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6.1 Prologue 

Two men standing trial for a joint crime t ry  to convince a judge of their inno- 
cence. Since the judge does not want to spend too much time on verifying their 
joint alibi, he selects a pair of questions at random. Then each of the suspects 
gets only one of the questions and gives an answer. Based on the coincidence of 
the two answers, the judge decides on the guilt or innocence of the men. 

The judge is convinced of the fairness of this procedure, because once the ques- 
tioning starts the suspects can neither talk to each other as they are kept in 
separate rooms nor anticipate the randomized questions he may ask them. If the 
two guys are innocent an optimal strategy is to convince the judge by telling the 
truth.  However, if they have actually jointly committed the crime, their answers 
will agree with probability at most ~, regardless of the strategy they use. 

To reduce the error r the judge decides to repeat the random questioning k 
times and to declare the two men innocent if all k pairs of answers coincide. This 
obviously reduces the error to ck. So he randomly chooses k pairs of questions 
and writes them on two lists, one for each of the accused. 

The judge does not want to ask the questions one after another but, to make 
things easier, hands out the two lists to the accused and asks them to write 
down their answers. Of course he does not allow them to communicate with 
each other while answering the questions. Waiting for the answers, he once more 
thinks about  the error probability. Can the two men benefit from knowing all 
the questions in advance? 

6.2 Introduction 

In mathematical  terms, the situation described in the prologue fits into the 
context of two-prover one-round proof systems. In this chapter, we give an intro- 
duction into basic definitions and characteristics of two-prover one-round proof 
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systems and the complexity class MIP(2, 1). (The letters MIP stand for multi- 
prover interactive proof system). Yhrthermore, we illustrate the central ideas of 
the proof of the Parallel Repetition Theorem. Our approach is mainly based on 
the papers of Raz [Raz95, Raz97] and Feige [Fei95]. 

Multi-prover interactive proofs were introduced by Ben-Or, Goldwasser, Kilian, 
and Wigderson in [BGKW88], motivated by the necessity to find new founda- 
tions to the design of secure cryptography. The story told in our prologue is an 
adaption of an example given in [BGKW88]. 

The chapter is organized as follows: We formally introduce MIP(2, 1) proof sys- 
tems in Section 6.3. Then, in Section 6.4, we explain the problem of error re- 
duction by parallel repetition of MIP(2,1) proof systems and state Raz' Parallel 
Repetition Theorem. Its proof is based on the investigation of coordinate games, 
which are introduced in Section 6.5. Sections 6.6 and 6.7 give an overview of the 
proof of the Parallel Repetition Theorem. 

6 .3  T w o - P r o v e r  O n e - R o u n d  P r o o f  S y s t e m s  

In a MIP(2, 1) proof system G, two computationally unbounded provers P1, P2 
try to convince a probabilistic polynomial time verifier that a certain input I 
belongs to a pre-specified language L. The proof system has one round: Based 
on I and a random string T, the verifier randomly generates a pair of questions 
(x, y) from a pool X x Y which depends on the input I and sends x to prover 
P1 and y to prover P2- The first prover responds by sending u = u(x) E U 
to the verifier, the second prover responds with v = v(x) E V.  Here U and V 
are pre-specified sets of possible answers to the questions in X resp. Y. Since 
the verifier is polynomially bounded, only a polynomial number of bits can be 
exchanged. In particular, the size of all possible questions and answers must be 
polynomially bounded in the size of the input I. 

The two provers know the input I and can agree upon a strategy (i. e., mappings 
u : X --~ U and v : Y --4 V) in advance, but they are not allowed to communicate 
about the particular random choice of questions the verifier actually asks. Based 
on x, y, u, and v, the verifier decides whether to accept or reject the input I. 
This is done by evaluating an acceptance predicate Q : X x Y x U x V --~ {0,1} 
where output 1 means acceptance and 0 rejection. We think of Q also as a 
subset of Z := X • Y • U x V, i.e., Q = { ( x , y , u , v )  E Z l Q ( x , y , u , v  ) = 1}. 
The probability distribution of the question pairs (x, y) chosen from X • Y by 
the verifier is denoted by #. The strategy of the verifier (i. e., his choice of # and 
Q based on I) is called the proof system, while the strategy of the provers (i. e., 
their choice of u and v, based on the knowledge of I, /z and Q) is called the 
protocol. 

For fixed input I, a proof system G can be interpreted as a game for two players 
(provers). Thus, ff we talk of G = G(I)  as a game we implicitly consider a fixed 
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input I. A game G is described by sets X, Y, U, V, a predicate Q, a probability 
measure/t (which makes use of a random string T), and mappings u and v. We 
will write/t(x, y) for/t((x, y)). Through their choices of u and v the two players 
aim to maximize the/t-probability that Q is satisfied, which is given by 

/t(x,y) 
X •  

This probability is called the value of the protocol (u, v). The value w(G) of the 
game G is defined as the maximal value of a protocol, i.e., 

w ( a ) : =  max 
u:X-+U 
v:Y--cV X x Y  

A strategy (u, v) of the two players for which the maximum is attained is called 
an optimal protocol. A protocol with value 1 is also called a winning strategy. 

We can now formally define MIP(2, 1) proof systems. 

Definit ion 6.1. A verifier and two provers build a MIP(2, 1) proof system for 
a language L with error probability e if: 

1. Perfect completeness: For all I E L, there exists a protocol with value 1 
(i. e., the provers have a winning strategy); 

2. Soundness: For all I ~ L, the value of the proof system is w(G) ~ e 
(i. e., the provers can only succeed with probability at most e). 

(The largest value c such that for all I E L, the value of the corresponding 
game is at least c, is called completeness.) The following example is one of the 
most important applications of MIP(2, 1) proof systems in the context of non- 
approximability results. It will be applied in Chapters 7, 9, and 10. 

Example  6.2. Consider an ROBE3SAT formula ~ = C1 A. . .  A Ca. Let z~i, zb~ 
and zc~ denote the variables in clause Cj, j = 1, . . .  ,m. Then we can define the 
following two-prover interactive proof system: 

1. The verifier chooses a clause with index x E {1,. . .  ,m} and a variable with 
index y E {ax,b~,cx} at random. Question x is sent to prover P1 and ques- 
tion y is sent to prover P2. 

2. Prover P1 answers with an assignment for the variables za~, zb~, and Zc~, 
and prover P2 answers with an assignment for z~. 

3. The verifier accepts if and only if Cx is satisfied by P1 's assignment and the 
two provers return the same value for z~. 
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For each protocol, the strategy v of prover P2 induces an assignment to the 
variables in the obvious way. Moreover, to get an optimal protocol prover P1 
must answer in accordance with this assignment unless the given clause C~ is 
not satisfied. If C~ is not satisfied, P1 must change the value of at least one 
variable in the clause. Thus, if %0 is satisfiable the value of the proof system is 
1. Otherwise, with probability at least e the verifier chooses a clause Cz not 
satisfied by P2's assignment and P1 has to change the value of a variable Zy, 
where y' E {az, bz, cx}. Since zy = z~, with conditional probability at least 1/3 
the value of the protocol is at most 1 - e/3. 

As a result of the PCP-Theorem 4.1 we know that we can translate an arbitrary 
instance of a problem in Af~P to an instance of RoBE3SAT. The previous example 
is a MIP(2, 1) proof system for RoBE3SAT with error probability 1 - e/3. 

We briefly mention some other results on MIPs. The classes MIP(k, r) are gen- 
eralizations of MIP(2, 1) with k provers and r rounds of questioning. Both the 
verifier and the provers are allowed to use their knowledge of earlier questions 
and answers. Obviously, MIP(k,r) C MIP(k',r ')  holds, if k ~ k' and r 4 r'. 
Feige and Lovgsz [FL92] proved that MIP(2, 1) = MIP(k, r)  = A f C X P  for k/> 2 
and r >/ 1. The result that MIP(1,poly(n)) = "PS'PACC is known as Shamir's 
Theorem, see [Pap94]. It follows from results of [BGKW88] that multi-prover 
interactive proof systems with two-sided error (i. e., completeness < 1) behave 
similar to MIPs with one-sided error. 

6.4 Reducing the Error Probability 

The main application of MIPs in the context of approximability results is the 
construction of probabilistically checkable proofs with small error probability 
for AlP-hard optimization problems, see Chapters 7, 9, and 10. Without giving 
details, we shortly describe the basic idea behind this construction. One forces 
the two provers to write down their answers to all possible questions in a special 
encoding, the so-called long code. The resulting string serves as a proof in the 
context of PCPs. Thereby the soundness of the PCP directly depends on the error 
probability of the MIP. Thus, reducing the error in MIP(2, 1) proof systems is 
an important, however subtle issue. 

A straightforward approach is to repeat an MIP(2, 1) protocol k times and to ac- 
cept only if all executions are accepting. Ideally one would hope that this method 
reduces the error to E k. This is indeed true if the executions are performed se- 
quentially and in an oblivious way, i. e., each prover must answer each question 
online before seeing the question for the next execution, and is not allowed to 
use his knowledge about the questions he was asked before. 

Instead, we will consider parallel repetition, where each prover sends out its 
answers only after receiving all its questions. Such a k-fold parallel repetition of 
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G can be seen as a new two-prover one-round proof system with k coordinates, 
denoted by G | The verifier treats each coordinate of G | as an independent 
copy of the original game G and accepts in G | only if it would have accepted 
all the k copies of G. We will elaborate on the decomposition into coordinates 
in Section 6.5. 

The k-fold parallel repetition G | of the game G consists of the four sets X k, 
y k ,  U k, and V k, the probability measure p| defined on ~k :__ X k x y k ,  and 
the acceptance predicate Q| For ~ E X k and ~ E y k  we write ~ ---- ( x l , . . .  ,xk) 
resp. ~ ---- (Yl , . . . ,  Ya). The probability measure #| is defined by 

k 

i ~ 1  

The acceptance predicate is 
k 

Q| := H Q(x i ,y i ,u~ ,v i ) .  
i = l  

A protocol for G consists of two mappings fi : X k --~ U k and ~ : y k  _~ V k. The 
value of G | is denoted by w (G| For simplicity, we will also use the notations 

:__ G| ~ := X k , ~ : _ _ Y k , 0 : = U  s, V := V k, /2 = p| ~ := )~ •  
(~ = Q| As before, let 2 := -~ • Y • U x V. 

Note that,  in contrast to the case of sequential repetition, prover P1 is allowed 
to take all the questions x l , . . .  ,xk into account (and not only xi), when it 
responds to question x~. The same holds for prover P2. If the input I belongs to 
the language L, the provers already have a winning strategy in G, so knowing 
also the questions of other coordinates they can do no better. The problem with 
parallel repetition is therefore, to which amount this side information can help 
the provers to cheat, if the input I does not belong to the language L. 

At first, it was believed that,  as in the sequential case, repeating a proof system k 
times in parallel reduces the error to ~k, see [FRS88]. Later, Fortnow constructed 
an example where w(G | > w(G) 2, showing that  the two provers can benefit 
from their knowledge of all the questions in advance, see [FRS90]. Feige [Fei91] 
presented the following game G which has the same value as its 2-fold parallel 
repetition G | see also Exercise 6.2. 

E x a m p l e  6.3. The verifier selects two integers x and y independently at ran- 
dom from {0, 1} and sends x to prover P1 and y to P2- The provers have to reply 
with numbers u resp. v from {0, 1}. Moreover each of them must either point at 
itself or at the other prover. The verifier accepts if 

1. both point at the same prover and 

2. the prover which both point at replies with the number it was asked and 

3. u + v - O  m o d 2 .  
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For some years, it was an open conjecture whether parallel repetition is sufi- 
cent for every games G to reduce the error probability below arbitrarily small 
constants. This was proved by Verbitsky in [Ver94, Ver96] for the case where 
# is a uniform measure supported by a subset of f~. He pointed out that par- 
allel repetition is connected to a density version of Hales-Jewett's theorem in 
Ramsey theory, proved by Furstenberg and Katznelson [FK91]. Unfortunately, 
the proof technique used gives no constructive bound on the number of required 
repetitions. 

Recently, Raz [Raz95] showed that parallel repetition reduces the error prob- 
ability of any MIP(2, 1) system even at an exponential rate, thus proving the 
so-called Parallel Repetition Conjecture [FL92]. The constant in the exponent 
(in his analysis) depends only on w(G) and the answer size s = s(G) := IUI. IVI 
(of the original problem). His result is now known as the Parallel Repetition 
Theorem: 

Theorem 6.4 (Paral lel  Repetition Theorem [Raz95]). There exists a func- 
tion W : [0, 1] -+ [0, 1] with W ( z )  < 1 for all z < 1, such that for all games G 
with value w(G) and answer size s = s(G) ~ 2 and all k E N holds 

| < 

For some applications, only the fact that parallel repetition reduces the error 
probability below arbitrarily small constants is used. Let us refer to this fact as 
the weak parallel repetition theorem. 

In the meantime, Feige [Fei95] showed that tL~z' theorem is nearly best possible. 
He proved that there is no universal constant a > 0 such that 

(G 
for all MIP(2, 1) proof systems. Hence, the exponent in Theorem 6.4 must depend 
on G. Its inverse logarithmic dependency on s(G) was shown to be almost best 
possible by [FV96]. 

In the remaining sections of this chapter, we give an overview of the proof of the 
Parallel Repetition Theorem, based on [Raz95, ILuz97, Fei95]. 

6.5 C o o r d i n a t e  G a m e s  

In the last section, we introduced G as the parallel repetition of G. In fact, 
is best viewed as not being simply a repetition of the game G, but as a 

"simultaneous execution" of its coordinates, which will be defined next. 

The coordinate game G ~, where i E (1 , . . . ,  k}, consists of: 
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- the sets X, Y, U, V; 

- the probability measure/2; 

- and the acceptance predicate Q~ defined by Qi(5:, ~, u, v) := Q(xi, yi, u, v). 

The value of ~i will be denoted by wi (G). 

Thus, in the parallel repetition game G the verifier accepts if and only if all the 
predicates Qi, i = 1 , . . . ,  k, of the coordinate games G~ are satisfied. We will also 
say that ~i is the restriction of G to coordinate i. A protocol fi, 9 for the game 

induces a protocol ui, v~ for the game ~i,  where ui(~c) and v~(~) are the i-th 
coordinates of the vectors fi(~) resp. 9(~). 

Note that it is not required that the verifier will ask every question pair in 
X x Y with positive probability. In the proof of Theorem 6.4, we will consider 
restrictions of the game G to a question set A C ~, which has the form of a 
cartesian product A = A x  • Ay, where A x  C_ f f  and Ay  C Y.  For #(A) > 0, 
we define 

{ P(~, Y) (~, ~3) E A ; 
PA(~,~3) := #(A) ' 

0, A. 

The game GA is defined similarly to the game G, but with the probability mea- 
sure PA instead of/2. The game GA will be called the restriction of G to the 
question set A and is sometimes also denoted by Gpa. If #(A) = 0, we set 
PA := 0. 

The following main technical theorem says that, provided p(A) is not "too" 
small, there always exists a coordinate i such that the value w(G~) of the coor- 
dinate game G~ is not "too" large, compared with w(G). 

T h e o r e m  6.5. There exists a function W2 : [0, 1] -~ [0, 1] with W2(z) < 1 for 
all z < 1 and a constant co such that the following holds. For all games G, 
dimensions k, and A = A x  • Ay ,  where A x  C_ f f  and Ay  C_ ~', such that 
- l o g # ( A ) / k  <~ 1 (i. e., #(A) >1 2-k),  there exists a coordinate i of Ga such that 

1__ 

In Section 6.7 we will give some remarks on the proof of Theorem 6.5. But first 
let us see how Theorem 6.5 is applied in the proof of the Parallel Repetition 
Theorem 6.4 
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6 . 6  H o w  t o  P r o v e  t h e  P a r a l l e l  R e p e t i t i o n  T h e o r e m  ( I )  

In order to prove Theorem 6.4, we will apply an inductive argument that  yields 
a slightly stronger result. Let us define 

C(k,r) := max W(CA 
A = A x  •  

- -  l o g  ~(A)~r 

for k E N and r E ~ - .  It will be convenient to define C(0, r) := 1. C(k, r) 
is an upper bound for the value (i. e., error probability) of any restriction of k 
parallel repetitions of G to a set A, that  has the form of a cartesian product 
A = A x  x Ay  and whose size p(A) is not very small, where "small" is quantified 
by r. Observe that  G = GO and p(~) = 1, so C(k,r)  is an upper bound for 
w(G), and in particular, C(k, O) = w(G). 

For technical reasons, we will not apply Theorem 6.5, but the following re- 
statement of it. 

T h e o r e m  6.6. There exists a function W2 : [0, 1] -4 [0, 1] with W2(z) < 1 for 
all z < 1 and a constant Co such that the following holds. For all games G, 
dimensions k, and A = A x  • Ay ,  where A x  C_ f~ and Ay  C_ Y,  such that for 
all A with - l o g # ( A ) / k  <~ A <<. 1 (i. e., p(A) >>. 2-ak) ,  there exists a coordinate 
i of GA such that 

w(G~) ~ W~ (w(C)) + ~oA ~ . 

It will be necessary to choose A carefully such that  certain assumptions made 
in the proof are satisfied. 

Now we show how Raz derives Theorem 6.4 from Theorem 6.6. Let us denote 
the upper bound from Theorem 6.6 by 

:= w2 (w(G)) + 

and assume that  r ~< Ak. We choose an A = A x  x Av C (~ with - log #(A) ~< r 
that  maximizes w(GA), i.e., C(k,r)  = w(GA). (So p(A) > 0.) By Theorem 6.6, 
we know that  there must be a coordinate i (without loss of generality, we will 
assume that  i = 1) whose value is not too big, namely w(G~) ~< ~b. We will use 
this "good" coordinate in order to make an induction step in the following way. 
Recall that  the value w(GA) is defined as the maximal expected error probability 
with respect to the probability measure PA, taken over all protocols fi : ~: -4 Cr, 

: ~ -4 r~ the provers can agree upon. This means that  an optimal protocol fi, 
(for the provers) satisfies 

W(dA)= 
(~,~)e~ 
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Let us fix such an optimal protocol fi, V. Next we partition A according to the 
behavior of ~ and V on the first coordinate. For every point z -- (x, y, u, v)  9 Z, 
we define a partition class A(z) C A by 

A(x,y,u,v) := {(~,~)  9 A I Xl = x A Yl -- Y A u1(2) -- u A vl(~) = v}.  

Note that  the partition classes A(z) again have the form of cartesian products as 
required for the application of Theorem 6.6. We denote the subset of questions 
of A(z) such that  the acceptance predicate 0 is satisfied by 

B(x,y,u,v) := {(~,~)  9 A(x,y,u,v) l O(2~,~,~(~),o(y)) = 1}. 

The sets B(z) will be useful later. The size of the partition {A(z) [z  9 Z} is 
not too big, and therefore the average size of a partition class is not too small. 
Also, in many of these subsets A(z) of A the protocol ~2, ~ fails to satisfy the 
predicate 01, because i = 1 is a good coordinate. If 01 is not satisfied, then 0 
is also not satisfied, so we can forget about these subsets. This is a consequence 
of the fact that  0 can be viewed as the product of 01 and a (k - 1)-dimensional 
predicate and that  01 is constant on each A(z). Let us deduce this fact formally. 
If Q(z) = O, then B(z) = 0, because (2, ~)  9 A(z) implies 

0(2,~,f i (2) ,~(~))  ~< Q(xl,yl,ul(2),Vl(9)) = Q(z) = O. 

If Q(z) = 1, then (2, ~)  9 A(z) implies 

k 

0 (2, ~, fi(~), V(~)) = Q(z) [ t ] H  Q(xj '  yj, uj(~), vj (~)). 
j---2 ----1 

These facts enable us to carry out an inductive argument. 

We denote the conditional probability with which a random (2, ~) E A that  was 
chosen according to the distribution PA lies in A(z), depending on z E Z, by 

a(z) := #A(A(z)) = #(A(z)) 
y~(A) 

Of course, a(Z) = 1, because {A(z) lz  9 Z} is a partition of A. Note that  
the event (~,~)  9 A(z) depends only on the first coordinate of GA, which 
is (xl,yl,ul(~),Vl(~)). For some of the partition classes A(z), the predicate 
01 (Xl, Yl, Ul($), Vl (~)) is not satisfied. Summing the a-probability of the other 
partition classes gives us the value of the first coordinate game. Thus the follow- 
ing claim holds. 

Claim 6.1: 
= 
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This is the point where Theorem 6.6 is applied. But to get an assertion about 
the parallel repetition game GA, we also have to consider the probability that  a 
random (~, ~) E A(z) leads to acceptance in the game GA(z). Let us denote this 
probability by 

~(B(z))  
/~(z) : =  # A ( : ) ( O )  --  # (A (z ) ) "  

If [~(A(z)) - 0, we set fl(z) := 0. Now a moment's thought shows that  the 
following claim is true. 

Claim 6.2: 
~_, ~(z) ~(z) = w(OA) = C(k,r). 
zEO 

Next, we deduce an upper bound for ~(z). Observe that  in fact, A(z) and B(z) 
are only (k - 1)-dimensional sets, so it makes good sense to define 

A'(z) := { ((x2, . . .  ,xk), (y2, . . .  ,Yk)) ] (~,~) e A(z)}.  

and 
B'(z) := {((x2, . . .  ,xk), (y2,... ,yk)) I e B(z)} .  

In a similar way, we define a protocol for the game At(z ) by 

u ' ( x ~ " ' " x ~ )  := (Uj(X'X~'""Xk)  I J = 2 , . . . , k )  

and 
v'(y2,...,y~) := (v~(y, y2,. . . ,yk)IJ ---- 2 , . . . , k ) .  

t.'~| Since the predicate Qk-i of the game ~A,(z) is satisfied precisely at the el- 
ements of B'(z) and the protocol u, v was chosen optimal for GA, it follows 
that  

(a| ~ #| (S'(z)) #(B(z)) 
w \  A'(z) ) /> /~| -- p(A(z)) - Z ( z ) .  

A trivial upper bound for w \ A'(z) ) that  holds by definition is 

C(k - 1, ( ~ w \ A'(z) J <~ --l~174 

Also, we have 

p(A(z)) a(z)p(A) 2_ ~ a(z) 
#| = I~(x,y) = p(x,y)  >~ # (x , y ) "  

If we put these inequalities together, using the fact that  the function C(-,.) is 
monotone increasing in the second argument, we see that  the following claim is 
true. 
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Claim 6.3: 
For all z = (x, y, u, v) E Q with a(z) > 0, 

~(z) 
f ~ ( z ) < C  k - l ,  r - l o g p ( x , y ) ]  " 

The claims 6.1, 6.2, and 6.3 lead to a recursive inequality for C. Let T :-- {z E 
Q [ a(z)"> 0} be the set of all realizations of the coordinate game G~ that  occur 
with positive probability. Then it holds 

~(z) c (k ,  r) = y:~ ~(z)  ~(z) ~< ~ ~(z)  c k - 1, r - log . ( x ,  y) ] " 
z E T  z E T  

It remains to carry out a recursive estimation, using the bound for C(k - 1, .) 
to prove the bound for C(k, .). Define 

C : :  ~2(l~ I"+A) 

for abbreviation. (So c is a function of w(G), s(G), and A.) The heart of the 
proof of the following claim is a clever application of Jensen's inequality. 

Claim 6.4: 
C(k, r) ~< c Ak-r . 

p r o v i d e d 0 ~ < ~ < l a n d  ~ < c < 1 .  

Since 0 < W2 (wiG)) < 1 and ~ is monotone in A, we can find an appropriate A 
that  satisfies the assumptions we made during the proof by starting from A = 0 
and increasing A until the conditions hold. 

Finally, we show how Theorem 6.4 follows from claim 6.4. Note that  A < 2 log s 
(because A < 1 and s > 2). Therefore, under the assumptions made above, 

w ( v )  : c ( k , 0 ) <  c ~k = ~ ~ ~ k  ~< ~ . . -~ .~  = ( ~ / ~ ) ~ / , o ~  

So Theorem 6.4 holds with 

W(w(G)) := inf ( ~ / 4 )  , 

where the infimum is taken over all A satisfying the assumptions. 

6.7 How to Prove the Parallel  Repet i t ion  Theorem (II) 

In this section we give an overview of basic ideas and techniques that  are used 
in the proof of Theorem 6.6. We do not t ry to explain how to get the exact 
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quantitative result of the theorem but rather aim to motivate the qualitative 
statement. The entire proof covers more than 30 pages and can be found in 
an extended version [Raz97] of [Raz95]. Our description is also based on the 
short overview of the proof given by Feige in [Fei95]. In particular we use Feige's 
notion of "good" coordinates and their characterization by certain properties, 
see Properties 1-3 below. 

For the following considerations we keep X, Y, U, V, Q, #, k and the corresponding 
game G fixed. Moreover, we will consider games consisting of X, Y, U, V, Q resp. 
X, Y, U, V, Q together with probability distributions other than # resp. #. For 
arbitrary probability measures (~ : ~ -+ ~ and 5 : ~ -+ R we denote the 
corresponding games by Ga resp. Ga. Thus, we can denote the restricted game 
GA alternatively by G~a where A = A x  x A y  is a fixed subset of ~. To simplify 
notation we denote the probability measure #A by ~. 

We think of w as a function from the set of all probability measures on ~ resp. 
to R and denote the values of the games Ga and G~ by w(c~) resp. w(~). In 

the following lemma we state two basic properties of the function w. The proof 
is left to the reader, see exercise 6.5. 

L e m m a  6.7. The ]unction w is continuous and concave. 

For (~ : ~ -~ I~ define &i to be the projection of & on the i-th coordinate, i.e., 
for (x, y) E ~ let 

: =  

( (~,~)e~: 
x~,v.)=C~,y) 

In particular ~i is a probability measure on 12. We will consider the following 
games: 

- The game Ga as introduced above consisting of X, 17, U, V, Q, with the mea- 
sure 5 and value w(~). 

- The coordinate game G~ of Ga as defined in Section 6.5 consisting of the four 
sets X, Y, U, V, with the acceptance predicate Qi and with the measure (~. We 
denote the value of this game by wi(~). 

- The one-dimensional game Ga. induced by the measure (~i on X, Y, U, V, Q 
with value w(5~i). 

Theorem 6.6 claims that for "large" A = A x  x A y  (with respect to the measure 
#) there exists a coordinate i such that the provers succeed in the corresponding 
coordinate game G/~ with probability "not much higher" than w(G).  We keep 
such a large subset A fixed for the rest of this section. To prove Theorem 6.6 Raz 
considers coordinates that satisfy certain properties which lead to the property 
stated in the theorem. As proposed by Feige we call coordinates with these 
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properties "good". In the rest of this section we characterize good coordinates 
in an informal way. 

A natural requirement on a good coordinate i seems to be: 

P r o p e r t y  1: The projection #i of ~ on coordinate i is very close to the original 
probability distribution #. 

To be more precise we say that #i is close to # if the informational divergence 
D( #i II it) of ~i with respect to # is small. The informational divergence (or 
relative entropy) is a basic tool of information theory and is defined by 

D( ~i I]/~) := ~ ~i(z) log ~i(z) u ( z )  " 

The informational divergence is always non-negative and if it is small then the 
L1 distance between the two measures is also small. A short discussion of basic 
properties can be found in [Raz95], for further information see [Grag0, CKS1]. 

It is easy to show that for large A Property 1 holds for many coordinates i. As a 
consequence of Lemma 6.7 we know that the value w(~r i) of the game G~, is not 
much larger than w(tt) if the coordinate i satisfies Property 1. Thus it suffices 
to show that for one such coordinate i, the value wi(#) of the coordinate game 
G/~ is bounded by some "well behaved" function of w(#i). On the other hand it 
is always true that 

.< (6.1)  

because any protocol for the one-dimensional game G~ induces in a canonical 
- i  way a protocol with the same value for the coordinate game G~. Remember 

that in the one-dimensional game Gr~ on X, Y, U, V each prover is asked only 
G~, each prover gets k questions  9 resp. 9 one question. However, in the game -~ 

but only has to answer the i-th question xi resp. Yi. Thus, ignoring all questions 
but the i-th, the provers of the game G~- can apply the optimal strategy of the 
one-dimensional game G~.  Moreover, since by definition of the projection #i the 
probability distribution of questions (x, y) in the one-dimensional game exactly 
equals the distribution of the i-th question (xi, Yi) in the game -i G~, the value of 
this protocol is the same for both games. 

The following lemma describes a special case where an optimal protocol for 
- i  the one-dimensional game G~ is also optimal for the game G~ (see [Raz95, 

Lemma 4.1]). 

L e m m a  6.8. I f  there exist functions Ol I : X x Y -+ •, a2 : f (  ---> ~, ~3 : Y ~ 
such that for all (~, 9) E X • 

9) =  3(9) 

then 
= 
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Sketch of Proof. Because of (6.1), it remains to show that  w(~ i) /> w~(~). 
Inverting the argument given above we have to show that  a protocol for G~ can 
be used to define a corresponding protocol with the same value for G ~ .  The 
basic idea is that  in this special case the provers of the game Gnz can simulate a 
k-dimensional input (~, if) with distribution ~ from the given input (xi, yi) with 
distribution ~i. Thus, Exercise 6.4 completes the proof.  9 

C o r o l l a r y  6.9. I f  p is a product measure, i. e., 

y) = 7(y)  

where ~ : X -4 ]~ and 7 : Y --~ I~ are arbitrary probability measures, then 
Property 1 suffices to define good coordinates and to prove Theorem 6.6 ]or this 
special case. 

Proof. If # is a product  measure then the same holds for ~ by definition. More- 
over, it is easy to see that  the condition of Lemma 6.8 is satisfied in this case. 
This, together with the remarks after Proper ty  1, completes the proof of Theo- 
rem 6.6. m 

Unfortunately, in general we do not get an optimal protocol for G~ by taking 
one for G ~ .  The reason is tha t  in the game G~ a prover can loose important  
information by ignoring all but  the i-th question. Recall tha t  in the game G with 
measure p the question pairs selected at different coordinates are independent. 
This is no longer true in the restricted game G~ with measure ~. Thus the 
question which a prover receives on a coordinate j different from i may already 
provide information on its i-th question. Feige defines the side information for 
coordinate i as the questions a prover receives on coordinates other than i. 

The situation gets even worse if the question a prover receives in coordinate j is 
correlated with the question that  the other prover receives on this coordinate. 
Then the side information for coordinate i may help him to guess the i-th ques- 
tion of the other prover. As a consequence the side information can obviously 
help the provers to succeed on coordinate i. Thus a good coordinate should not 
only meet Proper ty  1, in addition we should require tha t  the side information 
for good coordinates are in a way useless: 

P r o p e r t y  2: The side information for coordinate i available to each prover 
conveys almost no information on the question that  the other prover receives on 
this coordinate (beyond the direct information available to the prover through its 
own question on coordinate i and the description of the underlying probability 
measure used by the verifier). 

Unfortunately, even this condition does not suffice to define good coordinates 
and to get the desired result. Consider the following example which is given in 
[Fei95]: 
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Example  6.10. Define a game G by X = Y = U = V = {0, 1}. For x E X,  y E 
Y, u E U, and v E V the acceptance predicate Q is given by xAy = u ~ v  (where @ 
denotes exclusive or). The probability distribution/~ is defined by #(x,  y) = 1/4 
for all ( x, y) E X x Y, i. e., the two questions are drawn independently from each 
other and all choices are equally likely. 

This game is not trivial, i. e., its value is not 1, see Exercise 6.1. However, for the 
game G = G | consider the subset A of X 2 x y2  that  includes eight question 
pairs, written as (xlx2,ylyz):  

A = {(00, 00), (01, 01), (00, 10), (01, 11), (10, 00), (11, 01), (10, 11), (11, 10)} 

It is an easy observation that  the projection of A on its first coordinate gives 
the uniform distribution over question pairs / x, y). Moreover, the question Yl is 
independent of the two questions XlX2 and xl  is independent of YlY2, see [Fei95, 
Proposition 4]. Thus Properties 1 and 2 hold for coordinate 1. Nevertheless, there 
exists a perfect strategy for the provers on the first coordinate. Just observe that  
xx A Yl = x2 @ Y2 for all question pairs in A. Thus we get a perfect strategy for 
the first coordinate if the first prover gives the answer x2 while the second prover 
gives the answer Y2- 

Example 6.10 seems to contradict the statement of Corollary 6.9. The reason is 
that  the set A given above cannot be written as A x  x A y  with A x  C_ X 2 and 
Ay C_ y2.  Nevertheless, the game G can be extended to a new game G e which, 
together with a subset A ~ = A~c x A~, shows that  Proper ty  2 together with 
Proper ty  1 does not suffice for a coordinate i to meet the property claimed in 
Theorem 6.6. 

To overcome this drawback one has to substitute Proper ty  2 by a somewhat 
stronger condition on good coordinates. The idea is to reduce the problem in 
a way to probability measures as considered in Lemma 6.8. One represents 
as a convex combination of measures that  satisfy the condition of Lemma 6.8. 
Therefore we need the following definition which Raz considers as "probably the 
most important  notion" for his proof. 

Definition 6.11.  For a fixed coordinate i E {1 , . . . ,  k} a set M of type J~t i is 
given by 

1. a partition of the set of coordinates { 1 , . . . ,  k} - {i} into J U L and 

2. values aj E X ,  for all j E J, and bt E Y ,  for all g E L. 

Then M is given by 

M = { (  ~ , ~ ) E f ~ x ~ ' l x j = a j f o r a l l j e J , y l = b ~ f o r a l l ~ E L } .  

JVt i denotes the family of all sets M of type A/I i. 



176 Chapter  6. Parallel Repetition of MIP(2,1) Systems 

As a simple application of Lemma 6.8 one can prove that  

Wi(~M) = W ( ~ )  (6.2) 

for a set M of type Ad i. Moreover, the probability measure ~ induces in a natural  
way a measure Pi : 3"t i --+ R by 

+(M) 
p i ( M ) -  2k_1  9 

Since A/[ i is a cover of .~ • Y and each element (~,~) is covered exactly 2 k-1 
times, Pi is in fact a probability measure for Ad i and we can write # as the 
convex combination 

r =  E pi(M)frM (6.3) 
MEAd'  

At this point we can imagine the importance of the set jp[i. It  finally enables us 
to write the probability measure + as the convex combination (6.3) of measures 
~'M with the nice property (6.2). 

Moreover, we can now bound the value w~(~) of the coordinate game =i G+. First 
- i  note that  a protocol for G~ is also a protocol for each game G~M. Thus the 

concavity of the function wi (see Exercise 6.5) yields 

Wi('~) < E pi(M)wi(~M). 
M~A4 i 

The right hand side of this inequality can be interpreted as the expectation 
Ep, (wi(#M)). This together with equation (6.2) yields the upper bound 

We need the following notation. For a probability measure a : X x Y -~ l~ 
define a(x, .) : Y -> R to be the induced measure on Y for fixed x E X,  i. e., for 
y E Y  

.)(y) = y) 

where a(x) = ~ e r  a(x, y). If a(x) = 0 set a(x, .) to be identically 0. Define 
a(.,  y) and a(y)  in the same way. 

The following lemma is a qualitative version of [Raz95, Lemma 4.3]. It defines a 
condition on coordinate i tha t  suffices to upper bound Eo, (w(~4) ) .  

L e m m a  6.12.  Let coordinate i satisfy Property 1. If 

and Eo,(~,=er#iM(ylD(+iM(.,y) H#(.,y)) ) 

a r e  

of w(l~ ) . 

(6.4) 

",mall" then is  pper bounded some behaved function 
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We will neither give the proof for Lemma 6.12 nor the proof for the existence of 
such a good coordinate (see [Raz95, Section 5]). Instead we give a more intuitive 
formulation for the condition in Lemma 6.12 similar to the one given by Feige. 

Consider a fixed M E , ~  with corresponding parti t ion { 1 , . . . , k )  - {i} = 
J U L  and questions aj E X for j E J and b~ E Y for ~ E L. The term 
D ( ~ ( x ,  .)II#(x, .)) can be interpreted as a measure for the information that  
the first prover can get on the i-th question of the other prover from the knowl- 
edge of the questions xj = aj for j E J and y~ = b~ for s E L. Using a notion 
of Feige we call this information the extended side information for coordinate i 
with regard to M. Thus the condition given in Lemma 6.12 can be reformulated 
a s :  

P r o p e r t y  3: On an average (with regard to Pi), the extended side information 
for coordinate i conveys almost no additional information on the question that  
the other prover receives on coordinate i. 

As mentioned above with Properties 1 and 3 defining good coordinates, Raz 
showed that  for large A at least one good coordinate i exists and the value of 

- i  
the coordinate game G~ is bounded as claimed in Theorem 6.6. 

Exercises  

Exercise  6.1.  What  is the value of the game given in Example 6.10? 

Exercise  6.2. What  is the value w(G) of the game G given in Example 6.3? 
Show that  2-fold parallel repetition does not reduce the error probability, i.e., 
w(G | = w(G). 

Exercise  6.3.  Multiple-prover games are a natural  extension of two prover 
games. Can you generalize the game given in Example 6.3 to the case of k 
provers, for k > 2, such that  w(G | = w(G) ? 

Exercise  6.4.  Can the value of a game be increased by allowing the provers to 
use random strategies? 

Exercise  6.5. For fixed X, Y, U, V, Q, consider the value w(G) of the game G 
as a function w(#) of the measure # : X x Y ~ [0, 1]. Show that  this function is 
concave and continuous with Lipschitz constant 1. 


