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Abstract We study Nash equilibria in the context of flows over time. Many
results on static routing games have been obtained over the last ten years.
In flows over time (also called dynamic flows), flow travels through a network
over time and, as a consequence, flow values on edges are time-dependent. This
more realistic setting has not been tackled from the viewpoint of algorithmic
game theory yet; but there is a rich literature on game theoretic aspects of
flows over time in the traffic community.

We present a novel characterization of Nash equilibria for flows over time.
It turns out that Nash flows over time can be seen as a concatenation of special
static flows. The underlying flow over time model is the so-called deterministic
queuing model that is very popular in road traffic simulation and related fields.
Based upon this, we prove the first known results on the price of anarchy for
flows over time.

Keywords Flow over time · Nash equilibrium · Routing game · Deterministic
queuing model

1 Introduction

In a groundbreaking paper, Roughgarden and Tardos [42] (see also Roughgar-
den’s book [41]) analyze the price of anarchy for selfish routing games in net-
works. Such routing games are based upon a classical static flow problem with
convex latency functions on the edges of the network. In a Nash equilibrium,
flow particles (infinitesimal flow units) selfishly choose an origin-destination
path of minimum latency.
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One main drawback of this class of routing games is its restriction to static
flows. Flow variation over time is, however, an important feature in network
flow problems arising in various applications. As examples we mention road
or air traffic control, production systems, communication networks (e. g., the
Internet), and financial flows; see, e. g., [5,37]. In contrast to static flow models,
flow values on edges may change with time in these applications. Moreover,
flow does not progress instantaneously but travels at a certain pace through
the network which is determined by transit times on the edges. Both temporal
features are captured by flows over time (sometimes also called dynamic flows)
which were introduced by Ford and Fulkerson [15,16].

Another crucial phenomenon in many of those applications mentioned
above is the variation of time taken to traverse an edge with the current (and
maybe also past) flow situation on this edge. The latter aspect induces highly
complex dependencies and leads to non-trivial mathematical flow models. For
a more detailed account and further references we refer to [5,11,19,30,37,38].
In particular, all of these flow over time models have so far resisted a rigorous
algorithmic analysis of Nash equilibria and the price of anarchy.

We identify a suitable flow over time model that is based on the following
simplifying assumptions. Every edge of a given network has a fixed free flow
transit time and a capacity. The capacity of an edge bounds the rate (flow per
time unit) at which flow can leave this edge. The free flow transit time denotes
the time that a flow particle needs to travel from the tail to the head of the
edge. If, at some point in time, more flow wants to traverse an edge than its
capacity allows, the flow particles queue up at the end of the edge and wait in
line before they actually enter the head node. When a new flow particle wants
to traverse an edge, the time needed to arrive at the head thus consists of the
fixed free flow transit time plus the waiting time. In the traffic literature, this
flow over time model is known as deterministic queuing model.

Related Literature. Flows over time with fixed transit times were introduced
by Ford and Fulkerson [15,16]. For more details and further references on these
classical flows over time we refer, for example, to [14,43].

So far, Nash equilibria for flows over time were mostly studied within the
traffic community. Vickrey [48] and Yagar [51] are the first to introduce this
topic. Up to the middle of the 1980’s, nearly all contributions consider Nash
equilibria on given small instances; see, e. g., [21,29,35,48]. Since then, the
number of publications in this area has increased rapidly and Nash equilib-
ria were modeled mathematically. Two main models are distinguished: The
route-choice-model where a player only chooses an s-t-path for the controlled
flow particle and the simultaneous departure-time-route-choice-model where in
addition the departure time is also chosen. For a survey see, e. g., [36]. The
considered models can be grouped into four categories: mathematical pro-
gramming (e. g., [20,28]), optimal control (e. g., [18,39]), variational inequal-
ities (e. g., [12,17,40,45,46]), and simulation-based approaches (e. g., [7,6,31,
47,51]). Up to now, variational inequalities are the most common formulation
for analyzing Nash equilibria in the context of flows over time.
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Many models mentioned above use a path-based formulation of flows over
time. Therefore they are often computationally intractable. Edge-based formu-
lations are, for example, considered in [2,12,40]. Realistic assumptions on the
underlying flow model with respect to traffic are described by Carey [9,10].

In this paper the deterministic queuing model is considered. This model was
introduced by Vickrey [48] and later by Hendrickson and Kocur [21]. Smith [44]
shows the existence of an equilibrium for this model in a special case. Aka-
matsu [1,2] presents an edge-based formulation of the deterministic queuing
model on restricted single-source-instances. Akamatsu and Heydecker [3] study
Braess’s paradox for single-source instances. Braess’s paradox [8] states (for
static flows) that increasing the capacity of one edge can increase the total cost
of all users in a Nash flow. It is well known that this paradox is extendable to
the dynamic case. Mounce [32,33] considers the case where the edge capaci-
ties can vary over time and states some existence results. Again, it should be
mentioned that these results are based on strong assumptions.

Recently, Anshelevich and Ukkusuri [4] analyze discrete routing game mod-
els for Nash equilibria in the context of flows over time. They consider how
a single splittable flow unit present at source s at time 0 would traverse a
network assuming every flow particle is controlled by a different player. The
underlying flow model allows to send a positive amount of flow over an edge
at each integral points in time. Moreover the transit times are assumed to be
constant. Hoefer et. al [22] also consider a discrete routing game. They study
existence and complexity properties of pure Nash equilibria and best-response
strategies.

Our Contribution. In this paper, we characterize and analyze Nash equi-
libria for flows over time. Although algorithmic game theory is a flourishing
area of research (see, e. g., the recent book [34]), network flows over time have
not been studied from this perspective in the algorithms community so far.
The main purpose of this paper is to make first steps in this relevant direc-
tion, present interesting and novel results, and stimulate further interesting
research. We consider the deterministic queuing model in networks with a sin-
gle source and a single sink. A player controls one flow particle and chooses an
s-t-path (route-choice-model) but no departure time which is given a priori.

A precise description of a routing game over time and the underlying flow
over time model is given in Section 2. The resulting model of Nash equilibria
along with several equivalent characterizations is discussed in Section 3. The
main technical contribution of this paper is presented in Section 4. Here we
show that a Nash equilibrium can be characterized via a sequence of static
flows with special properties. The resulting static flow problems are of interest
in their own right. The final Section 5 is devoted to results on the price of
anarchy. For the important class of shortest paths networks we prove that every
Nash equilibrium is a system optimum. Moreover, a Nash flow over time can
be computed in polynomial time by a sequence of sparsest cut computations.
Surprisingly, for arbitrary networks, the price of anarchy is not bounded by a
constant.
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2 A model for routing games over time

In this section we present a model for Nash equilibria in the context of flows
over time. In Section 2.1 we define a routing game over time and elaborate on
the game theoretic aspect of the model. Then, in Section 2.2 we introduce an
appropriate flow over time model which is known as the deterministic queuing
model.

Throughout the paper we often use the term flow particle in order to refer
to an infinitesimal flow unit which corresponds to one player and travels along
a single path through the network. The terms flow rate and supply rate both
refer to an amount of flow per time unit.

2.1 From static routing games to routing games over time

Consider a network consisting of a directed graph G := (V, E) with node
set V and edge set E. Further, there is a source s ∈ V and a sink t ∈ V .
Each flow particle is a player and the strategy set of each player is the set P
of all s-t-paths.

In a static routing game, the players’ decisions yield a static s-t-flow µ of
value d where d is the given supply at the source s. Moreover, there is a contin-
uous cost (or payoff) function ℓP for each path P ∈ P such that ℓP (µ) is the
cost that a player choosing path P has to pay. The static flow µ = (µP )P∈P is a
Nash flow if, for all P ∈ P with µP > 0, it holds that ℓP (µ) = minP ′∈P ℓP ′(µ).

The situation is considerably more complicated when we turn to routing
games over time. Here we assume that supply, i. e., players, occur at the source
node s over time at a fixed rate d. We can thus identify each player with the
point in time θ at which its corresponding flow particle originates at the source.
In particular, and in contrast to static routing games, players are not identical.
The routing decisions of players yield a flow over time µ = (µP )P∈P where
µP is a function determining the flow rate µP (θ) at which flow enters path P
at time θ and it holds that

∑
P∈P µP (θ) = d, for all θ. Thus, also ℓP (µ) is a

function which assigns a cost ℓP (µ)(θ) to every point in time θ. That is, the
cost experienced by a flow particle that originates at the source at time θ and
chooses path P is equal to ℓP (µ)(θ).

In this paper we restrict to cost functions where ℓP (µ)(θ), P ∈ P , is the
time when a flow originating at s at time θ arrives at the sink t. This time
depends upon the particular model of flows over time that we consider which
is described in Section 2.2 below.

Like in static routing games, a Nash equilibrium is characterized by a flow
over time µ where no player has an incentive to change her chosen path in
order to reduce her cost.

Definition 1 (Nash flow over time) Let µ be a flow over time determining
the routing decisions of the players in a routing game over time. Then, µ is a
Nash equilibrium (Nash flow over time) if, for almost all θ and for all P ∈ P
with µP (θ) > 0, it holds that ℓP (µ)(θ) = minP ′∈P ℓP ′(µ)(θ).
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This definition is an immediate generalization of the definition of static
Nash flows under the assumption that the payoff functions are continuous. A
closer look at Definition 1 shows that the continuity of the payoff functions ℓP

is also essential here since it ensures the following. If an actual routing µ does
not fit Definition 1, then some measurable set of players must have an incentive
to switch to a path P of minimum latency. Hence, the switching of the players
must not imply a large increase of the payoff function ℓP .

2.2 An appropriate flow over time model

Although Definition 1 is an immediate generalization of static Nash flows, it
is still a highly nontrivial problem to come up with an appropriate flow over
time model. Here the main issue are the cost functions ℓP , P ∈ P . For static
routing games, these cost functions are not given explicitly, but implicitly via
edge latency functions. The cost of a path P ∈ P is the sum of the latencies
of its edges. The latency of an edge e is a function of the load µe of that edge
which can easily be computed as follows: µe :=

∑
P∈P:e∈E(P ) µP .

The situation is considerably more complicated for flows over time. Here,
it is usually a highly nontrivial problem to compute the flow rate function µe

of edge e from given flow rate functions (µP )P∈P . Consider a flow particle
that enters a path P ∈ P at a certain time θ. Notice that the time at which
this particle arrives at an edge e ∈ E(P ) depends on the latencies experienced
on the predecessor edges on path P . This fact induces involved dependencies
among the flow rate functions (µe)e∈E of the edges. As a consequence, given
a flow over time (µP )P∈P , determining the cost (overall latency) of a flow
particle entering path P at time θ is, in general, a highly nontrivial task.
For more details on this so-called dynamic network loading problem we refer
to [49,50]. Nevertheless, for the deterministic queuing model described below,
these difficulties can be handled at least for the case of Nash flows over time.

Let (G, u, τ, s, t) be a network consisting of a directed graph G := (V, E),
edge capacities ue ∈ R+, e ∈ E, constant free flow transit times τe ∈ R+,
e ∈ E, a source s ∈ V , and a sink t ∈ V . We assume without loss of generality
that there are no incoming edges at the source s and no outgoing edges at the
sink t and that every node v is reachable from s. The capacity ue of an edge e
bounds the rate at which flow leaves edge e at its head node. The basic concept
of the considered flow over time model are waiting queues which build up at
the head (exit) of an edge if, at some point in time, more flow particles want to
leave an edge than the capacity of the edge allows. The free flow transit time
of an edge determines the time for traversing an edge if the waiting queue is
empty. Thus, the (flow-dependent) transit time on an edge is the sum of the
free flow transit time and the current waiting time. We think of the edges as
corridors with large entries and small exits, which are wide enough for storing
all waiting flow particles (point-queue-model); see Fig. 1.

Every flow particle arriving at an intermediate node v immediately enters
the next edge on its path without any delay. In the following we give a more
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Fig. 1 If more flow particles want to leave an edge than its capacity allows, they form a
waiting queue.

precise mathematical description of the flow over time model. A flow over
time is defined by two families of flow rate functions. For an edge e we have
a Lebesgue integrable inflow rate f+

e meaning that the rate at which flow
enters the tail of e at time θ is f+

e (θ) ≥ 0; moreover, the Lebesgue integrable
outflow rate f−

e describes the rate of flow f−
e (θ) ≥ 0 leaving at the head

of e at time θ. We define for an edge e the cumulative in- and outflow at

time θ ≥ 0 by F+
e (θ) :=

∫ θ

0 f+
e (ϑ) dϑ and F−

e (θ) :=
∫ θ

0 f−
e (ϑ) dϑ, respectively.

Thus the amount of flow that has entered e before time θ is F+
e (θ) and the

amount of flow which has traversed e completely before time θ is F−
e (θ). Note

that F+
e and F−

e are (absolutely) continuous and monotonically increasing, for
each e ∈ E.

In order to obtain a feasible flow over time f := (f+, f−), the in- and the
outflow rates must satisfy several conditions. The capacity of an edge bounds
the outflow rate of that edge:

f−
e (θ) ≤ ue for all e ∈ E, θ ∈ R+. (1)

We also have to impose several kinds of flow conservation constraints. Firstly,
flow can only traverse an edge if it has previously been assigned to this edge:

F+
e (θ) − F−

e (θ + τe) ≥ 0 for all e ∈ E, θ ∈ R+. (2)

Secondly, we want flow arriving at an intermediate node v ∈ V \ {s, t} to be
immediately assigned to an outgoing edge of v:

∑

e∈δ−(v)

f−
e (θ) =

∑

e∈δ+(v)

f+
e (θ) for all v ∈ V \ {s, t}, θ ∈ R+. (3)

In order to ensure that flow which is assigned to an edge must leave this edge
again at some point in time, we proceed as follows: Regarding condition (2),
the value F+

e (θ) is the amount of flow entering edge e before time θ which is
equal to the flow arriving at the end of the waiting queue of e until time θ+τe.
Moreover, the value F−

e (θ+τe) is the amount of flow arriving at the head node
of e until time θ + τe. Thus, F+

e (θ) − F−
e (θ + τe) is the amount of flow in the

waiting queue at time θ + τe. We impose the natural condition that, whenever
the waiting queue on edge e is nonempty, the flow rate leaving e at its head
equals its capacity ue. Therefore the waiting time spent by a flow particle
entering the tail of e at time θ is equal to

qe(θ) :=
F+

e (θ) − F−
e (θ + τe)

ue

for all e ∈ E, θ ∈ R+. (4)
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The interpretation of qe(θ) as the waiting time for flow particles arriving at
time θ on edge e is based on the assumption that the first-in-first-out (FIFO)
property holds on edge e. That is, no flow particle overtakes any other flow
particle within the waiting queue. Since the free flow transit times are constant,
the FIFO property holds for the entire edge.

Proposition 1 For any edge e ∈ E, the following statements are valid:

(i) The function θ 7→ θ + qe(θ) is monotonically increasing and continuous.
(ii) F+

e (θ) = F−
e

(
θ + τe + qe(θ)

)
for all θ ∈ R+.

(iii) Consider two points in time θ2 > θ1 ≥ 0 such that
∫ θ2

θ1
f+(ϑ) dϑ = 0 and

qe(θ2) > 0. Then we have θ1 + qe(θ1) = θ2 + qe(θ2).

Proof Let θ2 > θ1 ≥ 0. For proving (i) note that F−
e (θ2 + τe) − F−

e (θ1 +
τe) ≤ ue(θ2 − θ1) because of (1). Hence qe(θ1) − qe(θ2) ≤ θ2 − θ1 is implied
by F+

e (θ1) − F+
e (θ2) ≤ 0 and (4). The continuity follows from (4) and the

continuity of F+
e and F−

e .
Since we assume that, whenever the waiting queue on edge e is nonempty,

the flow rate leaving e at its head equals the capacity ue, statement (ii) is
directly implied by (4).

It remains to prove statement (iii). Since we have F+
e (θ1) = F+

e (θ2), we
obtain F+

e (θ′) = F+
e (θ2) for all θ′ ∈ [θ1, θ2) because F+

e is monotonically
increasing. Since F−

e is also monotonically increasing and qe(θ2) > 0, this im-
plies F+

e (θ′) − F−
e (θ′ + τe) ≥ F+

e (θ2) − F−
e (θ2 + τe) > 0 for all θ′ ∈ [θ1, θ2).

Hence, there is a nonzero waiting queue on e for all times in [θ1, θ2), imply-
ing that f−

e is equal to ue for all times in [θ1, θ2). Thus, we conclude that
qe(θ1) − qe(θ2) = θ2 − θ1. ⊓⊔

As already mentioned, the flow-dependent transit time τe(θ) experienced by
flow particles entering e at time θ is τe(θ) := τe+qe(θ). Note, that the mapping
f+

e 7→ τe, which maps an inflow rate f+
e to the transit time function τe, is

continuous. This is due to the fact that additional flow of value ǫ > 0 can cause
at most an additional delay of ǫ

ue
. Therefore, for the case of the deterministic

queuing model, a Nash equilibrium of a routing game over time is well-defined
in terms of Definition 1.

3 Characterizing Nash flows over time

The main aspect of Nash equilibria in flow models is the selfish routing of flow
particles which are identified with players. As mentioned in Section 2.1, we
assume that flow occurs at the source s according to a fixed supply rate d ∈ R+.
As soon as a flow particle pops up at the source, it decides by itself how to
travel to the sink t. That is, it chooses an s-t-path and immediately enters the
first edge of that path.

We consider two – apparently related – classes of flows over time. In the
first class, every flow particle travels along “currently shortest paths” only.
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In the second class, every flow particle tries to overtake as many other flow
particles as possible while not being overtaken by others. It turns out that the
latter condition leads to a flow where no particle overtakes any other particle.
Moreover, we show that the two classes of flows over time coincide and are, in
fact, Nash flows over time.

We start by defining currently shortest s-t-paths in a given flow over time.
To do so, we consider the problem of sending an additional flow particle at
time θ ≥ 0 from the source s to the sink t as quickly as possible. Let ℓv(θ) be
the earliest point in time at which this flow particle can arrive at node v ∈ V .
Then,

ℓv(θ) + τe + qe(ℓv(θ)) ≥ ℓw(θ) for each e = vw ∈ E. (5)

On the other hand, for each node w ∈ V \ {s}, there exists at least one
incoming edge e = vw ∈ δ−(w) such that equality holds in (5). That is, the
flow particle can use edge e in order to arrive at node w as early as possible,
i. e., at time ℓw(θ). Moreover, we have ℓs(θ) = θ for all θ ≥ 0. Therefore, we
define the label functions ℓw : R+ → R+ as follows:

ℓw(θ) :=

{
θ for w = s,

min
e=vw

ℓv(θ) + τe + qe(ℓv(θ)) for w ∈ V \ {s}.
(6)

The label functions can be computed simultaneously for all times θ by adapting
the shortest path algorithm of Bellman and Ford1. The next proposition follows
from (6) and Proposition 1.

Proposition 2 For each node v ∈ V , the label function ℓv is monotonically
increasing and continuous.

Before proceeding with the main discussion of this section, we first con-
sider an intuitive real-world example. This example will also illustrate the
subsequent definitions and results.

Example 1 Suppose you are at the airport and, since you are already late, you
want to get to your departure gate as quickly as possible. But first you have
to check-in. Afterwards, you head for the security check in order to finally get
to your gate and board the aircraft. But there is a waiting queue in front of
the check-in counter. The question is how quickly you should approach the
end of the waiting queue at the check-in counter. Of course, as long as the last
person in line remains the same, i. e., no one else enters the line, it does not
matter at what time you line up – you always leave the check-in counter at the
same time. However, if there are people behind you who want to check in at
the same counter, they could overtake you if you do not line up immediately.

1 The update procedure of Bellman-Ford for a certain label ℓw(θ) is applied for all times θ

simultaneously and, hence, is seen as an operation on functions. If we use Dijkstra’s algorithm
instead, we have to maintain the set of already finalized nodes separately for each time θ.
Thus, we also have to apply the update procedure of Dijkstra separately for each θ.



9

In a Nash equilibrium, flow should always be sent over currently short-
est s-t-paths only. We say that edge e ∈ E is contained in a shortest path
at time θ ≥ 0 if and only if ℓw(θ) = ℓv(θ) + τe + qe(ℓv(θ)). Of course, if an
edge e = vw ∈ E does not lie on a shortest s-t-path at a certain time θ ≥ 0,
then no flow should be assigned to that edge at time ℓv(θ) in a Nash flow.

Definition 2 We say that flow is only sent along currently shortest paths
if, for each edge e = vw ∈ E, the following condition holds for almost all
times θ ≥ 0:

ℓw(θ) < ℓv(θ) + τe + qe(ℓv(θ)) =⇒ f+
e (ℓv(θ)) = 0 .

We emphasize the following aspect of a routing satisfying Definition 2: In a
static shortest path all subpaths are also shortest paths if the transit times
are positive. But this is no longer true if we consider the dynamic case as
illustrated in Example 1. Here, as long as the last person in line remains the
same you always leave the check-in counter at the same time. So, in principle,
you could decide to make a detour – maybe for buying a small present for
your family – and you can still leave the check-in counter as early as possible.
However, in this case you will use at least one edge which does not lie on a
currently shortest path. Since Definition 2 forbids entering that edge, you have
to line up at the check-in counter as early as possible

As we see below the condition in Definition 2 is equivalent to the condition
that every particle tries to overtake as much other flow as possible while not
being overtaken. The latter condition is in fact a universal FIFO condition.
That is, it is equivalent to the statement that no flow particle can possibly
overtake any other flow particle.

In order to model the universal FIFO condition more formally, we consider
again an additional flow particle originating at s at time θ ≥ 0. Of course, in
order to ensure that no flow particle has the possibility to overtake this particle,
it is necessary to take a shortest s-t-path. Therefore, for each edge e = vw ∈ E,
we define the amount of flow x+

e (θ) assigned to e before this particle can reach v
and the amount of flow x−

e (θ) leaving e before this particle can reach w as
follows:

x+
e (θ) := F+

e (ℓv(θ)) , x−
e (θ) := F−

e (ℓw(θ)) for all θ ≥ 0. (7)

Thus, the amount of flow bs(θ) := d · θ that has originated at s before our flow
particle occurs at s and the amount of flow −bt(θ) arriving at t before our flow
particle can reach t satisfy

bs(θ) =
∑

e∈δ+(s)

x+
e (θ) and bt(θ) = −

∑

e∈δ−(t)

x−
e (θ) . (8)

By definition, bs(θ) is always nonnegative and bt(θ) is always non-positive.
If bs(θ) > −bt(θ), then the considered flow particle overtakes other flow par-
ticles. And if bs(θ) < −bt(θ), then the flow particle is overtaken by other flow
particles. This motivates the following definition.
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Definition 3 We say that no flow overtakes any other flow if, for each point
in time θ ≥ 0, it holds that bs(θ) = −bt(θ).

Intuitively, this definition must be satisfied by a Nash flow over time: Assume
that a flow particle p2 originating at the source at time θ2 overtakes an earlier
flow particle p1 originating at the source at time θ1 < θ2. That is, p2 arrives
at the sink before p1. Because the function θ 7→ θ + τe + qe(θ) is monotonically
increasing for each edge e (see Proposition 1), flow particle p1 can avoid being
overtaken by p2 and improve its cost (arrival time at the sink) by choosing the
same path as p2.

Now we are able to prove the equivalence of the universal FIFO condition
and the condition that flow only uses currently shortest paths. Further, both
conditions characterize Nash flows over time. In addition, a further equivalent
characterization is given. With respect to Example 1, Theorem 1 also tells you
why you should line up immediately. It says that if you do not reach the end of
the waiting queue as early as possible, then other persons may overtake you.

Theorem 1 For a given flow over time, the following statements are equiva-
lent:

(i) Flow is only sent along currently shortest paths.
(ii) For each edge e ∈ E and at all times θ ≥ 0, it holds that x+

e (θ) = x−
e (θ).

(iii) No flow overtakes any other flow.
(iv) The given flow over time is a Nash flow over time.

In the proof of Theorem 1, the following lemma plays an important role. It
gives a more global characterization of when flow is being sent only along
currently shortest paths (Definition 2 gives only a pointwise characterization).

Lemma 1 For a given flow over time, the following statements are equivalent:

(i) Flow is only being sent along currently shortest paths.
(ii) For each edge e = vw ∈ E and for all θ ≥ 0, it holds that

F−
e

(
ℓv(θ) + τe + qe(ℓv(θ))

)
= F−

e

(
ℓw(θ)

)
. (9)

Proof Equation (9) is obviously fulfilled if edge e is contained in a shortest
path at time θ. In the following, it is thus enough to consider only edges e and
times θ such that e does not lie on a shortest path at time θ.

(i)⇒(ii): Let θ ≥ 0 and e = vw ∈ E be an edge which is not contained in
a shortest path at time θ, i. e., ℓw(θ) < ℓv(θ) + τe + qe(ℓv(θ)). Let

θ1 := max
{
0, sup{θ′ ≥ 0 | ℓw(θ) ≥ ℓv(θ′) + τe + qe(ℓv(θ′))}

}
.

be the latest point in time at which a flow particle is able to arrive at w via e
before time ℓw(θ) (and 0 if no such point in time exists). By definition of θ1,

ℓw(θ′) ≤ ℓw(θ) < ℓv(θ
′) + τe + qe(ℓv(θ

′)) for all θ′ ∈ (θ1, θ].
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Thus, edge e does not occur in a shortest path within the time interval (θ1, θ].
Because of Definition 2 and Proposition 1(ii), we get

0 = F+
e

(
ℓv(θ)

)
− F+

e

(
ℓv(θ1)

)

= F−
e

(
ℓv(θ) + τe + qe(ℓv(θ))

)
− F−

e

(
ℓv(θ1) + τe + qe(ℓv(θ1))

)
.

(10)

Equation (10) implies (ii) because

ℓv(θ1) + τe + qe(ℓv(θ1)) ≤ ℓw(θ) < ℓv(θ) + τe + qe(ℓv(θ))

and because F−
e is monotonically increasing.

(ii)⇒(i): Let θ ≥ 0 and e = vw ∈ E an edge that is not contained in a
shortest path at time θ, i. e., ℓw(θ) < ℓv(θ) + τe + qe(ℓv(θ)). By Propositions 1
and 2, there exists an ǫ > 0 such that ℓw(θ + ǫ) < ℓv(θ− ǫ)+ τe + qe(ℓv(θ− ǫ)).
Thus, the nonnegativity of the flow rate functions yields:

0 ≤

∫ ℓv(θ+ǫ)

ℓv(θ−ǫ)

f+
e (ϑ) dϑ =

∫ ℓv(θ+ǫ)+τe+qe(ℓv(θ+ǫ))

ℓv(θ−ǫ)+τe+qe(ℓv(θ−ǫ))

f−
e (ϑ) dϑ

≤

∫ ℓv(θ+ǫ)+τe+qe(ℓv(θ+ǫ))

ℓw(θ+ǫ)

f−
e (ϑ) dϑ = 0 .

This yields statement (i). ⊓⊔

Within the proof of Theorem 1 we construct a static b-flow. For convenience
of the reader, we give the definition of b-flows here (for more details we refer
to [27]).

Definition 4 Let H be a graph with node set V (H) and edge set E(H) and
b′v ∈ R be a real value for each node v ∈ V (H). The supply-demand vector
(b′v)v∈V (H) has to satisfy

∑
v∈V (H) b′v = 0. A static flow x′ := (x′

e)e∈E(H) ∈

R
E(H)
+ is called b′-flow if it satisfies the flow conservation constraint

∑

e∈δ+(v)

x′
e −

∑

e∈δ−(v)

x′
e = b′v for each v ∈ V (H).

If in addition, for each edge e ∈ E(H), an edge capacity ue ∈ R is given, a
feasible b-flow has to satisfy x′

e ≤ ue for each e ∈ E(H).

Proof (of Theorem 1) The main observation we need is the following equation
which we get from Proposition 1(ii) and the definitions of x+

e , x−
e in (7):

x+
e (θ) − x−

e (θ) = F+
e

(
ℓv(θ)

)
− F−

e

(
ℓw(θ)

)

= F−
e

(
ℓv(θ) + τe + qe(ℓv(θ))

)
− F−

e

(
ℓw(θ)

)
.

(11)

Because of Lemma 1, this equation implies the equivalence of (i) and (ii).
In order to prove the equivalence of (ii) and (iii), we construct a static b-flow

instance. We replace each edge e = vw ∈ E by a new node ve and two edges vve

and vew; see Fig. 2. The supply-demand vector of the corresponding b-flow
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e (θ) − x
+
e (θ)

Fig. 2 Construction of the b-flow instance used in the proof of Theorem 1. Below the edges
the in- and outflow of the dynamic Nash equilibrium (left) and the flow value of the b-flow
(right) are shown. Above nodes the corresponding b-values are displayed.

instance is defined as follows. For each node v ∈ V \{s, t} we set bv(θ) := 0 and
for each new node ve, e ∈ E, we define bve

(θ) := x−
e (θ) − x+

e (θ). An intuitive
explanation of bve

(θ) is as follows. Recall that, at the time when a flow particle
originating at the source at time θ gets to node v along a shortest path, the
amount of flow having previously entered edge e = vw is x+

e (θ). Similarly,
when the same flow particle travels along a shortest path to w, the amount of
flow that has previously arrived at w via edge e = vw is x−

e (θ). Hence, a flow
particle which arrives at w via e can increase the amount of overtaken flow
by −bve

(θ) if it goes directly along a currently shortest path to w. However,
the condition in (ii) states that this flow particle cannot improve its situation,
i. e., bve

(θ) = 0.
Note that we have defined bs(θ) and bt(θ) in (8). It follows from (11) and

the nonnegativity of the outflow rate functions, that only node s has a supply,
i. e., a positive b-value.

Consider the following static flow. For each edge e = vw ∈ E, set the flow
value on edge vve to x+

e (θ) and the flow value on edge vew to x−
e (θ). We claim

that this static flow is a feasible b-flow. To prove this we need to check the
flow conservation constraints. By construction and (8), flow conservation is
fulfilled at nodes s, t, and also at the new nodes ve, e ∈ E. It remains to verify
flow conservation at nodes v ∈ V \ {s, t}. The following equation follows from
linearity of the integral operator and condition (3).

∑

e∈δ−(v)

x−
e (θ) =

∑

e∈δ−(v)

(∫ ℓv(θ)

0

f−
e (ϑ) dϑ

)
=

∫ ℓv(θ)

0




∑

e∈δ−(v)

f−
e (ϑ)


 dϑ

=

∫ ℓv(θ)

0




∑

e∈δ+(v)

f+
e (ϑ)


 dϑ =

∑

e∈δ+(v)

(∫ ℓv(θ)

0

f+
e (ϑ) dϑ

)

=
∑

e∈δ+(v)

x+
e (θ) .

Thus we have a feasible b-flow on the constructed instance. In particular, the
sum over all supplies and demands is equal to zero. That is,

∑

v∈V

bv(θ) +
∑

e∈E

bve
(θ) = 0 .

Note that this shows bs(θ) ≥ −bt(θ) for all θ ≥ 0 which we use later in this
proof. Because the source s is the only node with a positive b-value, the supply
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of s is equal to the demand of t if and only if the b-values of all other nodes
are 0.

This proves the equivalence of (ii) and (iii). It remains to prove that (iv)
is equivalent to the other statements.

(i)⇒(iv): The cost ℓP (θ) of a shortest s-t-path P at time θ (see Defini-
tion 1) is equal to the label ℓt(θ) of t at time θ. This is due to the fact, that the
deterministic queuing model satisfies the FIFO condition on each edge. There-
fore ℓt(θ) cannot be influenced by flow particles originating at the source after
time θ. Thus, a flow over time which sends flow only along currently shortest
paths is a Nash flow over time.

(iv)⇒(iii): Assume that (iii) is violated, i. e., there exist a point in time θ
such that bs(θ) 6= −bt(θ). As mentioned above, this implies bs(θ) > −bt(θ).
Hence, there exists flow of value bs(θ)+bt(θ) which originates at s until time θ
but arrives at t strictly later than ℓt(θ). Since ℓt is monotonically increasing,
this flow is not routed along paths with minimum latency, thus yielding a
contradiction to (iv). ⊓⊔

Note that, whenever one of the four statements in Theorem 1 holds, then x+

and x− coincide. In this case, for all θ ≥ 0, setting xe(θ) := x+
e (θ) for

each e ∈ E, yields a static s-t-flow x(θ) of value bs(θ). In the following, for a
flow over time satisfying the universal FIFO condition, we refer to (xe(θ))e∈E

as the underlying static flow at time θ. This flow will be studied in more detail
in the next section.

4 A special class of static flows

In this section we study the underlying static flows of a Nash flow over time.
It turns out that these static flows have a special structure that can be used to
characterize, compute, and analyze Nash flows over time. Further, the network
on which these flows are considered is a special subnetwork of the original
network.

Definition 5 (Current Shortest Paths Network) Consider a flow over
time on a network (G, u, s, t, τ, d). For θ ≥ 0, the current shortest paths net-
work Gθ is the subnetwork induced by the edges occurring in a currently
shortest path, i. e., edges e = vw with ℓv(θ) + τe + qe(ℓv(θ)) = ℓw(θ).

Note, that every node v is contained in any current shortest path network
since we assume that every node is reachable from s. But in general there are
edges which are not contained in a current shortest path network.

Definition 6 (Thin Flow with Resetting) Let (G, u, s, t, d) be a static
network and E1 ⊆ E(G) a subset of edges. A static flow x′ with flow value F
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Fig. 3 Thin flow example: On top the network with corresponding edge capacities is shown.
In the lower part two thin flows of value 3 with d = 3 are shown. On the left instance there
is no resetting edge and on the right instance there is resetting on E1 = {sv, vw}. The flow
is shown on the edges and the corresponding node labels are shown at the nodes.

is a thin flow with resetting on E1 if there exist node labels ℓ′ such that:

ℓ′s = F/d (12)

ℓ′w ≤ ℓ′v for all e = vw ∈ E(G) \ E1 with x′
e = 0 (13)

ℓ′w = max{ℓ′v, x
′
e/ue} for all e = vw ∈ E(G) \ E1 with x′

e > 0 (14)

ℓ′w = x′
e/ue for all e = vw ∈ E1 (15)

Further, for an edge e the edge congestion2 of e is defined by x′
e/ue.

Let the congestion of a path P be the maximum congestion of its edges, i.e.,
maxe∈E(P ) x′

e/ue. Then, if E1 = ∅, the label ℓ′v of node v is the congestion of all
flow-carrying s-v-paths and a lower bound on the congestion of any s-v-path.
The name “thin flow with resetting” refers to the special edges in E1 which
play the following role. Whenever a path starting at s traverses an edge e ∈ E1,
it “forgets” the congestion of all edges seen so far and “resets” its congestion
to x′

e/ue. As we will see in Section 5, for the special case E1 = ∅, a thin flow
with resetting can be computed in polynomial time. Before we proceed with
the main discussion, we give an example of a thin flow.

Example 2 Consider the network shown in the upper part of Fig. 3. We assume
that d := 3 and want to find a thin flow of value 3. Note that the maximal
value of a static s-t-flow in this network is also 3. If there is no resetting edge,
then we obtain the thin flow shown in the left part of Fig. 3, which is also
a maximum s-t-flow. In contrast, on the right side a thin flow with resetting
on E1 := {sv, vw} is shown. Verifying the thin flow conditions (12)–(15), we
observe that:

2 In game theory, “congestion” is mostly associated with congestion games. However, in
this paper, “congestion” is used for the percental load of an edge because this is common in
network flow theory.
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– the label of s satisfies (12),
– the edges sw and wt satisfy (14), where the maximum is attained by the

congestion of the particular edge.
– the edge vt satisfies (14), where the maximum is attained by the label of v.
– the resetting edges sv and vw satisfy (15).

Also note that assuming there is no resetting edge, the right flow is not a thin
flow without resetting, since vw does not satisfy (14). In fact, both thin flows
are unique on their particular instance.

Next we show that, for a Nash flow over time, the derivatives of the label
functions and of the underlying static flow define a thin flow with resetting.
The following theorem is only applicable if the derivatives of the label and
the underlying static flow functions exist. However, both the label functions
and the underlying static flow functions are monotonically increasing implying
that both families of functions are differentiable almost everywhere.

Theorem 2 Consider a Nash flow over time on a network (G, u, s, t, τ, d) with
corresponding label functions (ℓv)v∈V , edge waiting time functions (qe)e∈E and
underlying static flow (xe)e∈E . Let θ ≥ 0 such that dxe

dθ
(θ) and dℓv

dθ
(θ) exist for

each e ∈ E and v ∈ V . Then, on the current shortest paths network Gθ, the
derivatives (dxe

dθ
(θ))e∈E(Gθ) form a thin flow of value d with resetting on the

waiting edges E1 := {e ∈ E | qe(ℓv(θ)) > 0}. A corresponding set of node
labels fulfilling (12) to (15) is given by the derivatives (dℓv

dθ
(θ))v∈V (Gθ).

In order to prove Theorem 2, we need the following lemma.

Lemma 2 Let f be a flow over time which sends flow only along currently
shortest paths on a network (G, u, τ, s, t, d). Further, let e = vw ∈ E be an
edge and θ ≥ 0 be a time such that there exists a nonzero waiting queue on e,
i. e., qe(ℓv(θ)) > 0. Then, edge e is contained in a shortest path at time θ.

Proof We have to show that ℓv(θ)+τe+qe(ℓv(θ)) = ℓw(θ). Let θ1 be the earliest
time such that no measurable amount of flow is assigned to e within the time
interval [ℓv(θ1), ℓv(θ)). Then, for each ǫ > 0, there exists a θǫ ∈ [θ1 − ǫ, θ1)
such that flow is assigned to e at time ℓv(θǫ). This means that e is contained
in a shortest path at time θǫ. Let ǫ tend to zero. Since the label and edge
waiting time functions are continuous we get ℓv(θ1)+ τe + qe(ℓv(θ1)) = ℓw(θ1).
But this implies ℓv(θ) + τe + qe(ℓv(θ)) = ℓw(θ1) because of Proposition 1(iii).
Further, we know that the label functions are increasing which completes the
proof because of the definition of the label functions in (6). ⊓⊔

Proof (of Theorem 2) We have to show that (dxe

dθ
(θ))e∈E(Gθ) and the labels

(dℓv

dθ
(θ))v∈V (Gθ) satisfy the thin flow with resetting conditions (12) to (15) with

respect to the edge set E1 := {e ∈ E | qe(θ) > 0}.
Condition (12) for the label of s is implied by equation (6) defining the

label ℓs. In order to prove the other conditions, we distinguish three cases
and show that conditions (13) to (15) are satisfied in every case. Consider an
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edge e = vw ∈ E(Gθ) which is contained in a currently shortest s-t-path at
time θ ≥ 0.

Case 1: Edge e fits this case if there exists an ǫ > 0 such that, for all
θ′ ∈ (θ, θ + ǫ], we have qe(ℓv(θ′)) > 0. This means a waiting queue is built or
occurs which does not decrease to zero over a small time interval. In particular,
if e ∈ E1, then e belongs to this case. Because e is used up to its capacity in
this case, we get:

xe(θ + ǫ) − xe(θ) =

∫ ℓw(θ+ǫ)

ℓw(θ)

f−
e (ϑ) dϑ = ue ·

(
ℓw(θ + ǫ) − ℓw(θ)

)
.

Dividing both sides of the last equation by ǫ and letting ǫ tend to zero, we
obtain

dℓw

dθ
(θ) =

dxe

dθ
(θ) ·

1

ue

.

Therefore condition (15) is satisfied in this case. Further, condition (13) is also
satisfied because the label functions are monotonically increasing. In order
to show that condition (14) is also valid in this case, we have to show that
dℓv

dθ
(θ) ≤ dℓw

dθ
(θ) if there is no waiting queue on e, i. e., ℓv(θ) + τe = ℓw(θ).

Because we know that e is contained in a shortest path for all times in (θ, θ+ǫ],
we can conclude that

ℓv(θ + ǫ) − ℓv(θ) = ℓw(θ + ǫ) − ℓw(θ) − qe(ℓv(θ + ǫ)) ≤ ℓw(θ + ǫ) − ℓw(θ) .

This yields the desired result if we divide both sides by ǫ and let ǫ tend to
zero.

Case 2: Here we consider the case that there exists an ǫ such that, for all
θ′ ∈ (θ, θ + ǫ], we have ℓv(θ

′) + τe + qe(ℓv(θ
′)) > ℓw(θ′). That is, edge e is not

contained in a shortest path for all times in (θ, θ + ǫ]. Note that this case is
disjoint from Case 1 because of Lemma 2. Further, we know that qe(ℓv(θ′)) = 0
for all θ′ ∈ [θ, θ+ǫ]. Therefore, it holds that ℓv(θ+ǫ)−ℓv(θ) ≥ ℓw(θ+ǫ)−ℓw(θ).
Moreover, we know that no flow is assigned to e during the time interval
(ℓv(θ), ℓv(θ + ǫ)], i. e., xe(θ + ǫ) − xe(θ) = 0. Thus, dividing both sides of the
last inequality and of the last equation by ǫ and letting ǫ tend to zero, yields

dℓw

dθ
(θ) ≤

dℓv

dθ
(θ) and

dxe

dθ
(θ) = 0 .

Thus, condition (13) is satisfied and the two other conditions are not relevant
in this case.

Case 3: We first consider the complement of Case 2. This means, for
every ǫ > 0, there exists an θǫ ∈ (θ, θ + ǫ] such that ℓv(θǫ) + τe + qe(ℓv(θǫ)) =
ℓw(θǫ). Because we can use the fact that we need not consider situations which
fall in Case 1, we can assume further that there exists a θ′ ∈ (θ, θǫ] such
that qe(ℓv(θ

′)) = 0. Let θ′ǫ ∈ (θ, θǫ] be the supremum over these θ′. Because
the edge waiting time functions are continuous, θ′ǫ is in fact a maximum,
implying qe(ℓv(θ

′
ǫ)) = 0. Further, we know that between the times θ′ǫ and θǫ
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there is always a nonzero waiting queue. Lemma 2 and the continuity of the
label functions show that e occurs also in a shortest path at time θ′ǫ, that is,
ℓv(θ

′
ǫ) + τe = ℓw(θ′ǫ). But this leads to ℓv(θ

′
ǫ) − ℓv(θ) = ℓw(θ′ǫ) − ℓw(θ). If we

divide both sides of the last equation by θ′ǫ − θ and let ǫ tend to zero, we get

dℓw

dθ
(θ) =

dℓv

dθ
(θ) .

Therefore, condition (13) is satisfied. Because condition (15) does not apply
in this case, we only show that condition (14) is valid. For this, we show that
dxe

dθ
(θ) · 1

ue
≤ dℓw

dθ
(θ). From condition (1) in the flow over time model we get

xe(θ + ǫ) − xe(θ) =

∫ ℓw(θ+ǫ)

ℓw(θ)

f−
e (ϑ) dϑ ≤

(
ℓw(θ + ǫ) − ℓw(θ)

)
· ue .

If we divide both sides by ǫ and let ǫ tend to zero, we get the desired result.
This completes the proof. ⊓⊔

The reverse direction of Theorem 2 also holds. If, for all times θ, the deriva-
tives of the underlying static flow functions and the label functions of a flow
over time are thin flows with resetting in the current shortest paths network,
then the flow over time is in fact a Nash flow over time. The following The-
orem 3 is not the direct conversion of Theorem 2 but rather a corollary of
the reverse direction. It shows that a Nash flow over time can be seen as the
concatenation of thin flows with resetting, which are static flows.

The scenario is the following. We assume that we already have a flow
over time f := (f+, f−) showing the selfish routing behavior of flow particles
originating at s until a certain time θ. That is, f is a Nash flow for the “supply”
function

d(ϑ) =

{
d for ϑ < θ

0 for ϑ ≥ θ
.

Note that this does not really fit the model with a constant supply rate.
But since the deterministic queuing model satisfies universal FIFO, all of the
previous results carry over to this case. We call such a flow f a restricted Nash
flow over time on [0, θ).

In order to extend f , we compute a thin flow x′ on the current shortest
path network (Gθ, s, t, u) of value d with resetting on the waiting edges given
by E1 := {e ∈ E | qe(ℓ(v)) > 0}. Let ℓ′ be the corresponding node labels of
the thin flow x′. For an α > 0, we extend the node label functions ℓ of f :

ℓv(ϑ) := ℓv(θ) + (ϑ − θ) · ℓ′v for all v ∈ V and ϑ ∈ [θ, θ + α) . (16)

Then, we also extend the flow rate functions:

f+
e (ϑ) :=

x′
e

ℓ′v
for all e = vw ∈ E and ϑ ∈ [ℓv(θ), ℓv(θ + α)) , (17)

f−
e (ϑ) :=

x′
e

ℓ′w
for all e = vw ∈ E and ϑ ∈ [ℓw(θ), ℓw(θ + α)) . (18)
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The result is called an α-extension of f .
We want to show that an α-extension is a feasible Nash flow over time. For

this we have to choose α appropriately such that:

ℓw(θ) − ℓv(θ) + α(ℓ′w − ℓ′v) ≥ τe for all e ∈ E1 , (19)

ℓw(θ) − ℓv(θ) + α(ℓ′w − ℓ′v) ≤ τe for all e ∈ E \ E(Gθ) . (20)

It is essential to show that α can be chosen strictly positive. In order to prove
this, first observe that ℓw(θ) − ℓv(θ) − τe = qe(ℓv(θ)) > 0 for all edges e ∈ E1.
Hence, there exists an α1 > 0 such that (19) is satisfied for all α ≤ α1. The
second condition (20) refers to edges e = vw which are not contained in the
shortest path network at time θ, i. e., ℓw(θ) < ℓv(θ) + τe. Thus, there exists
an α2 > 0 such that the second condition is satisfied for all α ≤ α2. This shows
the existence of an α > 0 satisfying both conditions simultaneously.

In order to extend a restricted flow as far as possible, α must be chosen as
large as possible. That is, α > 0 can be interpreted as the largest number such
that no waiting queue decreases to 0 and no new edge is added to the current
shortest path network. In particular, all edges satisfying (19) with equality are
removed from the set of resetting edges E1, and all edges satisfying (20) with
equality are added to the current shortest path network at time θ + α.

If we insert the extension of the node labels in the two conditions on α, we
obtain the following for all ϑ ∈ [θ, θ + α) (using (14) in addition):

ℓw(ϑ) ≥ ℓv(ϑ) + τe for all e = vw ∈ E(Gθ) with x′
e > 0 ,

ℓw(ϑ) ≤ ℓv(ϑ) + τe for all e = vw ∈ E \ E(Gθ) .

This is used in the proof of the following theorem.

Theorem 3 Let f be a restricted Nash flow over time on [0, θ) and let α > 0
be a positive real number satisfying (19) and (20). Then, the α-extension of f
is a restricted Nash flow over time on [0, θ + α).

Proof We show first that the α-extension of f is a feasible flow over time.
Afterwards we show that the α-extension of f is also a Nash flow over time.

In order to show that the α-extension is a feasible flow over time, we have
to show the validity of (1), (2), and (3). Since f is a restricted Nash flow
over time on [0, θ), it is enough to check these conditions from time ℓv(θ) on.
Further, conditions (1) and (2) are obviously satisfied if x′

e = 0. Let e = vw be
an edge with x′

e > 0 and ϑ ∈ [θ, θ + α) be a point in time. From Definition 6
we know that ℓ′w ≥ x′

e/ue if x′
e > 0, and hence

f−
e (ℓv(ϑ)) =

x′
e

ℓ′w
≤ ue .

This proves (1). In order to prove (2), we observe that

F+
e (ℓv(ϑ)) = F+

e (ℓv(θ)) + (ℓv(ϑ) − ℓv(θ)) ·
x′

e

ℓ′v
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and

F−
e (ℓw(ϑ)) = F−

e (ℓw(θ)) + (ℓw(ϑ) − ℓw(θ)) ·
x′

e

ℓ′w
.

Since f is a restricted Nash flow on [0, θ), we know that F+
e (ℓv(θ)) = F−

e (ℓw(θ)).
In addition, we obtain from the definition of the α-extension that

(ℓv(ϑ) − ℓv(θ)) ·
x′

e

ℓ′v
= (ϑ − θ) · ℓ′v ·

x′
e

ℓ′v

= (ϑ − θ) · ℓ′w ·
x′

e

ℓ′w
= (ℓw(ϑ) − ℓw(θ)) ·

x′
e

ℓ′w
.

This yields F+
e (ℓv(ϑ)) = F−

e (ℓw(ϑ)) and proves (2) since ℓw(ϑ) ≥ ℓv(ϑ) + τe if
x′

e > 0 (which is implied by (19)). Finally, (3) is satisfied because x′ satisfies
the static flow conservation constraints which implies

∑

e∈δ−(v)

f−
e (ℓ(ϑ)) =

∑

e∈δ−(v)

x′

ℓ′v
=

∑

e∈δ+(v)

x′

ℓ′v
=

∑

e∈δ+(v)

f+
e (ℓ(ϑ)) .

Hence, the α-extension of f is a feasible flow over time.
It remains to show that the α-extension is also a Nash flow over time. For

this, we show that the extended label functions coincide with label functions
defined by (6) and we show that condition (ii) of Theorem 1 is satisfied. If
x′

e > 0, Condition (ii) of Theorem 1 is already proved since, as shown above,
we know that

x+
e (ϑ) := F+

e (ℓv(ϑ)) = F−
e (ℓw(ϑ)) =: x−

e (ϑ) .

For all other edges, condition (ii) of Theorem 1 is still valid because f is a
restricted Nash flow.

Since ℓ′s = 1 because of (12), the first condition of (6) regarding the label
of s is obviously satisfied. If x′

e > 0, the equations F+
e (ℓv(ϑ)) = F−

e (ℓw(ϑ))
imply ℓv(ϑ)+τe+qe(ℓv(ϑ)) = ℓw(ϑ). Next, we consider edges e = vw contained
in the shortest path network at time θ with x′

e = 0. It is not hard to see that
for these edges we have qe(ℓv(θ)) = 0. But then condition (13) implies that
ℓv(ϑ)+ τe ≥ ℓw(ϑ) for ϑ ≥ θ. Hence, it remains to show ℓv(ϑ)+ τe ≥ ℓw(ϑ) for
all ϑ ≥ θ for edges which are not in the shortest path network at time θ. But
this follows directly from the definition of α.

We have thus shown that the α-extension of f is a restricted Nash flow
over time on [0, θ + α). ⊓⊔

Theorem 3 shows that a restricted Nash flow over time is extendable by a
particular thin flow with resetting. Hence, a dynamic Nash flow can be seen as
the concatenation of such static flows. In what follows, we exemplarily show
how the α-extension can be used in order to construct a Nash flow over time.
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(1, 6) (1, 1)

(1, 1)
3

Fig. 4 The network used in Example 3 for which we construct a Nash flow over time. On
the incoming edge of the source s the supply rate is shown. For all other edges e, the pair
(ue, τe) denotes the capacity ue and the free flow transit time τe.
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3

Fig. 5 The thin flow on the zigzag path.

Example 3 Consider the network (G, u, τ, s, t, d) shown in Fig. 4. In order to
construct a Nash flow over time, we first start at time 0 with the zero flow
and compute an α-extension for some suitable α > 0. Recalling Theorem 3,
the α-extension results in a restricted Nash flow over time f . Next, we compute
again an α-extension for f implying that f remains a restricted Nash flow, but
now on a longer time interval. In the following we do not evaluate the in- and
outflow rate function explicitly since we want to focus on the intersting part of
this Nash flow computation. Note, however, that they can be easily computed
using (17) and (18).

Before computing an α-extension for the zero flow, we have to identify
the current shortest path network G0 and need to evaluate the node label
functions at time 0. It is quite obvious that G0 is given by the zigzag path
svwt and that (ℓs(0), ℓv(0), ℓw(0), ℓt(0)) = (0, 1, 2, 3). Since no waiting queue
exists at this initial state, we have to find a thin flow x′ of value d = 3 on
(G0, u, s, t) without resetting, i. e., E1 = ∅. Fig. 5 shows x′ together with the
corresponding node labels ℓ′. Next, we have to choose an α satisfying (19)
and (20). Since there is no waiting edge, we have to verify condition (20) for
the edges sw and vt, which are not contained in G0. Hence, α has to satisfy:

2 + 2α = ℓw(0) − ℓs(0) + α(ℓ′w − ℓ′s) ≤ τsw = 6 ,

2 +
3

2
α = ℓt(0) − ℓv(0) + α(ℓ′t − ℓ′v) ≤ τvt = 5 .

Of course, we choose α as big as possible. Therefore we set α := 2. Thus the
α-extension results in a restricted Nash flow on the time interval [0, 2).

In order to extend this flow further, first note that both inequalities are
satisfied with equality and hence, at time 2 both edges, sw and vt, enter the
current shortest path network, i. e., G2 = G. Using (16), the label functions at
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time 2 are (ℓs(2), ℓv(2), ℓw(2), ℓt(2)) = (2, 4, 8, 9). This shows that on sv and
vw the experienced travel time is greater than the free flow transit time. Thus,
there must be a waiting queue on sv and vw at this state. Recalling Example 2,
the thin flow x′ on (G2, u, s, t) with resetting on E1 = {sv, vw} is shown in
the right part of Fig. 3, and the corresponding node labels are (ℓ′s, ℓ

′
v, ℓ

′
w, ℓ′t) =

(1, 4
3 , 1, 4

3 ). Like in the first stage, we have to choose an α satisfying (19) and
(20). But since G2 = G, we now have to verify condition (19) for the edges sv
and vw. Hence, α needs to satisfy

2 +
1

3
α = ℓv(2) − ℓs(2) + α(ℓ′v − ℓ′s) ≥ τsv = 1 ,

4 −
1

3
α = ℓw(2) − ℓv(2) + α(ℓ′w − ℓ′v) ≥ τvw = 1 .

Note that the first inequality is valid for all nonnegative α. Hence, we set α such
that the second inequality is satisfied with equality, i. e., α := 9. Thus, the α-
extension is a restricted Nash flow over time up to time 11. Using (16), the label
functions at time 11 are (ℓs(11), ℓv(11), ℓw(11), ℓt(11)) = (11, 16, 17, 21). This
shows that the flow particle which start traversing the network at time 11 has
to wait on sv and wt. On the other hand, the waiting queue on vw disappears
completely within the time interval [2, 11).

In the last iteration, we have to consider the current shortest path net-
work G11 at time 11, which is again equal to G. Next we have to compute a
thin flow x′ on (G11, u, s, t) with resetting on sv and wt. We can easily see,
that x′ is equal to the maximum s-t-flow, i. e., x′

e = ue for all edges e 6= vw,
and the corresponding node labels are all equal to 1. Without going into de-
tails, we note that we can set α to +∞ without violating (19) and (20). Hence,
this α-extension results in a Nash flow over time on the network shown in Fig-
ure 4 (defined for all nonnegative points in time). Since all node labels of x′

are equal to 1, the experienced travel time of each edge remains constant from
time 11 on. In particular, the lengths of the waiting queues on sv and wt do
not vary over time.

5 Nash flows over time and the price of anarchy

The characterization of Nash flows over time via thin flows with resetting
enables us to completely analyze shortest paths networks where every s-t-path
has the same total free flow transit time. An important subclass of shortest
paths networks are networks where the free flow travel times of each edge
is zero. We study the price of anarchy which, in general, is the worst case
ratio of the cost of a Nash equilibrium and the cost of a system optimum.
In the context of routing games over time, we define the price of anarchy of
an instance as the worst case ratio over all points in time θ regarding the
following objective:3 For given θ, maximize the amount of flow arriving at
the sink until time θ. In particular, according to this definition, earliest arrival

3 This objective is well motivated if we think of, e. g., modeling an evacuation situation.
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flows that maximize the amount of flow at the sink simultaneously for all points
in time, are system optima. In addition, an earliest arrival flow optimizes also
the following objective functions simultaneously for all times θ and for each
demand value F , respectively: the average inflow rate in t until time θ, the
total time needed to send a demand of value F to t, the average arrival time
for a demand of value F (see, e. g., [23]). Hence, the following theorem shows
that, on shortest paths networks, the price of anarchy is 1 for each of these
objective functions.

Theorem 4 For shortest paths networks, each Nash flow over time is an ear-
liest arrival flow and thus a system optimum. Moreover, a Nash flow over time
can be computed in polynomial time.

For proving this, we analyze thin flows without resetting. Therefore we first
discuss the results related to this part before we give a proof of Theorem 4.
The following is an equivalent definition of thin flows without resetting, i. e.,
thin flows with resetting on E1 = ∅.

Definition 7 For a network (G, u, s, t), a static s-t-flow x′ ∈ RE(G) is called
thin flow if, for each node v, every flow carrying s-v-path has the same conges-
tion ℓ′v and every s-v-path has congestion at least ℓ′v. If, in addition, a supply d

is given, we initialize ℓ′s := |x′|
d

where |x′| is the flow value of x′.

In order to study thin flows, we can restrict to instances with infinite supply
rate d, i. e., ℓ′s = 0. This is due to the fact that we can model a finite supply
simply by adding a dummy source s0 and an edge s0s with capacity d to the
network. Then, of course, a thin flow on the new instance corresponds to a
thin flow on the original instance and vice versa. Further, the definition of
thin flows is directly generalizable to b-flow instances (G, u, b) where only one
node s has a positive supply, i. e., bs > 0 and bv ≤ 0 for all v ∈ V \ {s}. Next
we prove some properties of thin flows. We define an edge label ℓ′e for each

edge e = vw ∈ E by ℓ′e := max{ℓ′v,
x′

e

ue
}.

Lemma 3 Let x′ be a thin b-flow on a network (G, u, b) where only one node s
has a positive supply. Then, the maximum label ℓ′max of any edge is equal to the
congestion q∗ of a sparsest cut in (G, u, b), i. e., a node set X ⊂ V maximizing

b(X)
u(δ+(X)) , where u(δ+(X)) :=

∑
e∈δ+(X) ue.

Proof The relation ℓ′max ≥ q∗ is obvious because at least one edge in a sparsest
cut must have congestion at least q∗ in any b-flow. Thus, we have to show
that ℓ′max ≤ q∗. Consider the cut s ∈ X  V defined by the set of nodes
X := {v ∈ V | ℓ′v < ℓ′max}. Since the labels of the nodes in X are strictly
smaller than the labels of the nodes not in X , there is no flow on any edge
in δ−(X). Further, the congestion of any edge in δ+(X) is at least ℓ′max. This
leads to

ℓ′max ≤
x(δ+(X))

u(δ+(X))
=

b(X)

u(δ+(X))
≤ q∗ ,

because q∗ is the congestion of a sparsest cut. ⊓⊔
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The last lemma shows that a thin s-t-flow of value equal to the maximum
s-t-flow value is also feasible with respect to edge capacities. The next lemma
shows that thin flows are unique with respect to node labels. Moreover, thin
flows without resetting can be computed in polynomial time by a sequence of
sparsest cut computations.

Lemma 4 Consider a pair of thin flows with the same s-t-flow value or the
same node balances b. Then, the node labels ℓ′v are identical. Moreover, a thin
flow of given flow value can be computed in polynomial time.

Proof Consider two thin flows x′, x̃ ∈ R
E(G)
+ . We prove by induction on the

number of nodes that the corresponding edge labels ℓ′, ℓ̃ are identical. Then,
this must also hold for the corresponding node labels. If there is only one
node s, nothing has to be proved. Let us thus assume that there are several
nodes. Lemma 3 shows that the maximum edge label ℓ′max is unique for x′

and x̃ and equal to the congestion of a sparsest cut. Let δ+(X) be the sparsest
cut where X ⊂ V is inclusionwise minimal. Then, the labels of the edges on
and behind δ+(X) coincide for x′ and x̃, and are equal to ℓ′max. Further, we
know the flow values on edges contained in δ+(X), because the labels of such
edges must be defined by their congestion, i. e., x′

e = x̃e = ℓ′max · ue.
Now we delete the node set V \X . Then, x′ and x̃ ∈ RE(G) are thin b-flows

on the induced subgraph G[X ] according to the new node balances

b′(v) := b(v) − x′
(
δ+
G(v) ∩ δ+(X)

)
for all v ∈ X .

Since the graph G[X ] has less nodes than G, we can apply the induction
hypothesis and conclude this part of the proof.

We finally argue that we can compute a thin flow of given flow value in
polynomial time. Note that the induction above is constructive and describes
an algorithm where, in each iteration, we have to compute a sparsest cut for
a b-flow instance. This can be done in polynomial time. Moreover the number
of iterations is bounded by the number of nodes. Note that an algorithm
for computing a sparsest cut usually also computes a flow minimizing the
maximum edge congestion. This flow is used to obtain the flow values for
edges behind the sparsest cut. ⊓⊔

Next we give the proof of Theorem 4.

Proof (Proof of Theorem 4) First note that the current shortest path network
at time 0 is the entire network. Since at time 0 no waiting occurs, Theorem 3
is valid for α = ∞ and shows that a thin flow x′ without resetting on the
shortest path network results in a Nash flow over time f (defined for all times).
Lemma 3 implies that f sends, at each point in time, the maximum possible
flow rate into t. This can be seen as follows. Let ℓ′ be the corresponding node
labels of x′ and let F ∗ be the maximum static flow value on (G, u, s, t). Then,
Lemma 3 shows that the label of t is ℓ′t = d

F∗
. Hence, the definition of the flow

rate functions in an α-extension shows that the inflow rate in t is |x′|
ℓ′

t

= F ∗.
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Fig. 6 A family of instances with unbounded price of anarchy

This implies that f is a system optimum since this inflow rate is achieved
as early as possible. Lemma 4 shows that this Nash flow over time can be
computed in polynomial time. ⊓⊔

In contrast to static routing games, there exist instances of the routing
game over time where the price of anarchy is not constant.

Proposition 3 There exists a family of instances for which the price of an-
archy is Ω(m), where m is the number of edges. If all edge capacities are
equal to 1, there exists a family of instances for which the price of anarchy is
still Ω(log(m)).

Proof The instances are defined as follows. The underlying graph is shown in
Fig. 6. Regarding the capacities uek

:= uk of the bow edges, for k = 1, . . . , m,
let uk > 0 be an arbitrary positive real number. The capacities uek := uk of
the lower straight edges are given by uk :=

∑k

i=1 ui, for k = 1, . . . , m. Note
that the supply is represented by the edge em. Hence, the supply rate is equal
to um.

The transit times of the lower straight edges are all equal to 0, i. e., τek := 0
for all k = 1, . . . , m. Further, for k = 2, . . . , m, the transit time τek

:= τk of
the bow edge ek is set to

τk := α · um

(
1

u1
−

1

uk

)

for some α > 0. Note that, for k = 2, . . . , m, the definition of the capacities
implies u1 < uk−1 and hence τk > 0. Therefore, the current shortest path
network at time 0 is the lower straight path P1.

In order to compute a Nash flow over time, let x′ be the thin flow on the
lower straight path, i.e, x′

ek = um for all k = 1, . . . , m. Then, corresponding

node labels are given by ℓ′vk
:= um

uk . We observe that

α′(ℓ′v1
− ℓ′vk

) ≤ τk for all k = 2, . . . , m and 0 ≤ α′ ≤ α

where equality holds for α′ = α. Since ℓvk
(0) = 0 for all k = 2, . . . , m, condi-

tion (20) is satisfied with equality on all bow edges for α. Hence, in terms of
Theorem 3, the α-extension of the zero flow over time is a restricted Nash flow
over time on [0, α). In addition, at time α, the entire network is the current
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shortest path network and a thin flow is given by the edge capacities. Hence,
from time α on, the Nash flow over time uses the entire network. Further
considering the label functions of the node vk, we obtain

α
um

uk
= ℓvk

(α) = ℓt(α) − τk .

The left hand side follows from the definition of an α-extension and the right
hand side from the definition of the label functions. We rewrite this equality
as

α · um = (ℓt(α) − τk) · uk . (21)

In order to get a lower bound on the price of anarchy, we consider the point
in time ℓt(α). In the Nash flow described above, the total amount of flow at
the sink is um · α. Since a system optimum, which is an earliest arrival flow,
uses the entire network right from the beginning, the total amount of flow at
the sink in an earliest arrival flow is

∑m

k=1(ℓt(α)− τk) ·uk. Thus, with (21) we
obtain the following lower bound on the price of anarchy:

∑m

k=1(ℓt(α) − τk)uk

umα
=

m∑

k=1

(ℓt(α) − τk)uk

umα
=

m∑

k=1

uk

uk
.

In fact, this is the exact price of anarchy for this example.
This shows that the price of anarchy increases linearly in the number of

edges (set uk := 2k for example). If we restrict to instances with unit edge
capacities, the price of anarchy still increases logarithmically in the number
of edges — set uk := 1 and replace ek by k parallel edges. Then the sum on
the right hand side is equal to the harmonic series and the number of edges is
quadratic in m. ⊓⊔

6 Conclusion and Outlook

We have studied a routing game over time which is based on the deterministic
queuing model. In particular, we deduced equivalent characterizations of Nash
flows over time. Theorem 1 shows that the routing behavior of flow particles
results in a static flow, which we call underlying static flow. Based upon this,
we showed in Section 4 that a Nash flow over time can be seen as a sequence
of static flows fulfilling special properties. As a result, we were able to prove
several bounds on the price of anarchy. In particular, we gave a complete
analysis of Nash flows on shortest paths networks where each s-t-path has the
same length with respect to free flow transit times.

It is an interesting question whether this approach is applicable to other
flow models as well. Flow models satisfying the FIFO condition are of partic-
ular importance. It turns out that, even for this general class of flow models,
underlying static flows of a given Nash flow exist and can be defined (we refer
to the upcoming PhD thesis [24] for details). We believe that studying these
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special flows is a promising direction for analyzing Nash flows in the corre-
sponding flow model. Natural candidates for future research are flow models
with linear load-dependent transit times (see [26]) as well as the flow model
of Daganzo (see [13]). The model of Daganzo is a generalization of the deter-
ministic queuing model in which the size of the waiting queues are bounded
by given constants.

Finally, we remark that the presented results remain true with tiny modi-
fications if edge capacities are allowed to vary over time. This model is harder
to analyze since the effective transit time of an edge is in general discontinuous
if the capacity vanishes over a time interval.
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22. M. Hoefer, V. Mirrokni, H. Röglin, and S.-H. Teng. Competitive routing over time.

In S. Leonardi, editor, Proceedings of the 5th International Workshop on Internet and

Network Economics, volume 5929 of Lecture Notes in Computer Science, pages 18–29.
Springer, 2009.

23. J. J. Jarvis and H. D. Ratliff. Some equivalent objectives for dynamic network flow
problems. Management Science, 28:106–108, 1982.

24. R. Koch. PhD thesis, TU Berlin. In preparation.
25. R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows over

time. In M. Mavronicolas, editor, Proceedings of the 2nd International Symposium on

Algorithmic Game, volume 5814 of Lecture Notes in Computer Science, pages 323–334.
Springer, 2009.
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