds
for the problems 1| rj |

∑
wjCj . The heuristic use of α-points for resource constrained

project scheduling problems was also empirically analyzed by Cavalcante, de Souza,
Savelsbergh, Wang, and Wolsey [5] and by Möhring, Schulz, Stork, and Uetz [26].

In this paper, we give a survey and a uniform presentation of the approximation re-
sults listed in the second column of Table 1. We start with a description and analysis
of simple list scheduling heuristics for non-preemptive and preemptive single machine
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scheduling in Section 2. The concept of α-points is introduced in Section 3. In Section 4
we review the result of Chekuri et al. for the problem 1| rj |

∑
Cj . Time-indexed LP

relaxations for general constrained single machine scheduling together with results on
their quality are discussed in Section 5. In Section 6 we review related results of Schulz
[34] and Hall, Schulz, Shmoys, and Wein [21] on list scheduling in order of LP comple-
tion times. The approximation results of Goemans et al. [17] and Schulz and Skutella
[36] for single machine scheduling with release dates are discussed in Section 7. The
results of Schulz and Skutella [35] for the problem with precedence constraints are
presented in Section 8. Finally, the application of these results to the on-line setting is
discussed in Section 9.

2 Non-preemptive and Preemptive List Scheduling

In this section we introduce and analyze non-preemptive and preemptive list scheduling
on a single machine for a given set of jobs with release dates and precedence constraints.
We consider both the non-preemptive and the preemptive variant of the problem and
argue that the class of list schedules always contains an optimal schedule. Finally we
discuss simple approximations based on list scheduling. Many results presented in this
section belong to the folklore in the field of single machine scheduling.

Consider a list representing a total order on the set of jobs which extends the partial
order given by the precedence constraints. A straightforward way to construct a feasible
non-preemptive schedule is to process the jobs in the given order as early as possible
with respect to release dates. This routine is called LIST SCHEDULING and a schedule
constructed in this way is a (non-preemptive) list schedule.

The first result for LIST SCHEDULING in this context was achieved by Smith [45]
for the case without release dates or precedence constraints and is known as Smith’s
ratio rule:

Theorem 1. LIST SCHEDULING in order of non-decreasing ratios pj/wj gives an op-
timal solution for 1| |

∑
wjCj in O(n log n) time.

Proof. Since all release dates are zero, we can restrict to schedules without idle time.
Consider a schedule S with two successive jobs j and k and pj/wj > pk/wk. Exchang-
ing j and k in S leads to a new schedule S′ whose value differs from the value of S by
wjpk − wkpj < 0. Thus, S is not optimal and the result follows. The running time of
LIST SCHEDULING in order of non-decreasing ratios pj/wj is dominated by the time
needed to sort the jobs, and is therefore O(n log n). $%

For the special case of unit weights (wj ≡ 1), Smith’s ratio rule is sometimes also
refered to as the shortest processing time rule (SPT-rule). We always assume that jobs
are numbered such that p1/w1 ! · · · ! pn/wn; moreover, whenever we talk about
LIST SCHEDULING in order of non-decreasing ratios pj/wj , we refer to this sequence
of jobs.

Depending on the given list and the release dates of jobs, one may have to introduce
idle time when one job is completed but the next job in the list is not yet released. On
the other hand, if preemptions are allowed, it does not make sense to leave the machine
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idle while another job at a later position in the list is already available (released) and
waiting. We would better start this job and preempt it from the machine as soon as the
next job in the list is released. In PREEMPTIVE LIST SCHEDULING we process at any
point in time the first available job in the list. The resulting schedule is called preemptive
list schedule. Special applications of this routine have been considered, e. g., by Hall et
al. [21] and by Goemans [15, 16]. An important property of preemptive list schedules
is that whenever a job is preempted from the machine, it is only continued after all
available jobs with higher priority are finished.

Since we can assume without loss of generality that j ≺ k implies rj ! rk , and since
the given list is a linear extension of the precedence order, the preemptive list schedule
respects precedence constraints and is therefore feasible. The following result on the
running time of PREEMPTIVE LIST SCHEDULING has been observed by Goemans [16].

Lemma 1. Given a list of n jobs, the corresponding list schedule can be created in
linear time while PREEMPTIVE LIST SCHEDULING can be implemented to run in
O(n log n) time.

Proof. The first part of the lemma is clear. In order to construct a preemptive list sched-
ule in O(n log n) time we use a priority queue that always contains the currently avail-
able jobs which have not been finished yet; the key of a job is equal to its position in
the given list. At each point in time we process the top element of the priority queue or
leave the machine idle if the priority queue is empty. There are two types of events that
cause an update of the priority queue: Whenever a job is completed on the machine,
we remove it from the priority queue; when a job is released, we add it to the priority
queue. This results in a total of O(n) priority queue operations each of which can be
implemented to run in O(log n) time. $%

As a consequence of the following lemma one can restrict to (preemptive) list
schedules.

Lemma 2. Given a feasible non-preemptive (preemptive) schedule, (PREEMPTIVE)
LIST SCHEDULING in order of non-decreasing completion times does not increase
completion times of jobs.

Proof. The statement for non-preemptive schedules is easy to see. LIST SCHEDULING

in order of non-decreasing completion times coincides with shifting the jobs in the given
non-preemptive schedule one after another in order of non-decreasing completion times
as far as possible to the left (backwards in time).

Let us turn to the preemptive case. We denote the completion time of a job j in
the given schedule by CP

j and in the preemptive list schedule by Cj . By construction,
the new schedule is feasible since no job is processed before its release date. For a
fixed job j, let t " 0 be the earliest point in time such that there is no idle time in the
preemptive list schedule during (t, Cj ] and only jobs k with CP

k ! CP
j are processed.

We denote the set of these jobs by K . By the definition of t, we know that rk " t, for
all k ∈ K . Hence, CP

j " t +
∑

k∈K pk. On the other hand, the definition of K implies
Cj = t +

∑
k∈K pk and therefore Cj ! CP

j . $%
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In PREEMPTIVE LIST SCHEDULING a job is only preempted if another job is re-
leased at that time. In particular, there are at most n − 1 preemptions in a preemptive
list schedule. Moreover, since all release dates are integral, preemptions only occur at
integral points in time. Therefore we can restrict to schedules meeting this property.
Nevertheless, we will sometimes consider schedules where preemptions can occur at
arbitrary points in time, but we always keep in mind that those scheduled can be con-
verted by PREEMPTIVE LIST SCHEDULING without increasing their value.

2.1 Simple Bounds and Approximations

One of the most important techniques for approximating NP-hard machine scheduling
problems with no preemptions allowed is the conversion of preemptive schedules to
non-preemptive ones. The first result in this direction has been given by Phillips et al.
[29]. It is a 2-approximation algorithm for the problem 1| rj |

∑
Cj .

Lemma 3. Consider LIST SCHEDULING according to a list j1, j2, . . . , jn. Then the
completion time of job ji, 1 ! i ! n, is bounded from above by

max
k!i

rjk +
∑

k!i

pjk .

Proof. For fixed i, modify the given instance by increasing the release date of job j1
to maxk!i rjk . The completion time of ji in the list schedule corresponding to this
modified instance is equal to maxk!i rjk +

∑
k!i pjk . $%

It is well known that the preemptive problem 1| rj , pmtn |
∑

Cj can be solved in
polynomial time by the shortest remaining processing time rule (SRPT-rule) [4]: Sched-
ule at any point in time the job with the shortest remaining processing time. The value
of this optimal preemptive schedule is a lower bound on the value of an optimal non-
preemptive schedule. Together with the following conversion result this yields the 2-
approximation algorithm of Phillips et al. [29] for 1| rj |

∑
Cj .

Theorem 2. Given an arbitrary feasible preemptive schedule P , LIST SCHEDULING

in order of non-decreasing completion times yields a non-preemptive schedule where
the completion time of each job is at most twice its completion time in P .

Proof. The proof follows directly from Lemma 3 since both maxk!irjk and
∑

k!i pjk

are lower bounds on CP
j (we use the notation of Lemma 3). $%

An instance showing that the job-by-job bound given in Theorem 2 is tight can be
found in [29].

2.2 A Generalization of Smith’s Ratio Rule to 1| rj, pmtn |
∑

wjCj

A natural generalization of Smith’s ratio rule to 1| rj, pmtn |
∑

wjCj is PREEMPTIVE

LIST SCHEDULING in order of non-decreasing ratios pj/wj . Schulz and Skutella [36]
give the following lower bound on the performance of this simple heuristic.



256 M. Skutella

Lemma 4. The performance guarantee of PREEMPTIVE LIST SCHEDULING in order
of non-decreasing ratios pj/wj is not better than 2, even if wj = 1 for all j ∈ J .

Proof. For an arbitrary n ∈ N, consider the following instance with n jobs. Let wj = 1,
pj = n2 − n + j, and rj = −n + j +

∑n
k=j+1 pk, for 1 ! j ! n. Preemptive list

scheduling in order of non-decreasing ratios of pj/wj preempts job j at time rj−1, for
j = 2, . . . , n, and finishes it only after all other jobs j − 1, . . . , 1 have been completed.
The value of this schedule is therefore n4 − 1

2n3 + 1
2n. The SRPT-rule, which solves

instances of 1| rj , pmtn |
∑

Cj optimally, sequences the jobs in order n, . . . , 1. It has
value 1

2n4 + 1
3n3 + 1

6n. Consequently, the ratio of the objective function values of the
SPT-rule and the SRPT-rule goes to 2 when n goes to infinity. $%

On the other hand, one can give a matching upper bound of 2 on the performance
of this algorithm. As pointed out in [36], the following observation is due to Goemans,
Wein, and Williamson.

Lemma 5. PREEMPTIVE LIST SCHEDULING in order of non-decreasing ratios pj/wj

is a 2-approximation for 1| rj , pmtn |
∑

wjCj .

Proof. To prove the result we use two different lower bounds on the value of an op-
timal solution Z∗. Since the completion time of a job is always at least as large as
its release date, we get Z∗ " ∑

j wjrj . The second lower bound is the value of an
optimal solution for the relaxed problem where all release dates are zero. This yields
Z∗ " ∑

j

(
wj

∑
k!j pk

)
by Smith’s ratio rule. Let Cj denote the completion time of

job j in the preemptive list schedule. By construction we get Cj ! rj +
∑

k!j pk and
thus ∑

j

wjCj !
∑

j

wjrj +
∑

j

(
wj

∑

k!j

pk

)
! 2 Z∗ .

This concludes the proof. $%

In spite of the negative result in Lemma 4, Schulz and Skutella [36] present an al-
gorithm that converts the preemptive list schedule (in order of non-decreasing ratios
pj/wj) into another preemptive schedule and achieves performance guarantee 4/3 for
1| rj , pmtn |

∑
wjCj ; see Section 7. The analysis is based on the observation of Goe-

mans [15] that the preemptive list schedule represents an optimal solution to an appro-
priate LP relaxation.

3 The Concept of α-Points

In this section we discuss a more sophisticated technique that converts feasible preemp-
tive schedules into non-preemptive ones and generalizes the routine given in Theorem 2.
The bounds discussed in this section are at the bottom of the approximation results pre-
sented below. Almost all important structural insights are discussed here. We are given
a single machine and a set of jobs with release dates and precedence constraints. Be-
sides, we consider a fixed feasible preemptive schedule P and the completion time of
job j in this schedule is denoted by CP

j .
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For 0 < α ! 1 the α-point CP
j (α) of job j with respect to P is the first point in

time when an α-fraction of job j has been completed, i. e., when j has been processed
on the machine for α pj time units. In particular, CP

j (1) = CP
j and for α = 0 we define

CP
j (0) to be the starting time of job j.
The average over all points in time at which job j is being processed on the machine

is called the mean busy time of j. In other words, the mean busy time is the average
over all α-points of j, i. e.,

∫ 1
0 CP

j (α) dα. This notion has been introduced by Goemans
[16]. If j is being continuously processed between CP

j −pj and CP
j , its mean busy time

is equal to CP
j − 1

2pj . Otherwise, it is bounded from above by CP
j − 1

2pj .
We will also use the following notation: For a fixed job j and 0 ! α ! 1 we

denote the fraction of job k that is completed by time CP
j (α) by ηk(α); in particu-

lar, ηj(α) = α. The amount of idle time that occurs before time CP
j (α) on the ma-

chine is denoted by tidle(α). The α-point of j can be expressed in terms of tidle(α) and
ηk(α):

Lemma 6. For a fixed job j and 0 ! α ! 1 the α-point CP
j (α) of job j can be written

as
CP

j (α) = tidle(α) +
∑

k∈J

ηk(α) pk "
∑

k∈J

ηk(α) pk ,

where ηk(α) denotes the fraction of job k that is completed by time CP
j (α).

3.1 List Scheduling in Order of α-Points

In Theorem 2 we have analyzed LIST SCHEDULING in order of non-decreasing com-
pletion times, i. e., in order of non-decreasing 1-points. Phillips et al. [29], and Hall et
al. [22] introduced the idea of LIST SCHEDULING in order of non-decreasing α-points
CP

j (α) for some 0 ! α ! 1. This is a more general way of capturing the structure
of the given preemptive schedule; it can even be refined by choosing α randomly. We
call the resulting schedule α-schedule and denote the completion time of job j in this
schedule by C α

j .
Goemans et al. [17] have further extended this idea to individual, i. e., job-dependent

αj-points CP
j (αj), for j ∈ J and 0 ! αj ! 1. We denote the vector consisting of

all αj’s by α = (α1, . . . ,αn). Then, the αj -point CP
j (αj) is also called α-point of j

and the α-schedule is constructed by LIST SCHEDULING in order of non-decreasing
α-points; the completion time of job j in the α-schedule is denoted by C α

j .
For the feasible preemptive schedule P , the sequence of the jobs in order of non-

decreasing α-points respects precedence constraints since j ≺ k implies CP
j (αj) !

CP
j ! CP

k (0) ! CP
k (αk). Therefore the corresponding α-schedule is feasible.

To analyze the completion times of jobs in an α-schedule, we also consider sched-
ules that are constructed by a slightly different conversion routine which is called
α-CONVERSION [17]. A similar procedure is implicitly contained in [11, proof of
Lemma 2.2].
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α-CONVERSION:
Consider the jobs j ∈ J in order of non-increasing α-points CP

j (αj) and
iteratively change the preemptive schedule P to a non-preemptive schedule by
applying the following steps:

i) remove the αj pj units of job j that are processed before CP
j (αj) and leave

the machine idle during the corresponding time intervals; we say that this
idle time is caused by job j;

ii) delay the whole processing that is done later than CP
j (αj) by pj ;

iii) remove the remaining (1 − αj)-fraction of job j from the machine and
shrink the corresponding time intervals; shrinking a time interval means to
discard the interval and move earlier, by the corresponding amount, any
processing that occurs later;

iv) process job j in the released time interval (CP
j (αj), CP

j (αj) + pj].

Figure 1 contains an example illustrating the action of α-CONVERSION. Observe that
in the resulting schedule jobs are processed in non-decreasing order of α-points and
no job j is started before time CP

j (αj) " rj . The latter property will be useful in the
analysis of on-line α-schedules in Section 9.

Lemma 7. The completion time of job j in the schedule computed by α-CONVERSION

is equal to

CP
j (αj) +

∑

k
ηk(αj )!αk

(
1 + αk − ηk(αj)

)
pk .

Proof. Consider the schedule constructed by α-CONVERSION. The completion time of
job j is equal to the idle time before its start plus the sum of processing times of jobs
that start no later than j. Since the jobs are processed in non-decreasing order of their
α-points, the amount of processing before the completion of job j is

∑

k
αk"ηk(αj)

pk . (1)

The idle time before the start of job j can be written as the sum of the idle time tidle(αj)
that already existed in the preemptive schedule P before CP

j (αj) plus the idle time
before the start of job j that is caused in steps i) of α-CONVERSION; notice that steps iii)
do not create any additional idle time since we shrink the affected time intervals. Each
job k that is started no later than j, i. e., such that ηk(αj) " αk, contributes αk pk units
of idle time, all other jobs k only contribute ηk(αj) pk units of idle time. As a result,
the total idle time before the start of job j can be written as

tidle(αj) +
∑

k
αk"ηk(αj )

αk pk +
∑

k
αk>ηk(αj)

ηk(αj) pk . (2)

The completion time of job j in the schedule constructed by α-CONVERSION is equal
to the sum of the expressions in (1) and (2); the result then follows from Lemma 6. $%
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Instance:

job j rj pj αj

1 0 2 1
8

2 1 2 5
8

3 2 1 1
4

4 4 2 1
8

ααα–schedule:

preemptive schedule P :

0 1 2 3 4 5 6 7 8 9

C2(α2)

ααα–CONVERSION:

C4(α4)

C3(α3)

C1(α1) idle time caused by job 4

Fig. 1. The conversion of an arbitrary preemptive schedule P to a non-preemptive one by α-
CONVERSION and by LIST SCHEDULING in order of non-decreasing α-points

It follows from Lemma 7 that the completion time Cj of each job j in the non-
preemptive schedule constructed by α-CONVERSION satisfies Cj " CP

j (αj) + pj "
rj + pj , hence is a feasible schedule. We obtain the following corollary.
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Corollary 1. The completion time of job j in an α-schedule can be bounded by

C α
j ! CP

j (αj) +
∑

k
ηk(αj)!αk

(
1 + αk − ηk(αj)

)
pk .

Proof. Since the schedule constructed by α-CONVERSION processes the jobs in order
of non-decreasing α-points, the result follows from Lemma 7 and Lemma 2. $%

3.2 Preemptive List Scheduling in Order of α-Points

Up to now we have considered non-preemptive LIST SCHEDULING in order of α-
points. For a vector α we call the schedule that is constructed by PREEMPTIVE LIST

SCHEDULING in order of non-decreasing α-points preemptive α-schedule. The com-
pletion time of job j in the preemptive α-schedule is denoted by C α−pmtn

j .
The reader might wonder why we want to convert a preemptive schedule into another

preemptive schedule. Later we will interpret solutions to time-indexed LP relaxations
as preemptive schedules. However, the value of these schedules can be arbitrarily bad
compared to their LP value. The results derived in this section will help to turn them
into provably good preemptive schedules.

Again, to analyze preemptive α-schedules we consider an alternative conversion
routine which we call PREEMPTIVE α-CONVERSION and which is a modification of α-
CONVERSION. The difference is that there is no need for causing idle time by removing
the αj -fraction of job j from the machine in step i). We rather process αj pj units of
job j. Thus, we have to postpone the whole processing that is done later than CP

j (αj)
only by (1 − αj) pj , because this is the remaining processing time of job j, which is
then scheduled in

(
CP

j (αj), CP
j (αj) + (1 − αj) pj

]
.

This conversion technique has been introduced by Goemans, Wein, and Williamson
[18] for a single α. Figure 2 contains an example illustrating the action of PREEMPTIVE

α-CONVERSION. Observe that, as in the non-preemptive case, the order of completion
times in the resulting schedule coincides with the order of α-points in P . Moreover,
since the initial schedule P is feasible, the same holds for the resulting schedule by
construction.

Lemma 8. The completion time of job j in the preemptive α-schedule can be bounded
by

C α−pmtn
j ! CP

j (αj) +
∑

k
ηk(αj )!αk

(
1 − ηk(αj)

)
pk . (3)

In the absence of nontrivial release dates, the same bound holds for the completion time
C α

j of job j in the non-preemptive α-schedule.

Proof. Using the same ideas as in the proof of Lemma 7 it can be seen that the right
hand side of (3) is equal to the completion time of job j in the schedule constructed by
PREEMPTIVE α-CONVERSION. The only difference to the non-preemptive setting is
that no additional idle time is caused by the jobs. Since the order of completion times
in the schedule constructed by PREEMPTIVE α-CONVERSION coincides with the order
of α-points, the bound in (3) follows from Lemma 2.
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7

preemptive ααα–schedule:

C1(α1)

C3(α3)

C4(α4)

C2(α2)

PREEMPTIVE ααα–CONVERSION:

preemptive schedule P :

0 1 2 3 4 5 6

Fig. 2. The conversion of the preemptive schedule P by PREEMPTIVE α-CONVERSION and by
PREEMPTIVE LIST SCHEDULING in order of non-decreasing α-points for the instance given in
Figure 1

In the absence of nontrivial release dates, PREEMPTIVE LIST SCHEDULING always
constructs a non-preemptive schedule that coincides with the non-preemptive list sched-
ule. In particular, C α

j = C α−pmtn
j and the bound given in (3) holds for C α

j too. $%

Lemma 6, Corollary 1, and Lemma 8 contain all structural insights in (preemptive)
α-schedules that are needed to derive the approximation results presented below.

3.3 Scheduling in Order of α-Points for Only One α

Corollary 1 and Lemma 6 yield the following generalization of Theorem 2 that was first
presented in [11]:
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Theorem 3. For each fixed 0 < α ! 1, the completion time of job j in the α-schedule
can be bounded by

C α
j !

(
1 +

1
α

)
CP

j (α) !
(
1 +

1
α

)
CP

j .

Proof. Corollary 1 and Lemma 6 yield

C α
j ! CP

j (α) +
∑

k
ηk(α)!α

(
1 + α− ηk(α)

)
pk

! CP
j (α) +

∑

k
ηk(α)!α

pk

! CP
j (α) +

∑

k
ηk(α)!α

ηk(α)
α

pk

!
(
1 +

1
α

)
CP

j (α) .

The second bound in Theorem 3 follows from the definition of α-points. $%

It is shown in [11] that the bound given in Theorem 3 is tight. The following lemma
is an analogue to Theorem 3 for preemptive α-schedules.

Lemma 9. For each fixed 0 < α ! 1, the completion time of job j in the preemptive
α-schedule can be bounded by

C α−pmtn
j ! 1

α
CP

j (α) ! 1
α

CP
j .

In the absence of nontrivial release dates the same bound holds for the completion time
C α

j of job j in the non-preemptive α-schedule.

Proof. Lemma 8 and Lemma 6 yield

C α−pmtn
j ! CP

j (α) +
∑

k
ηk(α)!α

(
1 − ηk(α)

)
pk

! CP
j (α) + (1 − α)

∑

k
ηk(α)!α

pk

! CP
j (α) +

1 − α

α

∑

k
ηk(α)!α

ηk(α) pk

! 1
α

CP
j (α) .

In the absence of nontrivial release dates the same bound holds for C α
j since the result

of Lemma 8 can be applied in this case too. $%
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4 An e/(e − 1)-Approximation Algorithm for 1| rj |
∑

Cj

In this section we present the result of Chekuri et al. [11] on the conversion of pre-
emptive to non-preemptive single machine schedules. Moreover, we discuss a class of
instances found by Goemans et al. [17] which shows that this result is tight, that is, it
yields a tight worst case bound on the value of an optimal non-preemptive schedule in
terms of the optimal value with preemptions allowed.

In Theorem 3 the best choice of α seems to be α = 1 yielding the factor 2 bound that
has already been determined in Theorem 2. The key insight of Chekuri et al. is that one
can get a better (expected) bound by drawing α randomly from [0, 1] instead of using
only one fixed value of α. The underlying intuition is that the completion time C α

j of a
given job j in the α-schedule cannot attain the worst case bound

(
1 + 1

α

)
CP

j (α) for all
possible choices of α. Moreover, although the worst case bound is bad for small values
of α, the overall α-schedule might be good since the total amount of idle time caused
by jobs in the first step of α-CONVERSION is small and the schedule is therefore short.

Theorem 4. For each job j, let αj be chosen from a probability distribution over [0, 1]
with density function f(x) = ex/(e− 1). Then, the expected completion time E[C α

j ] of
job j in the α-schedule can be bounded from above by e

e−1 CP
j , where CP

j denotes the
completion time of job j in the given preemptive schedule P .

Proof. To simplify notation we denote ηk(1) by ηk. For any fixed α, Corollary 1 and
Lemma 6 yield

C α
j ! CP

j (αj) +
∑

k
ηk!αk

(
1 + αk − ηk(αj)

)
pk

= CP
j (αj) +

∑

k
ηk!αk

(
ηk − ηk(αj)

)
pk +

∑

k
ηk!αk

(1 + αk − ηk) pk

! CP
j +

∑

k
ηk!αk

(1 + αk − ηk) pk .

In order to compute a bound on the expected completion time of job j, we integrate
the derived bound on C α

j over all possible choices of the random variables αk, k ∈ J ,
weighted by the given density function f . Since

∫ η

0
f(x) (1 + x − η) dx =

η

e − 1

for each η ∈ [0, 1], the expected completion time of job j can be bounded by

E[C α
j ] ! CP

j +
∑

k

pk

∫ ηk

0
f(αk) (1 + αk − ηk) dαk

= CP
j +

1
e − 1

∑

k

ηk pk ! e

e − 1
CP

j .

This concludes the proof. $%
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Theorem 4 is slightly more general than the original result in [11]. The only condi-
tion on the random choice of the vector α in Theorem 4 is that each of its entries αj has
to be drawn with density function f from the interval [0, 1]. Chekuri et al. only consider
the case where αj = α for each j ∈ J and α is drawn from [0, 1] with density function
f . However, the analysis also works for arbitrary interdependencies between the differ-
ent random variables αj , e. g., for jointly or pairwise independent αj . The advantage
of using only one random variable α for all jobs is that the resulting randomized ap-
proximation algorithm can easily be derandomized. We discuss this issue in more detail
below.

Corollary 2. Suppose that α is chosen as described in Theorem 4. Then, the expected
value of the α-schedule is bounded from above by e

e−1 times the value of the preemptive
schedule P .

Proof. Using Theorem 4 and linearity of expectations yields

E
[∑

j

wjC
α
j

]
=

∑

j

wjE[C α
j ] ! e

e − 1

∑

j

wjC
P
j .

This concludes the proof. $%

Since the preemptive problem 1| rj , pmtn |
∑

Cj can be solved in polynomial time
by the shortest remaining processing time rule, computing this optimal solution and
converting it as described in Theorem 4 is a randomized approximation algorithm with
expected performance guarantee e

e−1 for 1| rj |
∑

Cj .
The variant of this randomized algorithm with only one random variable α for all

jobs instead of individual αj’s is of special interest. In fact, starting from a preemptive
list schedule P (e. g., the one constructed by the SRPT-rule), one can efficiently com-
pute an α-schedule of least objective function value over all α between 0 and 1; we
refer to this schedule as the best α-schedule. The following proposition, which can be
found in [17], yields a deterministic e

e−1 -approximation algorithm with running time
O(n2) for the problem 1| rj |

∑
Cj .

Proposition 1. For a fixed preemptive list schedule P , there are at most n different
(preemptive) α-schedules; they can be computed in O(n2) time.

Proof. As α goes from 0 to 1, the α-schedule changes only whenever an α-point, say
for job j, reaches a time at which job j is preempted. Thus, the total number of changes
in the (preemptive) α-schedule is bounded from above by the total number of preemp-
tions. Since a preemption can occur in the preemptive list schedule P only whenever
a job is released, the total number of preemptions is at most n − 1, and the number of
(preemptive) α-schedules is at most n. Since each of these (preemptive) α-schedules
can be computed in O(n) time, the result on the running time follows. $%

For the weighted scheduling problem 1| rj |
∑

wjCj , even the preemptive variant
is strongly NP-hard, see [24]. However, given a ρ-approximation algorithm for one
of the preemptive scheduling problems 1| rj , (prec, ) pmtn |

∑
wjCj , the conversion

technique of Chekuri et al. can be used to design an approximation with performance
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ratio ρ e
e−1 for the corresponding non-preemptive problem. Unfortunately, this does

not directly lead to improved approximation results for these problems. In Section 8,
however, we present a more sophisticated combination of a 2-approximation algorithm
for 1| rj , prec, pmtn |

∑
wjCj with this conversion technique by Schulz and Skutella

[35], which yields performance guarantee e for the resulting algorithm.
Another consequence of Corollary 2 is the following result on the power of preemp-

tion which can be found in [17].

Theorem 5. For single machine scheduling with release dates and precedence con-
straints so as to minimize the weighted sum of completion times, the value of an optimal
non-preemptive schedule is at most e

e−1 times the value of an optimal preemptive sched-
ule and this bound is tight, even in the absence of precedence constraints.

Proof. Suppose that P is an optimal preemptive schedule. Then, the expected value of
an α-schedule, with α chosen as described in Theorem 4, is bounded by e

e−1 times
the value of the optimal preemptive schedule P . In particular, there must exist at least
one fixed choice of the random variable α such that the value of the corresponding
non-preemptive α-schedule can be bounded from above by e

e−1

∑
j wjCP

j .
To prove the tightness of this bound we consider the following instance with n " 2

jobs. There is one large job, denoted job n, and n−1 small jobs denoted j = 1, . . . , n−
1. The large job has processing time pn = n, weight wn = 1/n and release date rn = 0.
Each of the n − 1 small jobs j has zero processing time, weight wj = 1

n(n−1) (1 +
1

n−1 )n−j , and release date rj = j.
The optimal preemptive schedule has job n start at time 0, preempted by each of the

small jobs; hence its completion times are: Cj = rj for j = 1, . . . , n − 1 and Cn = n.
Its objective function value is (1+ 1

n−1 )n−(1+ 1
n−1 ) and approaches e−1 for large n.

Now consider an optimal non-preemptive schedule C∗ and let k = 'C∗
n( − n ≥ 0,

so k is the number of small jobs that can be processed before job n. It is then optimal
to process all these small jobs 1, . . . , k at their release dates, and to start processing
job n at date rk = k just after job k. It is also optimal to process all remaining jobs
k + 1, . . . , n − 1 at date k + n just after job n. Let Ck denote the resulting schedule,
that is, Ck

j = j for all j ≤ k, and Ck
j = k + n otherwise. Its objective function

value is (1 + 1
n−1 )n − 1

n−1 − k
n(n−1) . Therefore the optimal schedule is Cn−1 with

objective function value (1 + 1
n−1 )n − 1

n−1 − 1
n . Thus, as n grows large, the optimal

non-preemptive cost approaches e. $%

Unfortunately, the result of Theorem 5 cannot be easily extended to the case of unit
weights. The instance discussed in the proof of the theorem relies on the large number
of jobs with processing time zero whose weights are small compared to the weight of
the large job.

5 Time-Indexed LP Relaxations

As already mentioned in the last section, even the preemptive variants of the schedul-
ing problems 1| rj |

∑
wjCj and 1| prec |

∑
wjCj are NP-hard. In order to give ap-

proximation results for these problems, we consider a time-indexed LP relaxation of
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1| rj , prec, pmtn |
∑

wjCj whose optimal value serves as a surrogate for the true op-
timum in our estimations. Moreover, we interpret a solution to this relaxation as a so-
called fractional preemptive schedule which can be converted into a non-preemptive
one using the techniques discussed in the previous sections.

For technical reasons only, we assume in the following that all processing times
of jobs are positive. This is only done to keep the presentation of the techniques and
results as simple as possible. Using additional constraints in the LP relaxation, all results
presented can be carried over to the case with zero processing times.

The following LP relaxation is an immediate extension of a time-indexed LP pro-
posed by Dyer and Wolsey [13] for the problem without precedence constraints. Here,
time is discretized into the periods (t, t+1], t = 0, 1, . . . , T where T +1 is the planning
horizon, say T + 1 := maxj∈J rj +

∑
j∈J pj . We have a variable yjt for every job j

and every time period (t, t + 1] which is set to 1 if j is being processed in that time
period and to 0 otherwise. The LP relaxation is as follows:

minimize
∑

j∈J

wjC
LP
j

subject to
T∑

t=rj

yjt = pj for all j ∈ J , (4)

∑

j∈J

yjt ! 1 for t = 0, . . . , T , (5)

(LP )
1
pj

t∑

#=rj

yj# " 1
pk

t∑

#=rk

yk# for all j ≺ k and t = 0, . . . , T , (6)

CLP
j =

pj

2
+

1
pj

T∑

t=rj

yjt

(
t + 1

2

)
for all j ∈ J , (7)

yjt = 0 for all j ∈ J and t = 0, . . . , rj − 1,

yjt " 0 for all j ∈ J and t = rj , . . . , T .

Equations (4) say that all fractions of a job, which are processed in accordance with its
release date, must sum up to the whole job. Since the machine can process only one job
at a time, the machine capacity constraints (5) must be satisfied. Constraints (6) say that
at any point t + 1 in time the completed fraction of job k must not be larger than the
completed fraction of its predecessor j.

Consider an arbitrary feasible schedule P , where job j is being continuously pro-
cessed between CP

j − pj and CP
j on the machine. Then, the expression for CLP

j in
(7) corresponds to the real completion time CP

j of j, if we assign the values to the LP
variables yjt as defined above, that is, yjt = 1 if j is being processed in the time in-
terval (t, t + 1]. If j is not being continuously processed but preempted once or several
times, the expression for CLP

j in (7) is a lower bound on the real completion time. A
more precise discussion of this matter is given in Lemma 10 a) below. Hence, (LP ) is
a relaxation of the scheduling problem under consideration.
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A feasible solution y to (LP ) does in general not correspond to a feasible preemptive
schedule. Consider the following example:

Example 1. Let J = {1, . . . , n} with pj = 1 for all j ∈ J , wj = 0 for 1 ! j ! n − 1,
wn = 1 and j ≺ n for 1 ! j ! n − 1. We get a feasible solution to (LP ) if we set
yjt = 1

n for all j ∈ J and t = 0, . . . , T = n − 1.

In the solution to (LP ) given in Example 1 several jobs share the capacity of the
single machine in each time interval. Moreover, the precedence relations between job n
and all other jobs are not obeyed since fractions of job n are processed on the machine
before its predecessors are completed. However, the solution fulfills constraint (6) such
that at any point in time the completed fraction of job n is not larger than the completed
fraction of each of its predecessors.

Phillips et al. [29] introduced the term fractional preemptive schedule for a schedule
in which a job can share the capacity of one machine with several other jobs. We extend
this notion to the case with precedence constraints and call a fractional preemptive
schedule P feasible if no job is processed before its release date and, at any point in
time, the completed fraction of job j is not larger than the completed fraction of each
of its predecessors. Carrying over the definition of α-points to fractional preemptive
schedules, the latter condition is equivalent to CP

j (α) ! CP
k (α) for all j ≺ k and

0 ! α ! 1.

Corollary 3. The results presented in Section 3, in particular Lemma 6, Corollary 1,
and Lemma 9, still hold if P is a fractional preemptive schedule.

Proof. The proofs of the above-mentioned results can directly be carried over to the
more general setting of fractional preemptive schedules. $%

We always identify a feasible solution to (LP ) with the corresponding feasible
fractional preemptive schedule and vice versa. We mutually use the interpretation that
seems more suitable for our purposes. The expression for CLP

j in (7) is called the LP
completion time of job j.

The following lemma highlights the relation between the LP completion times and
the α-points of jobs in the corresponding fractional preemptive schedule for a feasible
solution to (LP ). The observation in a) is due to Goemans [16]; it says that the LP
completion time of job j is the sum of half its processing time and its mean busy time.
An analogous result to b) was given in [22, Lemma 2.1] for a somewhat different LP.

Lemma 10. Consider a feasible solution y to (LP ) and the corresponding feasible
fractional preemptive schedule P . Then, for each job j:

a) CLP
j =

pj

2
+

1
pj

T∑

t=rj

yjt

(
t + 1

2

)
=

pj

2
+

∫ 1

0
CP

j (α) dα ! CP
j

and equality holds if and only if CP
j = CP

j (0) + pj;

b) CP
j (α) ! 1

1 − α
CLP

j for any constant α ∈ [0, 1) and this bound is tight.
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Proof. For a job j ∈ J , we denote by ζt
j , t = rj , . . . , T + 1, the fraction of j that is

finished in the fractional preemptive schedule P by time t. Since 0 = ζ
rj

j ! ζ
rj+1
j !

· · · ! ζT+1
j = 1, we get

∫ 1

0
CP

j (α) dα =
T∑

t=rj

∫ ζt+1
j

ζt
j

CP
j (α) dα

=
T∑

t=rj

(
ζt+1
j − ζt

j

) (
t + 1

2

)

since CP
j (α) = t + α−ζt

j

ζt+1
j −ζt

j

for α ∈ (ζt
j , ζ

t+1
j ],

=
T∑

t=rj

yjt

pj

(
t + 1

2

)
.

The machine capacity constraints (5) yield CP
j (α) ! CP

j − (1 − α) pj for α ∈ [0, 1],
thus ∫ 1

0
CP

j (α) dα ! CP
j − pj

∫ 1

0
(1 − α) dα = CP

j − pj

2
.

Equality holds if and only if CP
j (α) = CP

j − (1 − α) pj for 0 ! α ! 1, which is
equivalent to CP

j (0) = CP
j − pj . This completes the proof of a). As a consequence we

get for α ∈ [0, 1]

(1 − α)CP
j (α) !

∫ 1

α
CP

j (x) dx !
∫ 1

0
CP

j (x) dx ! CLP
j .

In order to prove the tightness of this bound, we consider a job j with pj = 1, rj = 0
and an LP solution satisfying yj0 = α − ε and yjT = 1 − α + ε, where ε > 0 small.
This yields CLP

j = 1 + (1 − α + ε)T and CP
j (α) " T . Thus, for ε arbitrarily small

and T arbitrarily large, the given bound gets tight. $%

As a result of Lemma 10 b) the value of the fractional preemptive schedule given by
a solution to (LP ) can be arbitrarily bad compared to its LP value. Nevertheless, one
can use the information that is contained in the structure of an LP solution in order to
construct a feasible schedule whose value can be bounded in terms of the LP value, as
will be shown in the following sections.

Notice that we cannot solve (LP ) in polynomial time, but only in pseudo-polyno-
mial time, since T and therefore the number of variables yjt is only pseudo-polynomial
in the input size of the problem. Schulz and Skutella [37] describe a closely related and
only slightly worse LP relaxation of polynomial size in the general context of unrelated
parallel machines. The idea is to change to new variables which are not associated with
exponentially many time intervals of length 1, but rather with a polynomial number of
intervals of geometrically increasing size. We omit the technical details in this survey.
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In the absence of precedence constraints, it was indicated by Dyer and Wolsey [13]
that (LP ) can be solved in O(n log n) time. Goemans [15] developed the following
result (see also [17]).

Theorem 6. For instances of the problems 1| rj (, pmtn) |
∑

wjCj , the linear pro-
gramming relaxation (LP ) can be solved in O(n log n) time and the preemptive list
schedule in order of non-decreasing ratios pj/wj corresponds to an optimal solution.

Proof. In the absence of precedence relations, constraints (6) are missing in (LP ).
Moreover, we can eliminate the variables CLP

j from the relaxation by plugging (7)
into the objective function. What remains is a transportation problem and, as a result,
yjt can be assumed to be integral.

The remaining part of the proof is based on an interchange argument: Consider any
optimal 0/1-solution y to (LP ) and suppose that j < k (such that pj/wj ! pk/wk),
rj ! t < τ , and ykt = yjτ = 1. Then, replacing ykt = yjτ by 0 and ykτ = yjt by
1 gives another feasible solution to (LP ) with an increase in the objective function of
(τ − t)

(
wk
pk

− wj

pj

)
! 0. Thus, the new solution is also optimal and through iterative

application of this interchange argument we arrive at the solution that corresponds to
the preemptive list schedule in order of non-decreasing ratios pj/wj . $%

It follows from Theorem 6 that in the absence of precedence constraints and release
dates an optimal single machine schedule corresponds to an optimal solution to (LP ).
Moreover, if we allow release dates and preemption, the optimal solution to (LP ) de-
scribed in Theorem 6 is a feasible schedule that minimizes the weighted sum of mean
busy times. It is also shown in [17] that, in the absence of precedence constraints, the
LP relaxation (LP ) is equivalent to an LP in completion time variables which defines
a supermodular polyhedron.

5.1 Another Time-Indexed LP Relaxation

For the non-preemptive problem 1| rj |
∑

wjCj Dyer and Wolsey [13] also proposed
another time-indexed LP relaxation that can easily be extended to the setting with prece-
dence constraints; see Figure 3. Again, for each job j and each integral point in time
t = 0, . . . , T , we introduce a decision variable xjt. However, now the variable is set to
1 if j starts processing at time t and to 0 otherwise. Note that the xjt variables do not
have the preemptive flavor of the yjt variables and therefore lead to an LP relaxation
for non-preemptive single machine scheduling only.

In the absence of precedence constraints, Dyer and Wolsey showed that this relax-
ation is stronger than (LP ). In fact, even for instances with precedence constraints,
every feasible solution to (LP ′) can easily be transformed into a solution to (LP ) of
the same value by assigning

yjt :=
t∑

#=max{0,t−pj+1}

xj# for j ∈ J and t = 0, . . . , T .

In particular, we can interpret a feasible solution to (LP ′) as a feasible fractional pre-
emptive schedule and the results in Lemma 10 also hold in this case.
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minimize
j∈J

wjC
LP
j

subject to
T

t=rj

xjt = 1 for all j ∈ J ,

j∈J

t

!=max{0,t−pj+1}

xj! ! 1 for all t = 0, . . . , T , (8)

(LP ′)
t

!=rj

xj! "
t+pj

!=rk

xk! for all j ≺ k and t = rj , . . . , T − pj , (9)

CLP
j = pj +

T

t=rj

t xjt for all j ∈ J ,

xjt = 0 for all j ∈ J and t = 0, . . . , rj − 1, (10)

xjt " 0 for all j ∈ J and t = rj , . . . , T .

Fig. 3. The time-indexed LP relaxation (LP ′)

5.2 Combinatorial Relaxations

In this subsection we show that the LP relaxation (LP ′) is equivalent to a combinatorial
relaxation of 1| rj , prec |

∑
wjCj . We interpret an instance of this scheduling problem

as a game for one person who is given the set of jobs J and the single machine and
wants to find a feasible schedule of minimum value.

We consider the following relaxation of this game: Assume that there are k players
1, . . . , k instead of only one. Each player i is given one machine and a set of jobs
Ji = J . Moreover, the players are allowed to cooperate by exchanging jobs. To be more
precise, a job of player i can be scheduled on an arbitrary machine rather than only on i’s
machine. However, each player has to respect release dates and precedence constraints
of his jobs. The aim is to minimize the average over all players of the weighted sum of
completion times of their jobs. This relaxation is called k-player relaxation, a feasible
solution is a k-player schedule. Moreover, if k is not fixed but can be chosen, we call
the resulting relaxation multi-player relaxation and a feasible solution is a multi-player
schedule.

As an example, consider the following single machine instance without precedence
constraints consisting of four jobs:

job j rj pj wj

1 6 2 6

2 0 3 3

3 0 2 2

4 0 2 2
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Note that job 1 is the most important job. The instance is constructed such that either at
least one unit of idle time has to be introduced before the start of job 1 or this job has
to be delayed until time 7. Both alternatives are optimal and give a schedule with value
87. However, there exists a 2-player schedule of value 83.5: Both players start their first
job at time 6. Player 1 starts his second job at time 0 and then, at time 3, the second job
of player 2 on his machine. Player 2 processes the four remaining jobs of length 2 in
the intervals (0, 6] and (8, 10] on his machine. Notice that the two players neither delay
their first jobs nor introduce idle time before their start. As a result of this example we
get the following corollary.

Corollary 4. The 2-player relaxation is not better than a 174
167 -relaxation for the prob-

lem 1| rj |
∑

wjCj .

The negative result in Corollary 4 can be slightly improved to a bound of 1 +
1/(2

√
55+9) > 174

167 by increasing the processing time of job 1 to (
√

55− 3)/2 and its
weight to

√
55 − 1. The main result of this subsection is the following theorem:

Theorem 7. The LP relaxation (LP ′) of the problem 1| rj , prec |
∑

wjCj is equiva-
lent to the multi-player relaxation.

Proof. We first argue that each k-player schedule corresponds to a feasible solution of
(LP ′) with the same value: For all j ∈ J and t = 0, . . . , T let xjt be the number of
players whose job j ∈ Ji is started at time t divided by k. It follows from the definition
of the relaxation that x satisfies all constraints of (LP ′) and is thus a feasible solution.
To understand that constraints (9) are fulfilled, observe that each player has to respect
the precedence constraints of his jobs. Moreover, the value of x is equal to the value of
the k-player schedule by definition of x.

On the other hand, we can show that for each feasible solution x whose values xjt

are all rational numbers there exists a k such that x corresponds to a feasible solution
of the k-player relaxation. Let k be the least common multiple of the denominators of
the rational values xjt. For each job j ∈ J and each player i = 1, . . . , k, let tji the
smallest integer such that

∑tji

#=0 xjt " i
m . The value tji is the starting time of i’s job

j in the k-player schedule that we construct by induction over t = 0, . . . , T : At time
t = 0 start all jobs j ∈ J of players i with tji = 0 on the k machines. Notice that the
number of these job-player pairs is bounded by k since

∑
j∈J xj0 ! 1 by constraints

(8). Assume that for all players i all jobs j with tji < t have been started at time tji.
Then, the number of idle machines at time t is equal to

k
(
1 −

∑

j∈J

t−1∑

#=max{0,t−pj+1}

xj#

)
.

Therefore, by constraints (8), there are sufficiently many idle machines at time t such
that all jobs j of players i with tji = t can be started. This k-player schedule respects
release dates by constraints (10). Moreover, for a pair of jobs j ≺ k and each player i
we get tji + pj ! tki by the definition of the tji’s and constraints (9). $%
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Similar interpretations of time-indexed LP relaxations have been given by van den
Akker [2, Proof of Theorem 3.1] and Schulz [33]. Chan, Muriel, and Simchi-Levi [8]
used this idea to prove results on the quality of those time-indexed LP relaxations.

It is an interesting direction for future research to investigate how the structure of an
optimal k-player schedule can be used to construct provably good schedules. Another
interesting question is if one can restrict to special values of k in order to get an optimal
multi-player schedule, e. g., k ! n or k ∈ O(n), or values of k depending on the given
instance. This would also yield results on the structure of the polyhedron corresponding
to (LP ′), i. e., results on an optimal vertex or on general vertices (like 1

n -integrality
etc.).

Another interesting topic is the complexity of the k-player relaxation for special
values of k. Of course, it is NP-hard for k = 1. We conjecture that it is NP-hard to
find an optimal k-player schedule for each fixed k. We also guess that it is NP-hard
to compute an optimal multi-player schedule when k is not fixed but bounded by the
number of jobs n.

5.3 On the Quality of Time-Indexed LP Relaxations

We conclude this section with negative and positive results on the quality of the relax-
ations (LP ) and (LP ′). The positive results follow from the LP-based approximations
discussed in the following sections. The lower bound for (LP ) and 1| rj |

∑
wjCj is

due to Goemans et al. [17]. A summary of the results is given in Table 2.

Theorem 8.

a) The LP relaxations (LP ) and (LP ′) are 2-relaxations for the scheduling problem
1| prec |

∑
wjCj and this bound is tight.

b) (LP ) is a 2-relaxation for the problem 1| rj , prec, pmtn |
∑

wjCj and this bound
is tight.

c) (LP ) and (LP ′) are e-relaxations for the problem 1| rj , prec |
∑

wjCj and not
better than 2-relaxations.

d) (LP ) is a 4
3 -relaxation and not better than an 8

7 -relaxation for the scheduling prob-
lem 1| rj , pmtn |

∑
wjCj .

e) (LP ) is a 1.6853-relaxation and not better than an e
e−1 -relaxation for the problem

1| rj |
∑

wjCj .
f) (LP ′) is a 1.6853-relaxation and not better than a 174

167 -relaxation for the problem
1| rj |

∑
wjCj

(
174
167 ≈ 1.0419

)
.

Proof. It is shown in Section 8 that (LP ) is a 2-relaxation for 1| prec |
∑

wjCj and
1| rj , prec, pmtn |

∑
wjCj , and an e-relaxation for the problem 1| rj , prec |

∑
wjCj .

Moreover, as mentioned above, (LP ′) is a stronger relaxation than (LP ) for the non-
preemptive problems. To prove the negative results in a), b), and c) we use the instance
given in Example 1 and consider the feasible solutions to (LP ) and (LP ′) given by
yjt = xjt = 1

n for j = 1, . . . , n − 1 and t = 0, . . . , n − 1; moreover, we set ynt =
xnt = 1

n for t = 1, . . . , n. The value of an optimal schedule is n whereas the value
of the given solutions to (LP ) and (LP ′) is n+3

2 . When n goes to infinity, the ratio of
these two values converges to 2.
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Table 2. Summary of results on the quality of the time-indexed LP relaxations (LP ) and (LP ′)
given in Theorem 8

Results on the quality of (LP ) and (LP ′)

(LP ) (LP ′)
problem

lower bound upper bound lower bound upper bound

1| rj | wjCj 1.5820 1.6853 1.0419 1.6853

1| rj , pmtn | wjCj
8
7

4
3 — —

1| prec | wjCj 2 2 2 2

1| rj , prec | wjCj 2 e 2 e

1| rj , prec, pmtn | wjCj 2 2 — —

The positive results in d), e), and f) are derived in Section 7. To prove the negative
result in d), consider the following instance with n jobs where n is assumed to be even.
The processing times of the first n − 1 jobs j = 1, . . . , n − 1 are 1, their common
release date is n

2 , and all weights are 1
n2 . The last job has processing time pn = n,

weight wn = 1
2n , and is released at time 0. This instance is constructed such that every

reasonable preemptive schedule without idle time on the machine has value 2 − 3
2n .

However, an optimal solution to (LP ) given in Theorem 6 has value 7
4 − 5

4n such that
the ratio goes to 8

7 when n gets large.
We use Theorem 5 in order to prove the negative result in e). There we have argued

that the ratio between the value of an optimal non-preemptive schedule and the value of
an optimal preemptive schedule can be arbitrarily close to e

e−1 . The optimal LP value is
a lower bound on the value of an optimal preemptive schedule; this completes the proof
of e).

The negative result in f) follows from Corollary 4 and Theorem 7. $%

It is an open problem and an interesting direction for future research to close the gaps
between the lower and the upper bounds highlighted in Table 2. We conjecture that the
lower bound of e

e−1 for the relaxation (LP ) of the problem 1| rj |
∑

wjCj is not tight.
For the relaxation (LP ′) of the same problem we strongly believe that the precise

ratio is closer to the lower than to the upper bound. We hope that the combinatorial
interpretation given in Subsection 5.2 will lead to improved approximation results and
upper bounds on the quality of the relaxation (LP ′).

Remark 1. For the problem with precedence constraints the relaxation (LP ) can be
slightly strengthened by replacing (6) with the stronger constraints

1
pj

t∑

#=rj

yj# " 1
pk

t+min{pj ,pk}∑

#=rk

yk# for all j ≺ k and t = 0, . . . , T − min{pj, pk} .

However, the relaxation is not stronger than (LP ′) by constraints (9), and therefore not
better than a 2-relaxation.
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Potts [30] introduced a linear programming relaxation of 1| prec |
∑

wjCj in linear
ordering variables. Hall et al. [21] showed that this relaxation is a 2-relaxation. Chekuri
and Motwani [10] provided a class of instances showing that this result is tight.

6 Scheduling in Order of LP Completion Times

Schulz [34] (see also [21]) introduced the idea of LIST SCHEDULING in order of LP
completion times and applied it to get approximation algorithms for quite a few prob-
lems to minimize the weighted sum of completion times. In this section we briefly
review his results for the scheduling problems under consideration in order to give the
reader the opportunity to compare the underlying ideas and intuition with the concept
of α-points.

Schulz used a strengthened version of an LP relaxation in completion time variables
that was introduced by Wolsey [52] and Queyranne [31]. However, the technique and
analysis can also be applied to the stronger relaxation (LP ) in time-indexed variables.
The following lemma contains the key insight and is a slightly weaker version of [34,
Lemma 1].

Lemma 11. Consider a feasible solution y to (LP ). Then, for each job j ∈ J
∑

k
CLP

k
" CLP

j

pk ! 2 CLP
j .

Proof. Let K := {k ∈ J |CLP
k ! CLP

j } and p(K) :=
∑

k∈K pk. This yields

p(K)CLP
j "

∑

k∈K

pk CLP
k

"
∑

k∈K

T∑

t=0

ykt

(
t + 1

2

)
by Lemma 10 a)

=
T∑

t=0

(
t + 1

2

) ∑

k∈K

ykt ;

using the constraints (5) and (4) the last term can be bounded by

"
p(K)−1∑

t=0

(
t + 1

2

)
= 1

2 p(K)2 .

Dividing the resulting inequality by p(K) yields the result. $%

With Lemma 11 at hand one can prove the following theorem:

Theorem 9. Given a feasible solution to (LP ), LIST SCHEDULING in order of non-
decreasing LP completion times yields a feasible schedule where the completion time
of each job j is bounded by 2 CLP

j in the absence of nontrivial release dates, and by
3 CLP

j else.
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Proof. We denote the fractional preemptive schedule corresponding to the given fea-
sible LP solution by P . To check the feasibility of the computed schedule observe
that j ≺ k implies CP

j (α) ! CP
k (α) for 0 ! α ! 1, and thus CLP

j ! CLP
k by

Lemma 10 a). Therefore, if ties are broken in accordance with the precedence con-
straints the sequence is feasible.

In the absence of nontrivial release dates, the completion time of each job j is the
sum of the processing times of jobs that start no later than j. Thus, the bound of 2 is a
direct consequence of Lemma 11.

Since maxk:CLP
k !CLP

j
rk is a lower bound on CLP

j , the bound of 3 follows from
Lemma 11 and Lemma 3. $%

The LP relaxation in completion time variables that is used in [34] can be solved
in polynomial time. Therefore, computing an optimal solution to the LP relaxation and
then applying LIST SCHEDULING in order of non-decreasing LP completion times is a
2-approximation algorithm for 1| prec |

∑
wjCj and a 3-approximation algorithm for

1| rj , prec |
∑

wjCj . For the problem without nontrivial release dates, Schulz proves a
slightly better performance guarantee of 2 − 2

n+1 .
Hall et al. [21] show that PREEMPTIVE LIST SCHEDULING in order of non-decrea-

sing LP completion times for an appropriate LP relaxation in completion time variables
is a 2-approximation algorithm for the problem 1| rj, prec, pmtn |

∑
wjCj .

Möhring, Schulz, and Uetz [27] study the problem of minimizing the total weighted
completion time in stochastic machine scheduling. Job processing times are not known
in advance, they are realized on-line according to given probability distributions. The
aim is to find a scheduling policy that minimizes the average weighted completion
time in expectation. They generalize results from deterministic scheduling and derive
constant-factor performance guarantees for priority rules which are guided by optimal
LP solutions in completion time variables. Skutella and Uetz [43, 44] generalize this
approach and give approximation algorithms with constant performance guarantee for
precedence-constrained scheduling problems.

7 Approximations for Single Machine Scheduling with Release
Dates

In this section we present approximation algorithms for the problems 1| rj |
∑

wjCj

and its preemptive variant 1| rj , pmtn |
∑

wjCj that have been obtained by Goemans
et al. [17] and Schulz and Skutella [36], respectively. The first constant-factor approxi-
mation algorithms to minimize the total weighted completion time on a single machine
subject to release dates are due to Phillips et al. [29]. They consider an LP relaxation
that is also based on time-indexed variables which have a different meaning however.
Based on an optimal solution to this relaxation they apply an idea which is somehow
related to PREEMPTIVE LIST SCHEDULING in order of α-points for α = 1

2 . This leads
to an approximation algorithm with performance guarantee 8 + ε for the generaliza-
tion of the problem 1| rj , pmtn |

∑
wjCj to the setting of unrelated parallel machines.

Together with the conversion technique described in Theorem 2 this yields a (16 + ε)-
approximation algorithm for 1| rj |

∑
wjCj .
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Hall et al. [22] use LIST SCHEDULING in order of α-points for several problems and
different but fixed values of α based on the LP relaxation (LP ′) in order to compute
provably good schedules. However, their definition of α-points slightly differs from the
one discussed here. Based on a different approach that relies on the results of Shmoys
and Tardos [40] for the generalized assignment problem, they give a 4-approximation
algorithm for 1| rj |

∑
wjCj , which has subsequently been improved to performance

guarantee 3, see Section 6 and [21].
Independently from each other, Chekuri et al. [11] (see Section 4) and Goemans [16]

have taken up the idea of converting preemptive schedules into non-preemptive ones by
LIST SCHEDULING in order of α-points (as introduced in [29, 22]), and enriched it by
the use of randomness. Recently, Afrati et al. [1] gave polynomial-time approximation
schemes for the problems considered in this section and generalizations thereof.

We analyze the following simple randomized algorithm for single machine schedul-
ing with release dates. We consider both the non-preemptive and the preemptive variant
of the algorithm which only differ in the last step:

Algorithm: RANDOM-α
1) Construct the preemptive list schedule P in order of non-decreasing ratios

pj/wj .
2) For each job j ∈ J , draw αj randomly from [0, 1].
3) Output the resulting (preemptive) α-schedule.

Since (PREEMPTIVE) LIST SCHEDULING can be implemented to run in O(n log n)
time by Lemma 1, the running time of Algorithm RANDOM-α is O(n log n). It fol-
lows from Theorem 6 that the first step of Algorithm RANDOM-α implicitly computes
an optimal solution to the relaxation (LP ). This observation is used in the analysis.
Note, however, that the algorithm is purely combinatorial and can be formulated and
implemented without even knowing the LP relaxation.

While the total number of possible orderings of jobs is n! = 2O(n log n), it is shown
in [17] that the maximal number of different α-schedules which can be computed by
Algorithm RANDOM-α is at most 2n−1 and this bound can be attained. In particular,
Algorithm RANDOM-α could also be formulated over a discrete probability space. Due
to the possibly exponential number of different α-schedules, we cannot afford to de-
randomize Algorithm RANDOM-α by enumerating all (αj)-schedules. One can instead
use the method of conditional probabilities [28] and the derandomized version can be
implemented to run in O(n2) time; we refer to [17] for details.

As in Section 4, the variant of Algorithm RANDOM-α with only one random variable
α for all jobs instead of individual αj’s is of special interest. We denote this variant by
RANDOM-α and it follows from Proposition 1 that it can be derandomized yielding a
deterministic algorithm with running time O(n2). This deterministic algorithm is called
BEST-α. The proof of the following results on the performance of Algorithm RANDOM-
α (and thus of Algorithm BEST-α) can be found in [17].

Theorem 10.

a) For fixed α the performance guarantee of Algorithm RANDOM-α is max
{
1+ 1

α , 1+
2α

}
. In particular, for α = 1/

√
2 the performance guarantee is 1 +

√
2.
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b) If α is drawn uniformly at random from [0, 1], then the expected performance guar-
antee of RANDOM-α is 2.

The same performance ratio of 2 is also achieved by Algorithm RANDOM-α with
independent and uniformly distributed random variables αj . However, in this case the
analysis is noticeably simpler and more general. In particular it does not make use of the
special structure of the preemptive list schedule P but works for an arbitrary fractional
preemptive schedule P corresponding to a feasible solution to (LP ); see Lemma 12
below.

Theorem 11. Let the random variables αj be pairwise independently and uniformly
drawn from [0, 1]. Then, Algorithm RANDOM-α achieves expected performance guar-
antee 2 for the scheduling problems 1| rj |

∑
wjCj and 1| rj , pmtn |

∑
wjCj .

Theorem 11 is a consequence of the stronger result in Lemma 12. Starting with an
arbitrary fractional preemptive schedule in the first step of RANDOM-α we can relate
the value of the schedule computed by the algorithm to the corresponding LP value.

Lemma 12. Let y be a feasible solution to (LP ) and denote the corresponding frac-
tional preemptive schedule by P . Suppose that the random variables αj are pairwise
independently and uniformly drawn from [0, 1]. Then, for each job j ∈ J , its expected
completion time in the corresponding α-schedule is at most 2 CLP

j .

Proof. We consider an arbitrary, but fixed job j ∈ J . To analyze the expected comple-
tion time of j, we first keep αj fixed, and consider the conditional expectation Eαj [C α

j ].
Since the random variables αj and αk are independent for each k -= j, Corollary 1 and
Lemma 6 yield

Eαj [C
α
j ] ! CP

j (αj) + pj +
∑

k %=j

pk

∫ ηk(αj)

0

(
1 + αk − ηk(αj)

)
dαk

= CP
j (αj) + pj +

∑

k %=j

pk

(
ηk(αj) −

ηk(αj)2

2

)

! CP
j (αj) + pj +

∑

k %=j

pk ηk(αj) ! 2
(
CP

j (αj) + 1
2pj

)
.

To get the unconditional expectation E[C α
j ] we integrate over all possible choices of

αj :

E[C α
j ] =

∫ 1

0
Eαj [C

α
j ] dαj ! 2

(∫ 1

0
CP

j (αj) dαj +
pj

2

)
= 2 CLP

j ;

the last equation follows from Lemma 10 a). $%

Proof (of Theorem 11). Algorithm RANDOM-α starts with an optimal solution to (LP )
whose value is a lower bound on the value of an optimal (preemptive) schedule. We
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compare the expected value of the (preemptive) α-schedule to this lower bound. Using
Lemma 12 and linearity of expectations we get

E
[∑

j

wjC
α
j

]
=

∑

j

wjE[C α
j ] ! 2

∑

j

wjC
LP
j .

Since for each fixed α and each job j the completion time of j in the preemptive α-
schedule is always less than or equal to its completion time in the non-preemptive α-
schedule, the preemptive variant of Theorem 11 follows from the result for the non-
preemptive case. We have even shown that the non-preemptive variant of Algorithm
RANDOM-α computes a schedule whose expected value is bounded by twice the value
of an optimal preemptive schedule. Thus, even this algorithm constitutes a randomized
2-approximation algorithm for 1| rj , pmtn |

∑
wjCj . $%

The expected performance guarantee of Algorithm RANDOM-α can be improved
beyond 2 by using more intricate density functions and by exploiting the special struc-
ture of the preemptive list schedule P in the first step of Algorithm RANDOM-α.

We start with an analysis of the structure of the preemptive list schedule P . Consider
any job j, and assume that, in the preemptive schedule P , job j is preempted at time s
and its processing resumes at time t > s. Then all jobs which are processed between s
and t have a smaller index; as a result, these jobs will be completely processed between
times s and t. Thus, in the preemptive list schedule P , between the start time and the
completion time of any job j, the machine is constantly busy, alternating between the
processing of portions of j and the complete processing of groups of jobs with smaller
index. Conversely, any job preempted at the start time CP

j (0) of job j will have to wait
at least until job j is complete before its processing can be resumed.

We capture this structure by partitioning, for a fixed job j, the set of jobs J \ {j}
into two subsets J1 and J2: Let J2 denote the set of all jobs that are processed between
the start and completion of job j. All remaining jobs are put into subset J1. Notice that
the function ηk is constant for jobs k ∈ J1; to simplify notation we write ηk := ηk(αj)
for those jobs. The same holds for the function tidle since no idle time occurs between
the start and the completion of job j in P ; we thus write tidle instead of tidle(αj). For
k ∈ J2, let 0 < µk < 1 denote the fraction of job j that is processed before the start of
job k; the function ηk is then given by

ηk(αj) =

{
0 if αj ! µk,
1 if αj > µk,

for k ∈ J2.

We can now rewrite the equation in Lemma 6 as

CP
j (αj) = tidle +

∑

k∈J1

ηkpk +
∑

k∈J2
αj>µk

pk + αj pj = CP
j (0) +

∑

k∈J2
αj>µk

pk + αj pj .

(11)
Plugging (11) into Lemma 10 a) yields

CLP
j = CP

j (0) +
∑

k∈J2

(1 − µk)pk + pj . (12)
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Moreover, Corollary 1 can be rewritten as

C α
j ! CP

j (0) +
∑

k∈J1
αk"ηk

(1 + αk − ηk) pk +
∑

k∈J2
αj>µk

(1 + αk) pk + (1 + αj) pj ,

(13)

where, for k ∈ J2, we have used the fact that αk ≤ ηk(αj) is equivalent to αj > µk.
Similarly, Lemma 8 can be rewritten as

C α−pmtn
j ! CP

j (0) +
∑

k∈J1
αk"ηk

(1 − ηk) pk +
∑

k∈J2
αj>µk

pk + pj . (14)

The expressions (11), (12), (13), and (14) reflect the structural insights that we need for
proving stronger bounds for α-schedules and preemptive α-schedules in the sequel.

As mentioned above, the second ingredient for an improvement on the bound of 2
in Theorem 11 is a more sophisticated probability distribution of the random variables
αj . In view of the bound on C α

j given in (13), we have to cope with two contrary
phenomena: On the one hand, small values of αk keep the terms of the form (1 + αk −
ηk) and (1+αk) on the right-hand side of (13) small; on the other hand, choosing larger
values decreases the number of terms in the first sum on the right-hand side of (13). The
balancing of these two effects contributes to reducing the bound on the expected value
of C α

j . Similar considerations can be made for the preemptive case and the bound given
in (14).

7.1 A 1.6853-Approximation Algorithm for 1| rj |
∑

wjCj

In this subsection, we will prove the following theorem that was achieved by Goemans
et al. [17].

Theorem 12. Let γ ≈ 0.4835 be the unique solution to the equation

γ + ln(2 − γ) = e−γ
(
(2 − γ)eγ − 1

)

satisfying 0 < γ < 1. Define δ := γ + ln(2 − γ) ≈ 0.8999 and c := 1 + e−γ/δ <

1.6853. Let the αj’s be chosen pairwise independently from a probability distribution
over [0, 1] with the density function

f(α) =

{
(c − 1)eα if α ! δ,
0 otherwise,

see Figure 4. Then, the expected completion time of every job j in the non-preemptive
schedule constructed by Algorithm RANDOM-α is at most c CLP

j and the expected
performance guarantee of Algorithm RANDOM-α is c < 1.6853.
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c − 1

1

c

0 δ

Fig. 4. The density function used for 1| rj | wjCj in Theorem 12

The bound in Theorem 12 yields also a bound on the quality of the relaxations (LP ):

Corollary 5. The relaxation (LP ) is a 1.6853-relaxation of 1| rj |
∑

wjCj .

Before we prove Theorem 12 we state two properties of the density function f that
are crucial for the analysis of the corresponding random α-schedule.

Lemma 13. The function f given in Theorem 12 is a density function with the following
properties:

(i)
∫ η

0
f(α)(1 + α− η) dα ! (c − 1) η for all η ∈ [0, 1],

(ii) (1 + Ef)
∫ 1

µ
f(α) dα ! c (1 − µ) for all µ ∈ [0, 1],

where Ef denotes the expected value of a random variable α that is distributed accord-
ing to f .

Property (i) is used to bound the delay to job j caused by jobs in J1 which corre-
sponds to the first summation on the right-hand side of (13). The second summation
reflects the delay to job j caused by jobs in J2 and will be bounded by property (ii).

Proof (of Lemma 13). A short computation shows that δ = ln c
c−1 . The function f is a

density function since

∫ 1

0
f(α) dα = (c − 1)

∫ δ

0
eα dα = (c − 1)

( c

c − 1
− 1

)
= 1 .

In order to prove property (i), observe that for η ∈ [0, δ]
∫ η

0
f(α)(1 + α− η) dα = (c − 1)

∫ η

0
eα(1 + α− η) dα = (c − 1) η .
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For η ∈ (δ, 1] we therefore get

∫ η

0
f(α)(1 + α− η) dα <

∫ δ

0
f(α)(1 + α− δ) dα = (c − 1) δ < (c − 1) η .

In order to prove property (ii), we first compute

Ef =
∫ 1

0
f(α)α dα = (c − 1)

∫ δ

0
eαα dα = c δ − 1 .

Property (ii) certainly holds for µ ∈ (δ, 1]. For µ ∈ [0, δ] we get

(1 + Ef)
∫ 1

µ
f(α) dα = c δ (c − 1)

∫ δ

µ
eα dα

= c e−γ
(
(2 − γ)eγ − eµ

)

= c (2 − γ − eµ−γ)

! c
(
2 − γ − (1 + µ − γ)

)

= c (1 − µ) .

This completes the proof of the lemma. $%

Proof (of Theorem 12). The analysis of the expected completion time of job j in the
random α-schedule follows the line of argument developed in the proof of Theorem 11.
First we consider a fixed choice of αj and bound the corresponding conditional expec-
tation Eαj [C α

j ]. In a second step we bound the unconditional expectation E[C α
j ] by

integrating the product f(αj)Eαj [C α
j ] over the interval [0, 1].

For a fixed job j and a fixed value αj , the bound in (13) and Lemma 13 (i) yield

Eαj [C
α
j ] ! CP

j (0) + (c − 1)
∑

k∈J1

ηk pk +
∑

k∈J2
αj>µk

(1 + Ef) pk + (1 + αj)pj

! c CP
j (0) + (1 + Ef )

∑

k∈J2
αj>µk

pk + (1 + αj)pj .

The last inequality follows from (11). Using property (ii) and equation (12) yields

E[C α
j ] ! c CP

j (0) + (1 + Ef)
∑

k∈J2

pk

∫ 1

µk

f(αj) dαj + (1 + Ef) pj

! c CP
j (0) + c

∑

k∈J2

(1 − µk) pk + c pj = c CLP
j .

The result follows from linearity of expectations. $%

One can further say that Algorithm RANDOM-α actually produces a schedule that
is simultaneously expected to be near-optimal with respect to both the total weighted
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completion time objective and the maximum completion time objective. Bicriteria re-
sults of similar spirit and also other results in this direction have been presented in [7,
11, 47].

Corollary 6. Under the assumptions of Theorem 12, the expected makespan of the
schedule constructed by Algorithm RANDOM-α is at most 1.5166 times the optimal
makespan.

Proof. The makespan of the preemptive list schedule P exactly equals the optimal
makespan. Note that the expected makespan of the schedule constructed by Algorithm
RANDOM-α can be bounded by the sum of the idle time that already existed in the pre-
emptive schedule plus the idle time caused by jobs k ∈ J plus their processing times.
The corollary now immediately follows from the fact that the expected idle time caused
by any job k is bounded by Ef pk ! 0.5166 pk. $%

The performance of the 2-approximation algorithm with only one α given in Theo-
rem 10 b) can also be improved through a more intricate density function; details can
be found in [17].

Theorem 13. If α is randomly chosen from [0, 1] according to an appropriate trun-
cated exponential density function, then Algorithm RANDOM-α achieves expected per-
formance guarantee 1.7451. In particular, Algorithm BEST-α has performance ratio
1.7451.

7.2 A 4/3-Approximation Algorithm for 1| rj, pmtn |
∑

wjCj

In this subsection we prove the following theorem of Schulz and Skutella [36].

Theorem 14. Let the αj’s be chosen from a probability distribution over [0, 1] with the
density function

f(α) =

{
1
3 (1 − α)−2 if α ∈ [0, 3

4 ],
0 otherwise,

see Figure 5. Then, the expected completion time of every job j in the preemptive
schedule constructed by the preemptive variant of Algorithm RANDOM-α is at most
4/3 CLP

j and the expected performance guarantee of the preemptive variant of Algo-
rithm RANDOM-α is 4/3.

Notice that, in contrast to the non-preemptive case discussed in Theorem 12, we do
not require the random variables αj , j ∈ J , to be independent but allow any correlation
between them. In particular, the performance ratio of 4/3 is achieved by Algorithm
BEST-α and by Algorithm RANDOM-α when α is drawn from [0, 1] with the density
function given in Theorem 14. This result of Schulz and Skutella [36] improves upon
a 1.466-approximation by Goemans, Wein, and Williamson [18]. They also analyzed
Algorithm RANDOM-α with a density function similar to the one given in Theorem 14.

Again, the bound in Theorem 14 yields also a bound on the quality of the relaxations
(LP ):
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16
3

0 3
4 1

Fig. 5. The density function used for 1| rj , pmtn | wjCj in Theorem 14

Corollary 7. The relaxation (LP ) is a 4/3-relaxation of 1| rj, pmtn |
∑

wjCj .

Following the lines of the last subsection, we state two properties of the density
function f that are crucial for the analysis of the corresponding preemptive random
α-schedule.

Lemma 14. The function f given in Theorem 14 is a density function with the following
properties:

(i) (1 − η)
∫ η

0
f(α) dα ! 1

3
η for all η ∈ [0, 1],

(ii)
∫ 1

µ
f(α) dα ! 4

3
(1 − µ) for all µ ∈ [0, 1].

Similar to the situation in the last subsection, property (i) is used to bound the delay
to job j caused by jobs in J1 which corresponds to the first summation on the right-hand
side of (14). The second summation reflects the delay to job j caused by jobs in J2 and
will be bounded by property (ii).

Proof (of Lemma 14). The function f is a density function since
∫ 1

0
f(α) dα =

1
3

∫ 3/4

0

1
(1 − α)2

dα = 1 .

In order to prove property (i), observe that for η ∈ [0, 3/4]

(1 − η)
∫ η

0
f(α) dα =

1
3

(1 − η)
∫ η

0

1
(1 − α)2

dα =
1
3
η .

Since f(α) = 0 if α > 3/4, the bound also holds for η > 3/4. For the same reason, (ii)
holds if µ > 3/4. For µ ! 3/4 we get

∫ 1

µ
f(α) dα =

1
3

∫ 3/4

µ

1
(1 − α)2

dα =
4
3
− 1

3
1

1 − µ
.
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A short computation shows that the latter expression is bounded by 4
3 (1 − µ) which

concludes the proof. $%

Proof (of Theorem 14). For a fixed job j, the bound in (14) and Lemma 14 yield

E[C α−pmtn
j ] ! CP

j (0) +
1
3

∑

k∈J1

ηk pk +
4
3

∑

k∈J2

(1 − µk) pk + pj

! 4
3

CP
j (0) +

4
3

∑

k∈J2

(1 − µk) pk +
4
3

pj =
4
3

CLP
j .

The second inequality follows from (11), the last equation follows from (12). This con-
cludes the proof by linearity of expectations. $%

8 Approximations for Single Machine Scheduling with Precedence
Constraints

In this section we present randomized approximation algorithms developed by Schulz
and Skutella [35] for the scheduling problems 1| (rj , ) prec (, pmtn) |

∑
wjCj . The

first constant-factor approximation algorithms for these problems have been given by
Hall et al. [22]. They presented a (4+ε)-approximation algorithm for 1| prec |

∑
wjCj

and a 5.83-approximation algorithm for 1| rj , prec |
∑

wjCj . Their algorithms are
based on the time-indexed LP relaxation (LP ′) and scheduling in order of α-points
for a fixed value of α. However, their definition of α-points is slightly different from
ours. As already mentioned in Section 6, Schulz [34] and Hall et al. [21] improved upon
these results. Building upon the work of Sidney [41], combinatorial 2-approximation al-
gorithms for 1| prec |

∑
wjCj were given by Chekuri and Motwani [10] and Margot,

Queyranne, and Wang [25] (see also [19]). Correa and Schulz [12] look at the problem
from a polyhedral perspective and uncover a relation between the work of Sidney and
different linear programming relaxations. Woeginger [51] discusses the approximability
of 1| prec |

∑
wjCj and presents approximation preserving reductions to special cases.

A straightforward combination of the 2-approximation algorithm for the preemptive
scheduling problem 1| rj, prec, pmtn |

∑
wjCj [21] with the conversion technique

of Chekuri et al. given in Theorem 4 achieves a performance guarantee of 2e
e−1 . In

particular, it does not improve upon the 3-approximation for the non-preemptive variant
1| rj , prec |

∑
wjCj given by Schulz [34].

For an arbitrary α and a feasible fractional preemptive schedule, the order of α-
points does in general not respect the precedence relations. Therefore, we only use one
α for all jobs instead of individual αj’s. Then, the corresponding α-schedule is feasible
if the fractional preemptive schedule is feasible.

The first result discussed in this section is a (2 + ε)-approximation for the problems
1| prec |

∑
wjCj and 1| rj, prec, pmtn |

∑
wjCj . If we combine this algorithm with

the conversion technique of Chekuri et al. in a somewhat more intricate way, we get a
considerably improved approximation result for 1| rj , prec |

∑
wjCj .

Again, we consider both the non-preemptive and the preemptive version of the
algorithm:
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Algorithm: RANDOM-α
1) Take a feasible solution to (LP ) and the corresponding feasible fractional

preemptive schedule P .
2) Draw α randomly from [0, 1].
3) Output the resulting (preemptive) α-schedule.

The next theorem follows directly from Lemma 9.

Theorem 15. Suppose that α is chosen from a probability distribution over [0, 1] with
density function f(x) = 2x. Then, for instances of 1| rj , prec, pmtn |

∑
wjCj and

1| prec |
∑

wjCj , the expected completion time of every job j ∈ J in the schedule con-
structed by Algorithm RANDOM-α is bounded from above by twice its LP completion
time CLP

j .

Proof. Lemma 9 and Lemma 10 a) yield for the preemptive and the non-preemptive
case

E[C α
j ] =

∫ 1

0
f(α)

1
α

CP
j (α) dα = 2

∫ 1

0
CP

j (α) dα ! 2 CLP
j .

This concludes the proof. $%

Goemans (personal communication, June 1996) applied the very same technique as
in Theorem 15 to improve the performance guarantee of 4 due to Hall et al. [22] for
1| prec |

∑
wjCj to a performance ratio of 2.

As a result of Theorem 15, (LP ) is a 2-relaxation for the precedence constrained
scheduling problems 1| rj , prec, pmtn |

∑
wjCj and 1| prec |

∑
wjCj , see Table 2.

Combining the idea of Chekuri et al. from Theorem 4 with the technique demon-
strated in the proof of Theorem 15, we can prove the following theorem.

Theorem 16. Suppose that α is chosen from a probability distribution over [0, 1] with
density function f(x) = e − ex, see Figure 6. Then, for instances of the problem
1| rj , prec |

∑
wjCj the expected completion time of every job j ∈ J in the sched-

ule constructed by Algorithm RANDOM-α is bounded from above by e CLP
j .

Proof. Just for the analysis of the randomized algorithm we emulate the random choice
of α in the following way: First draw a new random variable β from [0, 1] with density
function h(x) = e ex−1

ex . Then, for fixed β, choose α from a probability distribution
over the interval [0, 1] with density function

gβ(x) =

{
ex

eβ−1 if x ∈ [0,β],
0 otherwise.

The resulting probability distribution of the random variable α is described by the den-
sity function f since

f(α) = e − eα =
∫ 1

0
h(β) gβ(α) dβ .
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1

e − 1

0 1

Fig. 6. The density function used for 1| rj , prec | wjCj in Theorem 16

For fixed β ∈ [0, 1] and fixed α ∈ [0,β] Corollary 1 and Lemma 6 yield

C α
j ! CP

j (α) +
∑

k
ηk(β)!α

(
1 + α− ηk(α)

)
pk

= CP
j (α) +

∑

k
ηk(β)!α

(
ηk(β) − ηk(α)

)
pk +

∑

k
ηk(β)!α

(
1 + α− ηk(β)

)
pk

! CP
j (β) +

∑

k
ηk(β)!α

(
1 + α− ηk(β)

)
pk .

Since
∫ η

0
gβ(x) (1 + α− η) dα ! η

eβ − 1

for each η ∈ [0, 1], the conditional expectation of j’s completion time for fixed β can
be bounded by

Eβ [C α
j ] ! CP

j (β) +
∑

k

pk

∫ ηk(β)

0
gβ(α)

(
1 + α− ηk(β)

)
dα

! CP
j (β) +

1
eβ − 1

∑

k

ηk(β) pk ! eβ

eβ − 1
CP

j (β) .

(Notice that for β = 1 this is precisely the result of Chekuri et al., see Theorem 4.) This
yields

E[C α
j ] =

∫ 1

0
h(β) Eβ [C α

j ] dβ ! e

∫ 1

0
CP

j (β) dβ ! e CLP
j

by Lemma 10 a). $%
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As a result of Theorem 16, (LP ) is an e-relaxation for the scheduling problem
1| rj , prec |

∑
wjCj , see Table 2. Unfortunately, the results in Theorem 15 and Theo-

rem 16 do not directly lead to approximation algorithms for the considered scheduling
problems since we cannot solve (LP ) in polynomial time. However, we can overcome
this drawback by introducing new variables which are not associated with exponen-
tially many time intervals of length 1, but rather with a polynomial number of intervals
of geometrically increasing size (see [37] for details). In order to get polynomial-time
approximation algorithms in this way, we have to pay for with a slightly worse perfor-
mance guarantee. For any constant ε > 0 we get randomized approximation algorithms
with performance guarantee 2 + ε respectively e + ε for the scheduling problems under
consideration. Again, those algorithms can be derandomized. For details we refer to
[42, Chapter 2].

9 On-Line Results

In this section we consider a certain class of on-line scheduling problems. We show that
the Algorithm RANDOM-α, or a slightly modified version, also works in this on-line
setting and the competitive ratios match the performance guarantees proved for the off-
line variants. These observations are always due to the authors which also obtained the
respective off-line approximation results discussed above.

In contrast to the off-line setting, an on-line algorithm does not get its entire input
at one time, but receives it in partial amounts. This notion is intended to formalize the
realistic scenario where we do not have access to the whole information about what
will happen in the future. There are several different on-line paradigms that have been
studied in the area of scheduling, see [39] for a survey. We consider the on-line setting,
where jobs continually arrive over time and, for each time t, we must construct the
schedule until time t without any knowledge of the jobs that will arrive afterwards. In
particular, the characteristics of a job, i. e., processing time and weight are only known
at its release date.

To measure the performance of a (randomized) on-line algorithm we compare the
(expected) value of the schedule computed by the on-line algorithm to the value of an
optimal schedule, i. e., we measure the (expected) performance of the on-line algorithms
by an oblivious adversary, see [28, Chapter 13] for details. The worst case ratio of the
two values is the competitive ratio of the on-line algorithm.

In order to apply RANDOM-α in the on-line setting we should first mention that for
each job j its random variable αj can be drawn immediately when the job is released
since there is no interdependency with any other decisions of the randomized algo-
rithms. Moreover, PREEMPTIVE LIST SCHEDULING also works on-line if a job can be
inserted at the correct position in the list with regard to the jobs that are already known
as soon as it becomes available. In particular, the preemptive list schedule in order of
non-decreasing ratios pj/wj can be constructed on-line in the first step of RANDOM-α
since at any point in time the ratios of all available jobs are known. Unfortunately this
is not true for the α-points of jobs since the future development of the preemptive list
schedule is not known.
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However, the analysis of the non-preemptive variant of RANDOM-α still works if
we schedule the jobs as early as possible in order of non-decreasing α-points, with the
additional constraints that no job may start before its α-point. Notice that the non-
preemptive schedule constructed by α-CONVERSION fulfills these constraints. The
presented analysis of the non-preemptive variant of RANDOM-α in the proof of The-
orem 12 relies on the bound given in Corollary 1 which also holds for the schedule
constructed with α-CONVERSION by Lemma 7. Thus, we get an on-line variant of
RANDOM-α with competitive ratio 1.6853 for 1| rj |

∑
wjCj if we replace the last

step of the algorithm with the list scheduling routine described above.
This competitive ratio beats the deterministic on-line lower bound 2 for the weaker

scheduling problem 1| rj |
∑

Cj [23]. Of course, against an oblivious adversary, a ran-
domized algorithm can attain a substantially better competitiveness than any determin-
istic algorithm. The oblivious adversary cannot guess the random decisions and is there-
fore not able to adapt its own strategy completely to the behavior of the randomized
on-line algorithm.

The deterministic 2-approximation algorithm of Phillips et al. for the scheduling
problem 1| rj |

∑
Cj also works on-line and is therefore optimal. For the same problem

Stougie and Vestjens proved the lower bound e
e−1 for randomized on-line algorithms

[48, 50]. In particular, the on-line version of the algorithm of Chekuri et al. discussed
in Section 4 is optimal. Recently, Anderson and Potts [3] gave a deterministic on-line
algorithm for the problem 1| rj |

∑
wjCj with optimal competitive ratio 2.

The preemptive variant of RANDOM-α works without modifications in the on-line
model. Notice that at any point in time and for an arbitrary pair of already available
jobs we can predict whether Cj(αj) will be smaller than Ck(αk) or not. If one or even
both values are already known we are done. Otherwise, the job with higher priority in
the ratio list of the first step, say j, will win since job k cannot be processed in the
list schedule P before j is finished. This yields a randomized on-line approximation
algorithm with competitive ratio 4

3 for the problem 1| rj , pmtn |
∑

wjCj . Notice that
the (deterministic) list scheduling algorithm discussed in Lemma 5 also works on-line
and has competitive ratio 2. On the other hand, Epstein and van Stee [14] recently
obtained lower bounds of 1.073 and 1.038 for deterministic and randomized on-line
algorithms, respectively.
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26. R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz. Solving project scheduling problems by
minimum cut computations. Management Science, 49:330–350, 2003.
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