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Abstract

The location of facilities in order to provide service for customers is a well-studied proble
the operations research literature. In the basic model, there is a predefined cost for opening a
and also for connecting a customer to a facility, the goal being to minimize the total cost.
both in the case of public facilities (such as libraries, municipal swimming pools, fire stations. . . )
and private facilities (such as distribution centers, switching stations,. . . ), we may want to find a
‘fair’ allocation of the total cost to the customers—this is known as the cost allocation pro
A central question in cooperative game theory is whether the total cost can be allocated
customers such that no coalition of customers has any incentive to build their own facility or to
competitor to service them. We establish strong connections between fair cost allocations an
programming relaxations for several variants of the facility location problem. In particular, we
that a fair cost allocation exists if and only if there is no integrality gap for a corresponding
programming relaxation; this was only known for the simplest unconstrained variant of the f
location problem. Moreover, we introduce a subtle variant of randomized rounding and deriv
proofs for the existence of fair cost allocations for several classes of instances. We also show
in general NP-complete to decide whether a fair cost allocation exists and whether a given all
is fair.
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1. Introduction

1.1. Fair cost allocations

In the facility location problem, customers from a given setN are in need of a certai
service which can be provided by connecting them to facilities. These facilities cou
railway stations, sports complexes, libraries, switching stations, antennas, or superm
to cite a few examples. From a given setF of possible locations for the facilities, one h
to decide first which facilities to open (build) and then each customer must be ass
(connected) to an open facility. Opening facilityi ∈ F causes a fixed costfi � 0 and the
cost for connecting customerj ∈ N to this facility is denoted bycij � 0. We refer to this
problem as theunconstrained(or uncapacitated) facility location problem; this problem i
also sometimes referred to as the uncapacitated plant location problem.

In many situations, further constraints have to be taken into consideration. The fa
can typically handle only a limited number of customers, say at mostki customers for
facility i. Certain customers cannot be assigned to certain facilities (for example, i
are geographically too far apart from each other); this can be handled in the or
unconstrained model by simply letting the corresponding costcij be very large (or infinite)
Other relevant constraints can occur when the set of customers is heterogeneo
some quota must be met: at least some fraction of the customers connected to a
must belong to a certain subgroup or minority (e.g., at least 40% walloons, 33%
democrats, an equal number of women and men, etc.). Or, members of different
cannot be assigned to the same facility (e.g., each facility represents a factory th
produce only one product and customers request one of the different products).

From a central authority’s point of view, it is interesting to ask for a cheapest pos
solution, i.e., to minimize the total cost which is made up by the cost to build facilities
to connect the customers to the open facilities.

This facility location problem has attracted much attention in the operations res
literature, see, for example, the book of Mirchandani and Francis [26].

1.2. Facility location games

We can also ask whether the total cost can be allocated to the different custome
fair way. This is known as the cost allocation problem. For example, towns would pa
the building of libraries, or sports complexes, but they do not want to pay more than
fair share of the total cost, whatever that means. In the area of cooperative game
see, for example, [28], fairness means that no group of customers, orcoalition, has any
incentive to break apart and obtain the service on their own. In other words, ifvj denotes
the price being paid by customerj , we would like that

∑
j∈S vj � OPT(S) whereS is any

subset of customers and OPT(S) represents the cost of providing the service only to
customers inS. The core of the cooperative game is then defined as

core=
{
v:

∑
j∈N

vj = OPT(N)

∑
vj � OPT(S) for all S ⊆ N

}
(1)
j∈S
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Fig. 1. An instance with two facilities (squares) and three customersa, b, andc (circles). The cost for openin
a facility is 1 and the connection costs are given by the distances in the drawn graph. Notice that the
OPT(·) is not submodular since OPT({a,b, c}) + OPT({b}) > OPT({a,b})+ OPT({b, c}). The unique elemen
in the core is given byva = vc = 2 andvb = 1.

and a central question in cooperative game theory is whether the core is non-
and if so, how to find an allocation vector in the core. Traditionally, the non-vac
of the core is established by showing that the game isbalanced(for definitions, see
[28]). In linear programming terms, this boils down to showing that any extreme
of the dual to max

∑
j∈N vj subject to (1) has value at least OPT(N). It is well known

and easy to check that, for a submodular function OPT(·) (i.e., OPT(S) + OPT(T ) �
OPT(S ∪ T ) + OPT(S ∩ T ) for all S,T ⊆ N ), the core is non-empty and the Shap
value (cf. [28]) lies in the core. However, it is also known that this condition is in gen
not satisfied for the facility location game under consideration. In Fig. 1 we give a fa
location instance for which the function OPT(·) is not submodular; nevertheless, the c
is non-empty in this example.

1.3. Related LP relaxations

When the core is empty, we would like instead to recover as much as possib
maximize

∑
j∈N vj subject to the constraints (1). Observe that this is a linear prog

(LP) but the constraints defining it are not only exponential in number but also no
characterized since the right-hand side value OPT(S) is an NP-hard quantity for gener
facility location problems. However, the value of this linear program is a lower boun
the optimum value OPT(N) and thus it can be viewed as a relaxation of the problem.

In this paper, for any kind of constrained facility location problem, we show ho
derive an equivalent relaxation in the natural space of variables which contains a v
yi denoting whether facilityi is open and a variablexij denoting whether customerj is
assigned to facilityi. In general, our result thus says that the core is non-empty if
only if this canonicalLP relaxation has no integrality gap for the objective function be
considered, i.e., the optimum LP value is equal to OPT(N). This result and the canonic
LP relaxation are described in Section 2.

For the unconstrained facility location problem, this canonical relaxation turns o
simply be a classical LP relaxation of the problem, a result first derived by Kolen
Kolen shows that the dual of this classical LP relaxation for the uncapacitated case
interpreted as the maximum amount that can be allocated to the customers subjec
constraints (1) and, as a result, the core is non-empty if and only if there is no integ
gap for this relaxation. Our approach is similar and allows to derive (implicitly, and in s
cases, explicitly) this canonical relaxation for any facility location problem. Chardair
also considers the classical LP relaxation of the uncapacitated facility location proble
shows that the associated game can be viewed as a linear production game that
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Owen’s additivity assumption [31]. As a result, he derives that the core of this l
programming game is non-empty, and hence the core of the original uncapacitated
location game is non-empty if the LP relaxation has no integrality gap. Furthermo
uses Kolen’s result to derive the converse statement. Chardaire also generalizes s
his results to variants of the capacitated facility location problem but does not chara
the canonical relaxation whose absence of integrality gap is a necessary and su
condition for non-emptiness of the core. We refer the reader to Chardaire for a discus
related work of Sharkey [34] on a similar revenue game and of Göthe-Lundgren, Jör
and Värbrand [17] on a set partitioning game.

Connections between the core and certain LP relaxations have also been found fo
cooperative games related to problems in combinatorial optimization. Deng, Ibarak
Nagamochi [11] consider general packing and covering games given through intege
programs (ILP) with a{0,1}-matrix and right-hand side all ones; they show that the cor
such a game is non-empty if and only if the natural LP relaxation of the ILP has an in
optimal solution. Moreover, they give applications of this general result for various g
on graphs related to well-known combinatorial optimization problems, such as max
flow, maximum matching, coloring, and others; see also [12]. The result of Kolen
on the unconstrained facility location game can also be derived from this more g
framework since the unconstrained facility location problem can be formulated as s
covering problem, see, e.g., [1] (cited in [19]) or [23]. Further results in this direction h
for example, been derived by Faigle and Kern [15] and Samet and Zemel [33].

In contrast to the earlier results mentioned above, we develop our results and tech
in a setting which allows us to handle not only the unconstrained facility location pro
but also arbitrarily constrained variants of it. Moreover, in comparison to Kolen [22]
Chardaire [8], our proof is more straightforward. For general facility location probl
we can in certain cases give an explicit representation of the canonical relaxat
terms of linear inequalities. However, even if we are unable to completely charac
the relaxation in terms of linear inequalities, we can nevertheless find a fair allocatio
maximizes the amount recovered provided that we can find the best feasible assign
customers to a single facility. This is discussed in Section 3.

1.4. Non-emptiness of the core for special cases

In Section 4, we provide new proofs showing that the core of the unconstrained fa
location game is non-empty for two special cases, one in which the facilities can be o
on a line and the connection costs are unimodal (i.e., first decreasing and then incre
and the other when the facilities are positioned on a tree and the connection co
obtained by applying a nondecreasing function (depending on the customer) to th
metric. These results have been obtained earlier by Trubin [37] (see also [19]) and a
Kolen [22] (see also [10,23]).

Our main contribution in this section is a different proof technique. We use random
rounding to show that the canonical relaxation has no integrality gap for these s
classes of instances. The randomized rounding is performed in a dependent w
assigning subsets of[0,1) to each facility and to each connection of customers to facili
This algorithmic proof technique is of independent interest. For example, it can be a
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to simplify a recent result of Bar-Noy et al. [5]. Or it can be used to derive the r
of Shmoys and Tardos [35] on the generalized assignment problem without the ne
explicitly solving a matching problem, in a way more similar to [25]. For the case of fac
location on a line with unimodal connection costs, our randomized rounding appro
closely related to a technique introduced by Bertsimas, Teo, and Vohra [7] to pro
integrality of an LP formulation of the uncapacitated lot-sizing problem.

1.5. Complexity results

In Section 5, we show that even for the unconstrained facility location problem, te
whether there is an integral optimal solution (or no integrality gap) to the canonic
relaxation is actually NP-complete. Our proof also yields that checking whether a
cost allocation is in the core is an NP-complete problem. On the other hand, if the
is known to be non-empty, the latter problem can be solved in polynomial time an
element of the core can also be computed in polynomial time.

Deng, Ibaraki, and Nagamochi [11] derive similar results for different games on g
(see Table 1 in their paper); surprisingly, there seems to be no direct correlation be
the complexity of those questions for cooperative games and the complexity o
corresponding combinatorial optimization problems. Further results in this direction
been obtained, e.g., by Deng and Papadimitriou [13] and by Faigle et al. [14].

1.6. Known results on the size of the integrality gap

Since for the uncapacitated facility location problem the optimal value of the clas
LP relaxation is equal to the maximum amount that can be recovered in the cost allo
problem, results on the worst case ratio of the integrality gap gain a new meaning
context of cost allocation. It follows for example from the LP-based approximation res
Chudak [9] that, for metric instances (i.e., when the costscij arise from a metric onN ∪F ),
there always exists a fair cost allocation that recovers at least a fractione/(e + 2) ≈ 0.576
of the total cost. On the other hand, Guha and Khuller [21] give a class of metric inst
where at most 68% of the total cost can be recovered. This gives worst-case bound
amount that the central authority should subsidize in order to ensure the existence o
allocation. However, for general cost functions, there exist instances for which the a
one can recover is at most OPT(N)2n/((n + 1) log2(n + 1)) (using a standard reductio
from the set cover problem and using instances with large integrality gaps for the se
problem, see [38].

1.7. Extension to a closely related problem

A problem that is closely related to the facility location problem occurs w
connections of customers to facilities do not cause costscij but produce certain non
negative benefitsbij . Here, a customer can be connected toat mostone facility and the goa
is to maximize the total benefit minus the cost for building facilities. In the correspon
cooperative game we ask for a fair allocation of this amount to the customers, i.e.
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coalition of customers wants to get at least as much as it could gain on its own. The
in this paper can easily be carried forward to this setting.

2. Integer and linear programming formulations

In order to model the facility location problem we introduce two types of bin
variables: for eachi ∈ F , the variableyi is 1 if facility i is opened, and 0 otherwise; f
eachi ∈ F andj ∈ N , the variablexij is 1 if customerj is connected to facilityi, and 0
otherwise. A minimum cost solution to the basic version of the facility location proble
then given by the following integer linear program:

minimize
∑
i∈F

fiyi +
∑
i∈F
j∈N

cij xij ,

subject to
∑
i∈F

xij = 1 for all j ∈ N, (2)

yi − xij � 0 for all i ∈ F, j ∈ N, (3)

xij , yi ∈ {0,1} for all i ∈ F, j ∈ N.

Constraints (2) ensure that every customer is connected to exactly one facility. A cus
can only be connected to a facility that is open by constraints (3). For the capac
version of the problem we add the following capacity constraints:

kiyi −
∑
j∈N

xij � 0 for all i ∈ F. (4)

If at least a fractionqi of the customers connected to facilityi have to belong to a subgrou
N ′ ⊆ N , we add the quota constraints

(1− qi)
∑
j∈N ′

xij − qi

∑
j∈N\N ′

xij � 0 for all i ∈ F. (5)

If the set of customers is partitioned into subsetsNp , p = 1, . . . , l, and a facility can only
serve customers in at most one subset, we add the incompatibility constraints

xij + xik � yi for all i ∈ F, all j ∈ Np, and allk ∈ Nq, p �= q. (6)

Notice that constraints (4)–(6) do not introduce a coupling between different facilitie
can be expressed solely in terms of the variablesxij andyi for each fixed facilityi. We
consider a more general class of constraints where, for each facilityi, we are given a family
of subsetsS ⊆ N of customers that can be connected to this facility. In this case we
rewrite the integer program as: minimize

∑
i fiyi + ∑

i,j cij xij subject to
∑

i xij = 1 for
all j ∈ N and (yi, xi) ∈ Pi for all i ∈ F . Here,xi := (xi1, . . . , xin), with n := |N |, and
Pi ⊆ {0,1}n+1 is given by

Pi := {
(0, . . . ,0)

} ∪ {
(1, χS): S ⊆ N feasible fori

}
,

whereχS ∈ {0,1}n denotes the characteristic vector of the subsetS.
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There are several possible ways of deriving a linear programming relaxation fo
problem. The most natural would be to try to replace each discrete setPi by its convex
hull conv(Pi). Notice that the value of the resulting linear program might not be e
to OPT(N) since the intersection of the convex hulls with the hyperplanes (2) is
necessarily the convex hull of the intersections. A slightly weaker relaxation wou
to replace eachPi by its conic hull cone(Pi) = {∑x∈Pi

λxx: λx � 0}. Given the specia
form of Pi , it is easy to see that conv(Pi) = cone(Pi) ∩ {(y, x): y � 1}. This leads to the
following relaxation (LP):

(LP) minimize
∑
i∈F

fiyi +
∑
i∈F
j∈N

cij xij ,

subject to
∑
i∈F

xij = 1 for all j ∈ N, (7)

(yi, xi) ∈ cone(Pi) for all i ∈ F.

We now turn to the cost allocation problem. For each coalitionS ⊆ N , let OPT(S)
denote the minimum cost of the facility location problem restricted to the se
customersS. The maximum cost that can be allocated to the customers is then given
following linear program (CAP):

(CAP) minimize
∑
j∈N

vj ,

subject to
∑
j∈S

vj � OPT(S) for all S ⊆ N. (8)

It is an easy observation that the amountvj that is paid by customerj in an optimal
cost allocation is always nonnegative (sincecij � 0 implies OPT(S) � OPT(S ∪ {j })).
Although there are exponentially many constraints and although it is in general NP
to compute the right-hand side of this linear program, we show that in some cases
be solved in polynomial time. To obtain this result we develop the following connecti
the LP relaxation of the facility location problem introduced above.

Theorem 2.1. The cost allocation problem(CAP) is equivalent to the dual of the L
relaxation(LP) of the facility location problem. In particular, their values are equal an
the core is non-empty if and only if there is no integrality gap for the relaxation(LP) of the
facility location problem.

Proof. We dualize constraints (7) and introduce a vectorv of corresponding dual variable
vj for all customersj ∈ N . This leads to the following program of the same value as (
by strong duality; see, e.g., [29, Section II.3.6]:

max
v

min
x,y

∑
i∈F

fiyi +
∑
i∈F
j∈N

(cij − vj )xij +
∑
j∈N

vj ,

subject to (yi, xi) ∈ cone(Pi) for all i ∈ F.
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For a fixed vectorv, the program is decomposed into the sum ofn = |N | linear
minimization problems over pointed cones. Therefore, the inner minimization pro
is either unbounded or an optimum solution is given byxij = yi = 0, for all i ∈ F , j ∈ N ,
and has value

∑
j vj . Moreover, since cone(Pi) is generated by the incidence vectors

feasible assignments to facilityi, the inner minimization problem is unbounded if and o
if there exists ani ∈ F and a corresponding feasible coalitionS ⊆ N , i.e., (1, χS) ∈ Pi ,
with

fi +
∑
j∈S

(cij − vj ) < 0.

Thus, we can rewrite the program as

minimize
∑
j∈N

vj ,

subject to
∑
j∈S

vj � fi +
∑
j∈S

cij for all i ∈ F andS ⊆ N feasible. (9)

Since the right-hand side of constraints (8) is stronger than the right-hand side of
remains to show that (8) is implicitly contained in (9). Suppose that an optimal soluti
the subproblem induced byS is given by

OPT(S) =
∑
i∈F ′

(
fi +

∑
j∈Si

cij

)
,

whereF ′ ⊆ F and theSi , i ∈ F ′, form a partition ofS. Now observe that (8) can b
obtained by simply aggregating constraints (9) overi ∈ F ′ for S = Si . This completes the
proof. ✷

Let us turn to describing cone(Pi) for a few special cases. For the unconstrained fac
location problem, the conic hull of the setPi , is given by cone(Pi) = {(yi, xi): 0 � xij � yi

for all j ∈ N}; this yields the following classical LP relaxation which has been introdu
by Balinski [4]:

minimize
∑
i∈F

fiyi +
∑
i∈F
j∈N

cij xij ,

subject to
∑
i∈F

xij = 1 for all j ∈ N, (10)

0 � xij � yi for all i ∈ F, j ∈ N.

Notice that there exists an optimal solution to this LP relaxation withyi � 1 for all i ∈ F . In
this case, having replacedPi by cone(Pi) rather than conv(Pi) does not matter. This is n
longer true if we turn to the capacitated version of the facility location problem inclu
constraints (4); in this case we get

cone(Pi) =
{
(yi, xi·):

∑
xij � kiyi and 0� xij � yi for all j ∈ N

}

j
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such that we only have to add the constraints (4) to the above LP relaxation.
Consider an example with two facilities of capacity 1 and fixed cost 0 and two custo

that are located at the first facility; they can be connected to this facility for free whil
connection to the second facility costs 1. In an optimal solution one of the customers
be connected to the second facility which causes cost 1; however, an optimal LP s
has value 0 since it can open the first facility withy1 = 2 and connect both customers to th
facility. If we add the constrainty1 � 1 to the LP relaxation, its optimum value increas
to 1.

In fact, in this example, none of the customers is willing to pay anything for the se
since he can argue that he could connect to the first facility for free. Therefore, th
allocation problem is equivalent to the dual of the weak LP relaxation but not to the d
the stronger relaxation including constraintsyi � 1 for all i ∈ F , which would have bee
obtained if we had relaxedPi to conv(Pi). This answers an open question discussed
Chardaire [8].

If, instead of capacity constraints, we have that each facility must serve the same n
of customers fromN1 and fromN2, then we simply have that

cone(Pi) =
{
(yi, xi):

∑
j∈N1

xij =
∑
j∈N2

xij and 0� xij � yi for all j ∈ N

}
.

If we have incompatibility constraintsxij + xik � yi for certain pairs(j, k) ∈ Ei as
in (6), we need to include all inequalities that describe (the conic version of) the s
set polytope for the graph(N,Ei). For the specific form (6), the corresponding graph
a completel-partite graph, and therefore the clique constraints∑

p

xij (p) � yi for all
(
j (1), j (2), . . . , j (l)

) ∈ N1 × N2 × · · · × Nl

are sufficient since the graph is perfect; see [20].
However, if we consider quota constraints (5) or we combine simultaneously say c

ity constraints (4) and incompatibility constraints (6), then additional more complic
inequalities are needed to describe the conic hull.

3. Polynomial-time solvability of the cost allocation problem

As a result of Theorem 2.1, the cost allocation problem (CAP) can be solv
polynomial time by linear programming if we know a compact (i.e., with a polynom
number of linear inequalities) representation of the cones generated by thePi ’s. In this
case, an element of the core can simply be obtained by solving (LP) and extracti
dual variables on the constraints (7).

Even if we do not know or there does not exist a compact (possibly exten
representation of each cone, we can still solve the cost allocation problem in polyn
time provided we can optimize in polynomial time over each discrete setPi . This can be
done by using the ellipsoid method and exploiting the equivalence between optimi
and separation, see [20]. Since we have a polynomial bound on the size of the ineq
needed to describe (CAP), the equivalence is betweenstrong(or exact) optimization and
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separation. The separation problem associated to (CAP) is given a vectorv to decide
whether there exists a setS ⊆ N such that

∑
j∈S vj > OPT(S), and if so to find one suc

set. By the same reasoning as in the proof of Theorem 2.1, this is equivalent to de
whether there existsi ∈ F and a feasibleS for i such that

fi +
∑
j∈S

(cij − vj ) < 0.

And this can be decided by optimizing overPi .
Similarly, if we have a polynomial approximation scheme for thePi ’s then we can

derive a polynomial approximation scheme for (CAP). This is, for example, useful
the customers have different demands, saydj for customerj , and we have a capaci
constraint on each facility∑

j

dj xij � kiyi.

4. On the existence of core elements

In the literature, positive and negative results on the existence of elements in th
have been shown for several important classes of instances. In view of the re
Theorem 2.1, we provide a novel variant ofrandomized roundingin order to give new
and simple proofs for the existence of integral solutions for the LP relaxation of fa
location problems in certain cases. Randomized rounding is a well-known techniq
combinatorial optimization for turning a fractional solution into an integer solution ma
use of the structural information contained in the fractional solution; we refer the rea
[27] for further information.

For the unconstrained facility location problem, we take an optimum solution(x, y) to
the LP relaxation discussed in Section 2 and try to round it randomly to a feasible in
solution by interpreting the fractional valuesxij andyi as probabilities. A similar techniqu
was used by Chudak [9] to compute near-optimal solutions for metric instances. Ho
while Chudak opened facilities randomly with probabilitiesyi but established connection
by a different routine, the main problem for our approach is to make sure that a va
xij is only rounded to 1 if facilityi is open, i.e., if the variableyi is also rounded to 1. Thi
condition forces a coupling of the random decisions which makes it necessary to intr
a subtle correlation between the different random variables.

We first ‘color’ all facilities i ∈ F by subsetsIi of the interval[0,1) such that the
measure|Ii | of Ii is equal toyi . Later, we will draw a random variableα uniformly
distributed from[0,1) and open all facilitiesi with α ∈ Ii ; in fact, the probability for
opening facilityi is then equal toyi . In order to determine the connections of custom
j to facilities i, we construct subsetsIij of [0,1) such that|Iij | = xij and establish a
connection from customerj to facility i if α ∈ Iij . To make sure that each customer
connected to exactly one facility, the subsetsIij , i ∈ F , should form a partition of the
interval[0,1); notice that

∑
i∈F |Iij | = ∑

i∈F xij = 1 by constraints (10). Moreover, sinc
a customer should only be connected to an open facility, we requireIij ⊆ Ii for all i ∈ F ,
j ∈ N .
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Lemma 4.1. Given an optimum solution(x, y) to the LP relaxation of the unconstraine
facility location problem, if we can find subsetsIi and Iij of [0,1) with the following
properties:

(i) |Ii | = yi , |Iij | = xij , for all i ∈ F , j ∈ N ;
(ii)

⋃
i∈F Iij = [0,1), for all j ∈ N , andIij ∩ Ii′j = ∅, for all i �= i ′ ∈ F , j ∈ N ;

(iii) Iij ⊆ Ii , for all i ∈ F , j ∈ N ;

then there exists an integral optimal solution to the LP relaxation.

Proof. We randomly construct an integral solution(x̄, ȳ). Choose a random variableα
uniformly distributed from[0,1); open all facilitiesi with α ∈ Ii (i.e., setȳi = 1) and
establish all connectionsij with α ∈ Iij (i.e., setx̄ij = 1). By the properties of the setsIi
andIij , this gives a feasible integral solution of expected value

E

[∑
i∈F

fi ȳi +
∑
i∈F
j∈N

cij x̄ij

]
=

∑
i∈F

fiyi +
∑
i∈F
j∈N

cij xij = OPTLP.

This expected value is a convex combination of the values of all integral solu
corresponding to possible choices ofα. In particular, there exists an integral solution who
value is upper bounded by the optimum LP value.✷
4.1. Facility location on a line with unimodal connection costs

We apply this proof technique to unconstrained facility location problems wher
facilities can be ordered in such a way that, for any customerj , the connection costscij
are unimodal as a function ofi. This means that there exists an ordering 1, . . . ,m of the
facilities and for any customerj , there exists a facilityi(j) such thatcij is nonincreasing
for i � i(j) and nondecreasing fori � i(j). This is, for example, the case when
facilities are located on a line in the plane or a higher-dimensional Euclidean spac
the connection cost between customerj and facility i is a nondecreasing function of the
Euclidean distance (see Fig. 2). As an illustration, this situation occurs when we h
(straight) railway line and the problem is to decide where to build railway stations so
provide an optimal service to the inhabitants of the region around the railway line.

Fig. 2. The unimodal case with facilities on a line; the rectangles represent facilities while the circles corr
to customers.
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Theorem 4.2 [22,37].There is no integrality gap for the unconstrained facility locat
problem with unimodal connection costs; in particular, the core is non-empty in this cas

Proof. In the following we assume without loss of generality that the optimal LP solu
(x, y) fulfills yi � 1, for all i ∈ F , and has the following property:

If facility i lies between facilityi(j) and facilityi ′ and is distinct fromi ′ (i.e.,
i(j) � i < i ′ or i ′ < i � i(j)) andxi′j > 0, thenxij = yi .

Otherwise one can modify the solution accordingly by increasingxij and simultaneously
decreasingxi′j without an increase in cost sincecij � ci′j . In particular, this implies tha
xi(j)j = yi(j) for all j ∈ N .

Let a0 := 0 andai := ∑i
k=1 yk, for i = 1, . . . ,m, and assign the setIi := ([ai−1, ai)

mod1) ⊆ [0,1) to facility i. Notice that by construction|Ii | = yi . We also assign to eac
pair formed by a facilityi and a customerj a subset of measurexij :

Iij :=
{ [ai − xij , ai) mod1 if i � i(j),

[ai−1, ai−1 + xij ) mod1 if i � i(j).

Notice thatIi(j)j = [ai(j)−1, ai(j)) = Ii(j) since xi(j)j = yi(j). The fact thatxij � yi

implies thatIij ⊆ Ii . Moreover, by our assumption on the LP solution(x, y), the sub-
setsIij , i ∈ F , form a partition of the interval[0,1) for each fixed customerj . Therefore,
the setsIi andIij fulfill the conditions of Lemma 4.1 and the result follows.✷

Notice that in the unimodal case the cost functions for the connections along th
are not necessarily symmetric aroundi(j). An important application with non-symmetr
connection costs is the lot sizing problem.

The line represents a time axis and facilities and customers correspond to discrete
in time when a product can be produced and has to be delivered, respectively. In par
if we do not allow backlogging, a customer can only be served by a facility ‘in the p
i.e., on its left-hand side on the line. In this case, Theorem 4.2 was proved by Kraru
Bilde [24].

The result in Theorem 4.2 cannot be generalized to the capacitated version
problem. This follows from the example discussed in Section 2 that can obvious
realized on a line and where the customers are not willing to pay anything althoug
cost of an optimum solution is positive.

In the case where the facilities are located on a line and each facility must ser
same number of customers fromN1 and fromN2, the core can also be empty. Consider
example given in Fig. 3 where the same numbers of women and men have to be se
each facility. The fixed cost for opening a facility is 1. The cost for connecting a cust
to a facility is equal to the corresponding distance (number of edges on the shortes
in the graph given by the dotted edges. In an optimal solution, all facilities are op
resulting in total cost 9. However, in the LP relaxation we can open the facility in
middle with fraction 1/2 and also connect the neighboring customers with fraction/2;
the optimal LP value is therefore only 17/2. It also follows from this example that in th
more general case of quota constraints (5) the core can be empty.
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Fig. 3. An instance of the facility location problem on a line where each facility has to serve the same num
women and men; the core is empty.

Fig. 4. An instance of the facility location problem on a cycle with empty core.

4.2. Facility location on a cycle

Another possible direction for generalizing the result in Theorem 4.2 is to switc
more complicated topologies than the line. However, it has been observed by Tam
Example 1] (see also [23, Example 6.3]) that already instances defined on a cycl
unimodal connection costs can have an empty core; we say that the connection co
cycle are unimodal if, for each customerj , opening the cycle at a facilityi with maximum
cij yields an unimodal cost function on the resulting line. In the example given in F
the fixed cost for opening each facility is 2 and the connection cost between a cus
and a facility is equal to their distance in the cyclic graph. An optimal solution open
facilities and has total cost 7. However, the optimum solution to the LP relaxation o
each facility with fraction 1/2 and has value 6. Notice that the sum of theyi ’s is equal to
3/2 and thus not integral in this case.

Theorem 4.3. If there exists an optimum solution to the LP relaxation with
∑

i∈F yi ∈ Z,
then there is no integrality gap for the unconstrained facility location problem
unimodal connection costs on a cycle; in particular, the core is non-empty in this case.

Proof. The proof is a straightforward generalization of the proof of Theorem 4.2
assume that the facilities 1, . . . ,m are ordered clockwise along the cycle and define
setsIi exactly as in the proof of Theorem 4.2. Notice thatam = ∑

i∈F yi = (a0 mod1) in
this case. In order to assign subsets to the connectionsij for a fixed customerj , we ‘open’
the cycle at a facility with maximumcij yielding a line and construct the setsIij again as
in the proof of Theorem 4.2 (using the same assumption on the optimum LP solution
resulting setsIi andIij fulfill the conditions of Lemma 4.1 and the result follows.✷
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The rounding technique in the proof of Theorem 4.3 has been applied befo
Bertsimas, Teo, and Vohra [7] to prove the integrality of an LP relaxation of thek-median
problem on cycles. The insight from Theorem 4.3 can be used to prove the following

Corollary 4.4. The unconstrained facility location problem with unimodal connection c
on a cycle can be solved in polynomial time.

Proof. We add the constraint
∑

i yi ∈ Z to the LP relaxation. It follows from the proo
of Theorem 4.3 that an optimal solution to this stronger relaxation can be turned in
integral optimal solution in polynomial time. Moreover, the stronger relaxation ca
solved in the following way: letγ := ∑

i y
∗
i for an optimum solution of the original (LP

Then there exists an optimal solution to the stronger relaxation with
∑

i yi ∈ {�γ �, �γ �};
this follows from the fact that the optimal value of the parametric linear program w
we get by adding the constraint

∑
i yi = µ to (LP) is a convex function ofµ, see, e.g., [32

Section 6.5]. Therefore, we only need to solve this relaxation for the two valuesµ = �γ �
and�γ � take the better of the two solutions.✷

An alternative proof of Corollary 4.4 is based on the following observation. As
already mentioned in the introduction, the unconstrained facility location problem c
formulated as a covering problem (see [23]). Since the connection costs are unimod
rows in the linear programming formulation of this covering problem fulfill the circu
1’s property (for definition, see [3, Chapter 9, Exercise 9.9]). If we add the cons∑

i yi = p for somep ∈ N (p can, for example, be determined by binary search), it i
easy exercise to show that an integral optimal solution exists since the matrix of the
program is totally unimodular, see [3, Chapter 9, Exercise 9.9].

The above discussion has also implications for thep-median problem, where th
number of facilities to open is a given integral numberp. The proof of Theorem 4.2 show
that the corresponding LP relaxation (with the inequality

∑
i∈F yi = p) has an integra

optimum solution for instances defined on a cycle with unimodal costs; a generaliza
a result first derived by Oudjit [30] (for linear costs).

4.3. Facility location on a tree

In the following we consider unconstrained facility location problems on trees w
all customers and facilities are located on the vertices of an acyclic connected
As for the case of a line, we assume that the connection costscij of each customerj
are monotone such thatcij � ci′j if facility i lies on the unique path betweenj and
facility i ′. Unfortunately, this condition is not sufficient to guarantee a non-empty
The counterexample in Fig. 5 consists of three customers and three facilities. The
cost of each facility is 1 and each customer can be connected to the facility at the
vertex of the tree or to its anti-clockwise neighbor for free; a connection to its clock
neighbor, however, costs a large amountM. An optimum solution opens two of the thre
facilities and has value 2. In an optimum LP solution, however, each facility is opened
fraction 1/2 resulting in total cost 3/2. Thus, only a fraction of 3/4 of the total cost can b
recovered.
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Fig. 5. An instance of the unconstrained facility location problem on a tree with monotone connection co
empty core.

In the following we restrict to a special class of monotone connection costs on a
let d :E �→ R

+
0 be a distance function on the edges of the tree. We denote the length

unique path between two verticesi andj of the tree bydij .

Theorem 4.5 [22,37]. If for each customerj the costscij for connectingj to facilities
i ∈ F is an arbitrary nondecreasing function( possibly dependent onj ) of the distances
dij in an underlying tree metric, then there is no integrality gap for the unconstrain
facility location problem and the core is non-empty.

Using the same technique as in the proofs of Theorem 4.2 and Lemma 4.1, o
show that, for the class of instances under consideration, any feasible solution to
relaxation can be written as a convex combination of integral solutions. In particul
vertices of the underlying polyhedron are integral. This result also follows from the wo
Trubin [37] (see also [19]), Kolen [22] (see also [23]), or Bárány, Edmonds, and Wolse
(see also [10]). They use a simple reduction of the unconstrained facility location pro
to the set cover problem. For the class of instances considered in Theorem 4
constraint matrix of the resulting set cover problem is totally balanced which yield
integrality result. Moreover, Trubin and also Kolen give anO((|N | + |F |)3) algorithm
for solving such instances. This result has been improved by Gimadi [16] to ru
time O((|N | + |F |)2). Furthermore, Ageev [2] and Granot and Skorin-Karpov [18] g
a polynomial-time algorithm for solving the unconstrained facility location problem
partialk-trees for fixedk.

Tamir [36] considers a variant of the facility location problem on a tree where
customerj has to be connected to a facility within a given distancerj . This constraint can
be modeled by lettingcij = 0 if the distance between customerj and facility i is at most
rj andcij = ∞, otherwise; thus, it is a special case of the problem discussed above.
proves the result given in Theorem 4.5 for this special case.

Proof of Theorem 4.5. We construct setsIi and Iij that fulfill the conditions in
Lemma 4.1. To simplify the presentation of the construction, we assume that ther
least one customer at each node of the tree; otherwise we can, without loss of gen
add dummy customersj with cij = 0 for all i ∈ F . For each customerj we order the set o
facilities F by nondecreasing distancesdij and break ties according to increasing indic
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i = 1, . . . ,m. Using the same arguments given in the proof of Theorem 4.2, we can re
to LP solutions with the following property:

If facility i is closer to customerj than facilityi ′ (with respect to the above
ordering) andxi′j > 0, thenxij = yi .

As an immediate consequence of this we get the following property:

If customerk lies on the unique path from customerj to facility i, then
xij � xik. (∗)

In particular, if two customersj and j ′ are located at the same node of the tree,
get xij = xij ′ for all i ∈ F . Therefore, all customersj located at the same node w
get the same setsIij and we will only consider one customer per node in the follow
construction.

To assign subsetsIi andIij to the facilities and connections, respectively, we trave
the nodes of the tree in such a way that the firstk visited nodes form a subtree for anyk.
This can, e.g., be done by rooting the tree at some node and traversing the nodes of
by depth- or breadth-first search or in any order such that the predecessor of any
visited before the node itself. During the algorithm we preserve the following invaria

For all customersj at visited nodes of the tree, the subsetsIij , i ∈ F , form
a partition of the interval[0,1) such that|Iij | = xij andIij ⊆ Ii . Moreover,
for all i ∈ F , there exists a visited nodej such thatIij = Ii for all i ∈ F .

(∗∗)

In particular, this implies that|Ii | � yi .
For the customerj at the root of the tree, we setIi := Iij := [∑i−1

k=1xik,
∑i

k=1 xik) ⊆
[0,1) for i = 1, . . . ,m. Notice that the invariant (∗∗) is fulfilled after this step. When w
arrive at a node with a customerj , we denote the customer located at the predecess
the current node in the tree byk. The following observation is crucial for the assignm
of the subsetsIi andIij .

Claim 1. For all i ∈ F , eitherxij � xik or xik = |Ii |.

We postpone the proof of this claim after the complete description of the assign
procedure.

We first consider all facilitiesi ∈ F with xij � xik and choose an arbitrary subs
Iij ⊆ Iik of measurexij . For all the other facilitiesi ∈ F , namely those for which
xij > xik = |Ii | by Claim 1, choose arbitrary setsIij ⊃ Iik of measurexij such that the
setsIij , i ∈ F , form a partition of[0,1) (this is possible since the setsIik , i ∈ F , form
a partition) and redefineIi := Iij . Notice that the invariant (∗∗) is still fulfilled after this
step.

Thus, the final setsIi andIij fulfill the conditions of Lemma 4.1 and the result follow

Proof of Claim 1. Assume thatxik < xij andxik < |Ii | (sincek has been visited). By th
invariant (∗∗), there exists a customerh �= k with Iih = Ii , implying thatxik < xih. By
property (∗), k can neither lie on the path fromj to i nor on the path fromh to i. However,
sincek is the predecessor ofj in the tree andh was visited,k lies on the path betweenj
andh—a contradiction. ✷
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5. On the complexity of core computations

In this section we prove the following theorem which confirms a conjecture
Chardaire [8].

Theorem 5.1. For general instances of the unconstrained facility location problem
NP-complete to decide whether the core is non-empty.

Proof. By Theorem 2.1 it suffices to show that it is NP-complete to decide wheth
not the LP relaxation given in Section 2 has an integral optimal solution. The probl
obviously in NP. To prove that it is NP-hard, we use a reduction from 3SAT. We restrict to
instances where each clause contains exactly three (not necessarily different) litera

Given an instance of 3SAT we construct the following facility location problem. F
each variableX we introduce one customerjX and two facilitiesiX andiX corresponding
to the two literalsX and its negationX. The cost for connecting customerjX to these two
facilities is 0, the cost for opening one of the facilities is equal to 1 plus the numb
occurrences of the corresponding literal in the instance.

For each clauseC we introduce one customerjC and for each of its three literalsL
a facility iCL and a customerjCL. CustomerjC can be connected to the three facilities
cost 0, the cost for opening each facility is 1; each customerjCL can be connected eithe
to iCL or to iL at cost 0. Finally, we introduce one additional dummy facilityi0 with fixed
cost 0. The customersjCL of all clauses can connect at cost 1 to this facility. An illustrat
example of this construction is given in Fig. 6. All connections that are not depicted
figure have infinite cost.

Fig. 6. A facility location instance corresponding to an instance of 3SAT containing variablesX, Y , andZ and
a clauseC = (X ∨ Y ∨ Z).
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We claim that the LP relaxation of this facility location instance has an integral op
solution if and only if the underlying 3SAT instance can be satisfied. We first show that
optimal LP value isn+ 3m wheren denotes the number of variables andm the number of
clauses of the 3SAT instance. A feasible solution of valuen + 3m is given by

yiL = 1/2 for each literalL,

xiXjX = xiXjX = 1/2 for each variableX,

yiCL = xiCLjC = xiCLjCL = 1/3
xiLjCL = 1/2

yi0 = xi0jCL = 1/6


 for each clauseC and each of its literalsL.

In order to show that this solution is optimal, we construct a dual solution of valuen+ 3m.
The dual of the LP relaxation is given by

maximize
∑
j∈N

vj ,

subject to
∑
j∈N

wij = fi for all i ∈ F,

vj − wij � cij for all i ∈ F, j ∈ N,

wij � 0 for all i ∈ F, j ∈ N.

A feasible dual solution of valuen + 3m is given by

vjX = wiXjX = wiXjX = 1 for each variableX,

vjC = wiCLjC = wi0jCL = 0
vjCL = wiCLjCL = wiLjCL = 1

}
for each clauseC and each of its literalsL.

Since the given dual solution is optimal, every primal optimal solution has to fulfil
following complementary slackness conditions:

xiXjX = yiX , xiXjX = yiX
for each variableX, (11)

xiCLjCL = yiCL, xiLjCL = yiL for each clauseC and each of its literalsL. (12)

Using these conditions we can show that any primal integral optimal solution(x, y)

corresponds to a satisfying truth-assignment of the underlying 3SAT instance. Condition
(11) and constraint (10) yield that for each variableX exactly one of the facilitiesiX and
iX has to be open. We set the variableX to the value true ifyiX = 0 and to the value fals
if yiX

= 0. For an arbitrary clauseC, at least one of the three facilitiesiCL corresponding
to the three literals of C must be open to serve customerjC . Condition (12) yields that th
customerjCL is connected to this facility. It follows again from (12) that the facilityiL is
closed and the literalL is thus set to the value true such that the clauseC is fulfilled.

Using the same interpretation one can easily show that any satisfying truth-assig
yields an integral optimal solution of the LP relaxation. This completes the proof.✷

We can state the following interesting corollary of the result in Theorem 5.1.

Corollary 5.2. Given an instance of the unconstrained facility location problem and a
allocation vectorv ∈ R

N , it is NP-complete to decide whether or notv is in the core of the
corresponding game.
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Proof. The problem is in NP since a positive answer to the question can be proven
following way: give an integral optimal solution to the LP relaxation and a completiow

of the given vectorv to an optimal dual solution(v,w). ✷
Quite interestingly, given the information that the core is non-empty, it is eas

compute an element of the core and to decide whether a given cost allocationv belongs to
the core. Both problems reduce to solving the dual of the LP relaxation of the proble

Corollary 5.3. If the core of an unconstrained facility location game is non-em,
an element of the core can be computed in polynomial time and it can be chec
polynomial time whether a given cost allocationv ∈ R

N belongs to the core.

It follows from the considerations in Section 3 that the result in Corollary 5.3
be generalized to constrained variants of the facility location problem for which we
optimize over the discrete setsPi in polynomial time.
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