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Abstract

The location of facilities in order to provide service for customers is a well-studied problem in
the operations research literature. In the basic model, there is a predefined cost for opening a facility
and also for connecting a customer to a facility, the goal being to minimize the total cost. Often,
both in the case of public facilities (such as libraries, municipal swimming pools, fire statiohs,
and private facilities (such as distribution centers, switching stationy, we may want to find a
‘fair’ allocation of the total cost to the customers—this is known as the cost allocation problem.
A central question in cooperative game theory is whether the total cost can be allocated to the
customers such that no coalition of customers has any incentive to build their own facility or to ask a
competitor to service them. We establish strong connections between fair cost allocations and linear
programming relaxations for several variants of the facility location problem. In particular, we show
that a fair cost allocation exists if and only if there is no integrality gap for a corresponding linear
programming relaxation; this was only known for the simplest unconstrained variant of the facility
location problem. Moreover, we introduce a subtle variant of randomized rounding and derive new
proofs for the existence of fair cost allocations for several classes of instances. We also show that it is
in general NP-complete to decide whether a fair cost allocation exists and whether a given allocation
is fair.
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1. Introduction
1.1. Fair cost allocations

In the facility location problem, customers from a given Aeare in need of a certain
service which can be provided by connecting them to facilities. These facilities could be
railway stations, sports complexes, libraries, switching stations, antennas, or supermarkets,
to cite a few examples. From a given $ebf possible locations for the facilities, one has
to decide first which facilities to open (build) and then each customer must be assigned
(connected) to an open facility. Opening facilitg F causes a fixed cogf > 0 and the
cost for connecting customegre N to this facility is denoted by;; > 0. We refer to this
problem as th@nconstraineqor uncapacitatefifacility location problem; this problem is
also sometimes referred to as the uncapacitated plant location problem.

In many situations, further constraints have to be taken into consideration. The facilities
can typically handle only a limited number of customers, say at rhostistomers for
facility i. Certain customers cannot be assigned to certain facilities (for example, if they
are geographically too far apart from each other); this can be handled in the original
unconstrained model by simply letting the correspondingge$te very large (or infinite).

Other relevant constraints can occur when the set of customers is heterogeneous and
some quota must be met: at least some fraction of the customers connected to a facility
must belong to a certain subgroup or minority (e.g., at least 40% walloons, 33% socio-
democrats, an equal number of women and men, etc.). Or, members of different groups
cannot be assigned to the same facility (e.g., each facility represents a factory that can
produce only one product and customers request one of the different products).

From a central authority’s point of view, it is interesting to ask for a cheapest possible
solution, i.e., to minimize the total cost which is made up by the cost to build facilities and
to connect the customers to the open facilities.

This facility location problem has attracted much attention in the operations research
literature, see, for example, the book of Mirchandani and Francis [26].

1.2. Facility location games

We can also ask whether the total cost can be allocated to the different customers in a
fair way. This is known as the cost allocation problem. For example, towns would pay for
the building of libraries, or sports complexes, but they do not want to pay more than their
fair share of the total cost, whatever that means. In the area of cooperative game theory,
see, for example, [28], fairness means that no group of customeesabtion, has any
incentive to break apart and obtain the service on their own. In other wondsd#notes
the price being paid by customgrwe would like thatzjes v; < OPT(S) whereS is any
subset of customers and OBS) represents the cost of providing the service only to the
customers irS. The core of the cooperative game is then defined as

core= {v: ZU]' = OPT(N)

JEN
> v <OPT(S) foraIISgN} 1)
jes
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Fig. 1. An instance with two facilities (squares) and three customebs andc (circles). The cost for opening

a facility is 1 and the connection costs are given by the distances in the drawn graph. Notice that the function
OPT() is not submodular since OR{E, b, c}) + OPT({b}) > OPT({a, b}) + OPT({b, c}). The unique element

in the core is given by, = v, = 2 andvp, = 1.

and a central question in cooperative game theory is whether the core is non-empty,
and if so, how to find an allocation vector in the core. Traditionally, the non-vacuity
of the core is established by showing that the gambaknced(for definitions, see
[28]). In linear programming terms, this boils down to showing that any extreme point
of the dual to ma{ieN vj subject to (1) has value at least OfV). It is well known

and easy to check that, for a submodular function QP{i.e., OPTS) + OPT(T) >
OPT(SUT)+ OPT(SNT) forall S,T € N), the core is non-empty and the Shapley
value (cf. [28]) lies in the core. However, it is also known that this condition is in general
not satisfied for the facility location game under consideration. In Fig. 1 we give a facility
location instance for which the function OPYis not submodular; nevertheless, the core
is non-empty in this example.

1.3. Related LP relaxations

When the core is empty, we would like instead to recover as much as possible and
maximize ).y v; subject to the constraints (1). Observe that this is a linear program
(LP) but the constraints defining it are not only exponential in number but also not well
characterized since the right-hand side value @B Ts an NP-hard quantity for general
facility location problems. However, the value of this linear program is a lower bound on
the optimum value OP(V) and thus it can be viewed as a relaxation of the problem.

In this paper, for any kind of constrained facility location problem, we show how to
derive an equivalent relaxation in the natural space of variables which contains a variable
yi denoting whether facility is open and a variable; denoting whether customegris
assigned to facilityi. In general, our result thus says that the core is non-empty if and
only if this canonicalLP relaxation has no integrality gap for the objective function being
considered, i.e., the optimum LP value is equal to @P)I This result and the canonical
LP relaxation are described in Section 2.

For the unconstrained facility location problem, this canonical relaxation turns out to
simply be a classical LP relaxation of the problem, a result first derived by Kolen [22].
Kolen shows that the dual of this classical LP relaxation for the uncapacitated case can be
interpreted as the maximum amount that can be allocated to the customers subject to the
constraints (1) and, as a result, the core is non-empty if and only if there is no integrality
gap for this relaxation. Our approach is similar and allows to derive (implicitly, and in some
cases, explicitly) this canonical relaxation for any facility location problem. Chardaire [8]
also considers the classical LP relaxation of the uncapacitated facility location problem and
shows that the associated game can be viewed as a linear production game that satisfies
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Owen’s additivity assumption [31]. As a result, he derives that the core of this linear
programming game is non-empty, and hence the core of the original uncapacitated facility
location game is non-empty if the LP relaxation has no integrality gap. Furthermore, he
uses Kolen’s result to derive the converse statement. Chardaire also generalizes some of
his results to variants of the capacitated facility location problem but does not characterize
the canonical relaxation whose absence of integrality gap is a necessary and sufficient
condition for non-emptiness of the core. We refer the reader to Chardaire for a discussion of
related work of Sharkey [34] on a similar revenue game and of Goéthe-Lundgren, Jornsten,
and Vérbrand [17] on a set partitioning game.

Connections between the core and certain LP relaxations have also been found for other
cooperative games related to problems in combinatorial optimization. Deng, Ibaraki, and
Nagamochi[11] consider general packing and covering games given through integer linear
programs (ILP) with g0, 1}-matrix and right-hand side all ones; they show that the core of
such a game is non-empty if and only if the natural LP relaxation of the ILP has an integer
optimal solution. Moreover, they give applications of this general result for various games
on graphs related to well-known combinatorial optimization problems, such as maximum
flow, maximum matching, coloring, and others; see also [12]. The result of Kolen [22]
on the unconstrained facility location game can also be derived from this more general
framework since the unconstrained facility location problem can be formulated as such a
covering problem, see, e.qg., [1] (cited in [19]) or [23]. Further results in this direction have,
for example, been derived by Faigle and Kern [15] and Samet and Zemel [33].

In contrast to the earlier results mentioned above, we develop our results and techniques
in a setting which allows us to handle not only the unconstrained facility location problem
but also arbitrarily constrained variants of it. Moreover, in comparison to Kolen [22] and
Chardaire [8], our proof is more straightforward. For general facility location problems,
we can in certain cases give an explicit representation of the canonical relaxation in
terms of linear inequalities. However, even if we are unable to completely characterize
the relaxation in terms of linear inequalities, we can nevertheless find a fair allocation that
maximizes the amount recovered provided that we can find the best feasible assignment of
customers to a single facility. This is discussed in Section 3.

1.4. Non-emptiness of the core for special cases

In Section 4, we provide new proofs showing that the core of the unconstrained facility
location game is non-empty for two special cases, one in which the facilities can be ordered
on aline and the connection costs are unimodal (i.e., first decreasing and then increasing),
and the other when the facilities are positioned on a tree and the connection costs are
obtained by applying a nondecreasing function (depending on the customer) to the tree
metric. These results have been obtained earlier by Trubin [37] (see also [19]) and also by
Kolen [22] (see also [10,23]).

Our main contribution in this section is a different proof technique. We use randomized
rounding to show that the canonical relaxation has no integrality gap for these special
classes of instances. The randomized rounding is performed in a dependent way by
assigning subsets @, 1) to each facility and to each connection of customers to facilities.
This algorithmic proof technique is of independent interest. For example, it can be applied
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to simplify a recent result of Bar-Noy et al. [5]. Or it can be used to derive the result
of Shmoys and Tardos [35] on the generalized assignment problem without the need for
explicitly solving a matching problem, in a way more similar to [25]. For the case of facility
location on a line with unimodal connection costs, our randomized rounding approach is
closely related to a technique introduced by Bertsimas, Teo, and Vohra [7] to prove the
integrality of an LP formulation of the uncapacitated lot-sizing problem.

1.5. Complexity results

In Section 5, we show that even for the unconstrained facility location problem, testing
whether there is an integral optimal solution (or no integrality gap) to the canonical LP
relaxation is actually NP-complete. Our proof also yields that checking whether a given
cost allocation is in the core is an NP-complete problem. On the other hand, if the core
is known to be non-empty, the latter problem can be solved in polynomial time and an
element of the core can also be computed in polynomial time.

Deng, Ibaraki, and Nagamochi [11] derive similar results for different games on graphs
(see Table 1 in their paper); surprisingly, there seems to be no direct correlation between
the complexity of those questions for cooperative games and the complexity of the
corresponding combinatorial optimization problems. Further results in this direction have
been obtained, e.g., by Deng and Papadimitriou [13] and by Faigle et al. [14].

1.6. Known results on the size of the integrality gap

Since for the uncapacitated facility location problem the optimal value of the classical
LP relaxation is equal to the maximum amount that can be recovered in the cost allocation
problem, results on the worst case ratio of the integrality gap gain a new meaning in the
context of cost allocation. It follows for example from the LP-based approximation result of
Chudak [9] that, for metric instances (i.e., when the cogtarise from a metric o U F),
there always exists a fair cost allocation that recovers at least a fragiien- 2) ~ 0.576
of the total cost. On the other hand, Guha and Khuller [21] give a class of metric instances
where at most 68% of the total cost can be recovered. This gives worst-case bounds on the
amount that the central authority should subsidize in order to ensure the existence of a fair
allocation. However, for general cost functions, there exist instances for which the amount
one can recover is at most OPN) 2n/((n + 1) log,(n + 1)) (using a standard reduction
from the set cover problem and using instances with large integrality gaps for the set cover
problem, see [38].

1.7. Extension to a closely related problem

A problem that is closely related to the facility location problem occurs when
connections of customers to facilities do not cause cegtdut produce certain non-
negative benefits;;. Here, a customer can be connectedttmostone facility and the goal
is to maximize the total benefit minus the cost for building facilities. In the corresponding
cooperative game we ask for a fair allocation of this amount to the customers, i.e., each
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coalition of customers wants to get at least as much as it could gain on its own. The results
in this paper can easily be carried forward to this setting.

2. Integer and linear programming formulations

In order to model the facility location problem we introduce two types of binary
variables: for each € F, the variabley; is 1 if facility i is opened, and 0 otherwise; for
eachi e F andj € N, the variablex;; is 1 if customerj is connected to facility, and O
otherwise. A minimum cost solution to the basic version of the facility location problem is
then given by the following integer linear program:

minimize Zfi)’i + Z CijXij

ieF ieF
JEN
subjectto ) "x;j=1 foralljeN, (2)
ieF
yi—x;; 20 forallieF, jeN, 3)

xij,yi €{0,1} forallie F, jeN.

Constraints (2) ensure that every customer is connected to exactly one facility. A customer
can only be connected to a facility that is open by constraints (3). For the capacitated
version of the problem we add the following capacity constraints:

k,-yi—Zx,-j>O foralli e F. 4)
JeN
If at least a fractiorny; of the customers connected to facilithave to belong to a subgroup
N’ C N, we add the quota constraints

(1—611')2)61';—%' Z xij >0 forallieF. (5)
JEN' JEN\N’

If the set of customers is partitioned into subs¥js p =1, ...,/, and a facility can only
serve customers in at most one subset, we add the incompatibility constraints

xij+xi <y forallieF, alljeN,, andallk e N;, p#q. (6)

Notice that constraints (4)—(6) do not introduce a coupling between different facilities but
can be expressed solely in terms of the variablesind y; for each fixed facility;. We
consider a more general class of constraints where, for each faciliyare given a family

of subsetsS € N of customers that can be connected to this facility. In this case we can
rewrite the integer program as: minimi2€; f;yi +_; ; cijxij subjecttoy_; x;; =1 for

all j e N and(y;,x;) € P; forall i € F. Here,x; := (xj1, ..., xin), With n := |[N|, and

P; C {0, 1}**1 is given by

Pi:={(0,...,0}U{(L xs): S < N feasible fori },

whereys € {0, 1} denotes the characteristic vector of the sul§set
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There are several possible ways of deriving a linear programming relaxation for this
problem. The most natural would be to try to replace each discretg; d&f its convex
hull conVP;). Notice that the value of the resulting linear program might not be equal
to OPT(N) since the intersection of the convex hulls with the hyperplanes (2) is not
necessarily the convex hull of the intersections. A slightly weaker relaxation would be
to replace eactP; by its conic hull conép;) = {erpi Axx: Ay = 0}. Given the special
form of P;, it is easy to see that co®,) = cong P;) N {(y, x): y < 1}. This leads to the
following relaxation (LP):

(LP) minimize " fiyi+ Y cijxij,
ieF ieF
JEN
subjectto ) "x;j=1 foralljeN, 7)
ieF
(yi,x;) econgP;) foralliekF.

We now turn to the cost allocation problem. For each coalifon N, let OPT(S)
denote the minimum cost of the facility location problem restricted to the set of
customerss. The maximum cost that can be allocated to the customers is then given by the
following linear program (CAP):

(CAP)  minimize v,
JEN
subjectto » v; <OPT(S) forall SCN. (8)
Jjes
It is an easy observation that the amowntthat is paid by customey in an optimal
cost allocation is always nonnegative (singe> 0 implies OPTS) < OPT(S U {j})).
Although there are exponentially many constraints and although it is in general NP-hard
to compute the right-hand side of this linear program, we show that in some cases it can

be solved in polynomial time. To obtain this result we develop the following connection to
the LP relaxation of the facility location problem introduced above.

Theorem 2.1. The cost allocation problenfCAP) is equivalent to the dual of the LP
relaxation(LP) of the facility location problem. In particulatheir values are equal and
the core is non-empty if and only if there is no integrality gap for the relaxgti&) of the
facility location problem.

Proof. We dualize constraints (7) and introduce a veotof corresponding dual variables
v; for all customers € N. This leads to the following program of the same value as (LP)
by strong duality; see, e.g., [29, Section I1.3.6]:

mvaxrglyn Zfi)’i + Z (cij —vj)xij + Z vj
icF icF JeN
JEN

subjectto (y;,x;) econgpP;) forallieF.
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For a fixed vectorv, the program is decomposed into the summo& |N| linear
minimization problems over pointed cones. Therefore, the inner minimization problem
is either unbounded or an optimum solution is giverxy=y; =0, foralli e F, j e N,

and has value:,. vj. Moreover, since cor{@;) is generated by the incidence vectors of
feasible assignments to facilitythe inner minimization problem is unbounded if and only

if there exists an € F and a corresponding feasible coalitiSrc N, i.e., (1, xs) € P;,

with

fi “FZ(C,']' - Uj) <0.

Jjes
Thus, we can rewrite the program as

minimize )" v;,

JEN
subjectto Y v; < fi+» ¢ foralli e FandS c N feasible 9)
Jjes Jjes

Since the right-hand side of constraints (8) is stronger than the right-hand side of (9), it
remains to show that (8) is implicitly contained in (9). Suppose that an optimal solution to
the subproblem induced k§yis given by

OPT(S) = Z(f +> c,~,~>,
ieF’ JESi
where F/ C F and theS;, i € F’, form a partition ofS. Now observe that (8) can be
obtained by simply aggregating constraints (9) averF’ for § = S;. This completes the
proof. O

Let us turn to describing cog;) for a few special cases. For the unconstrained facility
location problem, the conic hull of the s, is given by conéP;) = {(y;, x;): 0 < x;; < i
for all j € N}; this yields the following classical LP relaxation which has been introduced
by Balinski [4]:

minimize Zﬁyi + Z CijXij,

ieF ieF
JEN
subjectto ) "x;j=1 foralljeN, (10)
ieF

ng,-jgy,- forallie F, jeN.

Notice that there exists an optimal solution to this LP relaxation witd 1 foralli € F. In

this case, having replace®] by cone P;) rather than con\’;) does not matter. This is no
longer true if we turn to the capacitated version of the facility location problem including
constraints (4); in this case we get

congp;) = {(y,',x,'.)i Zx,'.,' < k;y; and 0< Xij < Yi forall j e N}
J
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such that we only have to add the constraints (4) to the above LP relaxation.

Consider an example with two facilities of capacity 1 and fixed cost 0 and two customers
that are located at the first facility; they can be connected to this facility for free while the
connection to the second facility costs 1. In an optimal solution one of the customers has to
be connected to the second facility which causes cost 1; however, an optimal LP solution
has value 0 since it can open the first facility wjth= 2 and connect both customers to this
facility. If we add the constraint; < 1 to the LP relaxation, its optimum value increases
to 1.

In fact, in this example, none of the customers is willing to pay anything for the service
since he can argue that he could connect to the first facility for free. Therefore, the cost
allocation problem is equivalent to the dual of the weak LP relaxation but not to the dual of
the stronger relaxation including constraipis< 1 for all i € F, which would have been
obtained if we had relaxed; to conu P;). This answers an open question discussed by
Chardaire [8].

If, instead of capacity constraints, we have that each facility must serve the same number
of customers fromv; and fromN2, then we simply have that

condp;) = {(y,',x,')I Z Xij = Z Xij and 0< Xij < Vi forall j N}
JjEN1 JEN>2
If we have incompatibility constraints;; 4+ x;x < y; for certain pairs(j,k) € E; as
in (6), we need to include all inequalities that describe (the conic version of) the stable
set polytope for the graptw, E;). For the specific form (6), the corresponding graph is
a completd-partite graph, and therefore the clique constraints

Zx,-j(,,) <y forall (j(1),j(2),...,j()) € Ny x N2 x --- x N
p
are sufficient since the graph is perfect; see [20].
However, if we consider quota constraints (5) or we combine simultaneously say capac-
ity constraints (4) and incompatibility constraints (6), then additional more complicated
inequalities are needed to describe the conic hull.

3. Polynomial-time solvability of the cost allocation problem

As a result of Theorem 2.1, the cost allocation problem (CAP) can be solved in
polynomial time by linear programming if we know a compact (i.e., with a polynomial
number of linear inequalities) representation of the cones generated #B/'shén this
case, an element of the core can simply be obtained by solving (LP) and extracting the
dual variables on the constraints (7).

Even if we do not know or there does not exist a compact (possibly extended)
representation of each cone, we can still solve the cost allocation problem in polynomial
time provided we can optimize in polynomial time over each discret@sefhis can be
done by using the ellipsoid method and exploiting the equivalence between optimization
and separation, see [20]. Since we have a polynomial bound on the size of the inequalities
needed to describe (CAP), the equivalence is betwg#reng (or exact) optimization and
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separation. The separation problem associated to (CAP) is given a wetdodecide
whether there exists a sétc N such that) ;s v; > OPT(S), and if so to find one such

set. By the same reasoning as in the proof of Theorem 2.1, this is equivalent to deciding
whether there existise F and a feasible for i such that

fi +Z(C,'j — Uj) < 0.
jes
And this can be decided by optimizing over.

Similarly, if we have a polynomial approximation scheme for #hé& then we can
derive a polynomial approximation scheme for (CAP). This is, for example, useful when
the customers have different demands, gayfor customerj, and we have a capacity
constraint on each facility

Zdjxij < kiyi.
J

4. On the existence of core elements

In the literature, positive and negative results on the existence of elements in the core
have been shown for several important classes of instances. In view of the result in
Theorem 2.1, we provide a novel variant rafhdomized roundingn order to give new
and simple proofs for the existence of integral solutions for the LP relaxation of facility
location problems in certain cases. Randomized rounding is a well-known technique in
combinatorial optimization for turning a fractional solution into an integer solution making
use of the structural information contained in the fractional solution; we refer the reader to
[27] for further information.

For the unconstrained facility location problem, we take an optimum solgtioy) to
the LP relaxation discussed in Section 2 and try to round it randomly to a feasible integral
solution by interpreting the fractional valugg andy; as probabilities. A similar technique
was used by Chudak [9] to compute near-optimal solutions for metric instances. However,
while Chudak opened facilities randomly with probabilitiesut established connections
by a different routine, the main problem for our approach is to make sure that a variable
x;j is only rounded to 1 if facilityi is open, i.e., if the variablg; is also rounded to 1. This
condition forces a coupling of the random decisions which makes it necessary to introduce
a subtle correlation between the different random variables.

We first ‘color’ all facilitiesi € F by subsetd; of the interval[0, 1) such that the
measure|/;| of I; is equal toy;. Later, we will draw a random variable uniformly
distributed from[0, 1) and open all facilities with « € I;; in fact, the probability for
opening facilityi is then equal to;. In order to determine the connections of customers
J to facilities i, we construct subsets; of [0, 1) such that|/;;| = x;; and establish a
connection from customey to facility i if « € I;;. To make sure that each customer is
connected to exactly one facility, the subséts i € F, should form a partition of the
interval[0, 1); notice thatd ;. |1;;| = > ;. xij = 1 by constraints (10). Moreover, since
a customer should only be connected to an open facility, we reduieI; forall i € F,

JEN.
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Lemma 4.1. Given an optimum solutiotx, y) to the LP relaxation of the unconstrained
facility location problemif we can find subsetg and 7;; of [0, 1) with the following
properties

() || =yi, [ lij| =x;j,foralli e F, j € N;
(i) Uier Lij =1[0,1),forall j e N,andl;; N Iy; =0, foralli #i' € F, j € N,
(iiiy 1; C I, forallie F, jeN;

then there exists an integral optimal solution to the LP relaxation.

Proof. We randomly construct an integral soluti¢h, y). Choose a random variabte
uniformly distributed from[0, 1); open all facilitiesi with « € I; (i.e., sety; = 1) and
establish all connectiong with « € I;; (i.e., setx;; = 1). By the properties of the sels
andl;;, this gives a feasible integral solution of expected value

E[Z fii+ Yy Cij)ziji| =Y fivi+ Y cijxij=OPTip.
iel iel ieF ieF
JEN JjeN
This expected value is a convex combination of the values of all integral solutions
corresponding to possible choiceswofn particular, there exists an integral solution whose
value is upper bounded by the optimum LP values

4.1. Facility location on a line with unimodal connection costs

We apply this proof technique to unconstrained facility location problems where all
facilities can be ordered in such a way that, for any custojnéine connection costs;
are unimodal as a function @f This means that there exists an ordering.1, m of the
facilities and for any custome, there exists a facility(j) such thatk;; is nonincreasing
for i <i(j) and nondecreasing far> i(j). This is, for example, the case when all
facilities are located on a line in the plane or a higher-dimensional Euclidean space and
the connection cost between custonjemd facilityi is a nondecreasing function of their
Euclidean distance (see Fig. 2). As an illustration, this situation occurs when we have a
(straight) railway line and the problem is to decide where to build railway stations so as to
provide an optimal service to the inhabitants of the region around the railway line.

Fig. 2. The unimodal case with facilities on a line; the rectangles represent facilities while the circles correspond
to customers.



M.X. Goemans, M. Skutella / Journal of Algorithms 50 (2004) 194-214 205

Theorem 4.2 [22,37]. There is no integrality gap for the unconstrained facility location
problem with unimodal connection cosits particular, the core is non-empty in this case.

Proof. In the following we assume without loss of generality that the optimal LP solution
(x,y) fulfills y; <1, foralli € F, and has the following property:

If facility i lies between facility (j) and facility;” and is distinct from’ (i.e.,
i(j)<i<i'ori’<i<i(j)) andx;; >0, theny;; = y;.

Otherwise one can modify the solution accordingly by increasip@nd simultaneously
decreasing;; without an increase in cost sineg < ¢;/;. In particular, this implies that
xi(j)j =i forall j e N. '

Letag:=0 andag; ;=) ;_;1 y, fori =1,...,m, and assign the s€} := ([aj—1,a;)
mod 1) C [0, 1) to facility i. Notice that by constructiofy;| = y;. We also assign to each
pair formed by a facility and a customej a subset of measung;:

I la; — xij,a;) mod 1 ifi <i(j),
Yo laica, ai—a 4 xi) mod 1 ifi > ().

Notice thatI,-(j)j = lai(jy-1. ai(jy) = Li(j) since Xi(j)j = Yi(j)- The fact thatx;; < y;
implies thatl;; € I;. Moreover, by our assumption on the LP solution y), the sub-
setsl;;, i € F, form a partition of the intervel0, 1) for each fixed customey. Therefore,
the setd; andJ;; fulfill the conditions of Lemma 4.1 and the result followsa

Notice that in the unimodal case the cost functions for the connections along the line
are not necessarily symmetric arourig). An important application with non-symmetric
connection costs is the lot sizing problem.

The line represents a time axis and facilities and customers correspond to discrete points
in time when a product can be produced and has to be delivered, respectively. In particular,
if we do not allow backlogging, a customer can only be served by a facility ‘in the past,
i.e., on its left-hand side on the line. In this case, Theorem 4.2 was proved by Krarup and
Bilde [24].

The result in Theorem 4.2 cannot be generalized to the capacitated version of the
problem. This follows from the example discussed in Section 2 that can obviously be
realized on a line and where the customers are not willing to pay anything although the
cost of an optimum solution is positive.

In the case where the facilities are located on a line and each facility must serve the
same number of customers fra¥i and fromN3, the core can also be empty. Consider the
example given in Fig. 3 where the same numbers of women and men have to be served by
each facility. The fixed cost for opening a facility is 1. The cost for connecting a customer
to a facility is equal to the corresponding distance (humber of edges on the shortest path)
in the graph given by the dotted edges. In an optimal solution, all facilities are opened
resulting in total cost 9. However, in the LP relaxation we can open the facility in the
middle with fraction 2 and also connect the neighboring customers with fractjt) 1
the optimal LP value is therefore only AZ. It also follows from this example that in the
more general case of quota constraints (5) the core can be empty.
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Fig. 3. An instance of the facility location problem on a line where each facility has to serve the same number of
women and men; the core is empty.

Fig. 4. An instance of the facility location problem on a cycle with empty core.

4.2. Facility location on a cycle

Another possible direction for generalizing the result in Theorem 4.2 is to switch to
more complicated topologies than the line. However, it has been observed by Tamir [36,
Example 1] (see also [23, Example 6.3]) that already instances defined on a cycle with
unimodal connection costs can have an empty core; we say that the connection costs on a
cycle are unimodal if, for each customgropening the cycle at a facilitywith maximum
¢;j yields an unimodal cost function on the resulting line. In the example given in Fig. 4
the fixed cost for opening each facility is 2 and the connection cost between a customer
and a facility is equal to their distance in the cyclic graph. An optimal solution opens two
facilities and has total cost 7. However, the optimum solution to the LP relaxation opens
each facility with fraction 12 and has value 6. Notice that the sum of this is equal to
3/2 and thus not integral in this case.

Theorem 4.3. If there exists an optimum solution to the LP relaxation With, . y; € Z,
then there is no integrality gap for the unconstrained facility location problem with
unimodal connection costs on a cygdie particular, the core is non-empty in this case.

Proof. The proof is a straightforward generalization of the proof of Theorem 4.2. We
assume that the facilities, 1., m are ordered clockwise along the cycle and define the
setsl; exactly as in the proof of Theorem 4.2. Notice thgt= )", vi = (ap modJ in

this case. In order to assign subsets to the conneatjdos a fixed customey, we ‘open’

the cycle at a facility with maximury;; yielding a line and construct the sdig again as

in the proof of Theorem 4.2 (using the same assumption on the optimum LP solution). The
resulting setd; andr;; fulfill the conditions of Lemma 4.1 and the result follows
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The rounding technigue in the proof of Theorem 4.3 has been applied before by
Bertsimas, Teo, and Vohra [7] to prove the integrality of an LP relaxation of-tmedian
problem on cycles. The insight from Theorem 4.3 can be used to prove the following result.

Corollary 4.4. The unconstrained facility location problem with unimodal connection costs
on a cycle can be solved in polynomial time.

Proof. We add the constraint’; y; € Z to the LP relaxation. It follows from the proof

of Theorem 4.3 that an optimal solution to this stronger relaxation can be turned into an
integral optimal solution in polynomial time. Moreover, the stronger relaxation can be
solved in the following way: ley := )", y* for an optimum solution of the original (LP).
Then there exists an optimal solution to the stronger relaxation Withy; € {[y1, v ]};

this follows from the fact that the optimal value of the parametric linear program which
we get by adding the constraiht; y; = u to (LP) is a convex function at, see, e.g., [32,
Section 6.5]. Therefore, we only need to solve this relaxation for the two value$y
and|y | take the better of the two solutionst

An alternative proof of Corollary 4.4 is based on the following observation. As we
already mentioned in the introduction, the unconstrained facility location problem can be
formulated as a covering problem (see [23]). Since the connection costs are unimodal, the
rows in the linear programming formulation of this covering problem fulfill the circular
1's property (for definition, see [3, Chapter 9, Exercise 9.9]). If we add the constraint
> ;i vi = p for somep € N (p can, for example, be determined by binary search), it is an
easy exercise to show that an integral optimal solution exists since the matrix of the linear
program is totally unimodular, see [3, Chapter 9, Exercise 9.9].

The above discussion has also implications for ghenedian problem, where the
number of facilities to open is a given integral numpeihe proof of Theorem 4.2 shows
that the corresponding LP relaxation (with the inequality_. y; = p) has an integral
optimum solution for instances defined on a cycle with unimodal costs; a generalization of
a result first derived by Oudjit [30] (for linear costs).

4.3. Facility location on a tree

In the following we consider unconstrained facility location problems on trees where
all customers and facilities are located on the vertices of an acyclic connected graph.
As for the case of a line, we assume that the connection cgstsf each customey
are monotone such that; < c;/; if facility i lies on the unique path betwegnand
facility i’. Unfortunately, this condition is not sufficient to guarantee a non-empty core.
The counterexample in Fig. 5 consists of three customers and three facilities. The fixed
cost of each facility is 1 and each customer can be connected to the facility at the same
vertex of the tree or to its anti-clockwise neighbor for free; a connection to its clockwise
neighbor, however, costs a large amotht An optimum solution opens two of the three
facilities and has value 2. In an optimum LP solution, however, each facility is opened with
fraction 1/2 resulting in total cost 2. Thus, only a fraction of 3! of the total cost can be
recovered.
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Fig. 5. An instance of the unconstrained facility location problem on a tree with monotone connection costs but
empty core.

In the following we restrict to a special class of monotone connection costs on a tree:
letd: E +— Rar be a distance function on the edges of the tree. We denote the length of the
unique path between two verticeand j of the tree byd;;.

Theorem 4.5 [22,37].1f for each customey the costs;; for connecting; to facilities

i € F is an arbitrary nondecreasing functigipossibly dependent of) of the distances
d;; in an underlying tree metricthen there is no integrality gap for the unconstrained
facility location problem and the core is non-empty.

Using the same technique as in the proofs of Theorem 4.2 and Lemma 4.1, one can
show that, for the class of instances under consideration, any feasible solution to the LP
relaxation can be written as a convex combination of integral solutions. In particular, all
vertices of the underlying polyhedron are integral. This result also follows from the work of
Trubin [37] (see also [19]), Kolen [22] (see also [23]), or Barany, Edmonds, and Wolsey [6]
(see also [10]). They use a simple reduction of the unconstrained facility location problem
to the set cover problem. For the class of instances considered in Theorem 4.5, the
constraint matrix of the resulting set cover problem is totally balanced which yields the
integrality result. Moreover, Trubin and also Kolen give @ri(|N| + |F|)®) algorithm
for solving such instances. This result has been improved by Gimadi [16] to running
time O((|N| + | F|)?). Furthermore, Ageev [2] and Granot and Skorin-Karpov [18] gave
a polynomial-time algorithm for solving the unconstrained facility location problem on
partialk-trees for fixedk.

Tamir [36] considers a variant of the facility location problem on a tree where each
customer;j has to be connected to a facility within a given distanceTlhis constraint can
be modeled by letting;; = 0 if the distance between custompeand facility i is at most
r; andc;; = oo, otherwise; thus, it is a special case of the problem discussed above. Tamir
proves the result given in Theorem 4.5 for this special case.

Proof of Theorem 4.5. We construct setd; and I; that fulfill the conditions in
Lemma 4.1. To simplify the presentation of the construction, we assume that there is at
least one customer at each node of the tree; otherwise we can, without loss of generality,
add dummy customerswith ¢;; =0 for alli € F. For each customegrwe order the set of
facilities F by nondecreasing distancég and break ties according to increasing indices
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i =1,...,m.Using the same arguments given in the proof of Theorem 4.2, we can restrict
to LP solutions with the following property:

If facility i is closer to customeji than facility:” (with respect to the above
ordering) and;s; > 0, thenx;; = y;.

As an immediate consequence of this we get the following property:

If customerk lies on the unique path from customgtto facility i, then
Xii < xir. (%)
j XAl

In particular, if two customerg and j' are located at the same node of the tree, we
getx;; = x;; for all i € F. Therefore, all customerg located at the same node will
get the same set§; and we will only consider one customer per node in the following
construction.

To assign subsets and;; to the facilities and connections, respectively, we traverse
the nodes of the tree in such a way that the firstsited nodes form a subtree for aky
This can, e.g., be done by rooting the tree at some node and traversing the nodes of the tree
by depth- or breadth-first search or in any order such that the predecessor of any node is
visited before the node itself. During the algorithm we preserve the following invariant:

For all customerg at visited nodes of the tree, the subsgtsi € F, form
a partition of the intervall0, 1) such that/;;| = x;; andl;; € I;. Moreover,  (xx)
forall i € F, there exists a visited nodesuch thatl;; = I; forall i € F.

In particular, this implies thatl;| < y;. ' .

For the customey at the root of the tree, we sét:= J;; := [Zj;llxik, Y k1 Xik) S
[0,1) fori =1,...,m. Notice that the invariant«) is fulfilled after this step. When we
arrive at a node with a customgr we denote the customer located at the predecessor of
the current node in the tree liy The following observation is crucial for the assignment
of the subsetg; andJ;;.

Claim 1. Forall i € F, eitherx;; < x;x or xjx = |I;].

We postpone the proof of this claim after the complete description of the assignment
procedure.

We first consider all facilities € F with x;; < x;x and choose an arbitrary subset
I;j € Iix of measurex;;. For all the other facilities € F, namely those for which
xij > xix = |I;] by Claim 1, choose arbitrary selg D I;; of measurer;; such that the
sets/;;, i € F, form a partition of{0, 1) (this is possible since the selg, i € F, form
a partition) and redefing := I;;. Notice that the invariant4x) is still fulfilled after this
step.

Thus, the final setg and7;; fulfill the conditions of Lemma 4.1 and the result follows.

Proof of Claim 1. Assume thak;; < x;; andx;x < |I;| (sincek has been visited). By the
invariant ), there exists a customers k with I;;, = I;, implying thatx;; < x;;. By
property ), k can neither lie on the path frognto i nor on the path fromh to i. However,
sincek is the predecessor gfin the tree and: was visited k lies on the path betweeh
andh—a contradiction. O
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5. On the complexity of core computations

In this section we prove the following theorem which confirms a conjecture by
Chardaire [8].

Theorem 5.1. For general instances of the unconstrained facility location problem it is
NP-complete to decide whether the core is non-empty.

Proof. By Theorem 2.1 it suffices to show that it is NP-complete to decide whether or
not the LP relaxation given in Section 2 has an integral optimal solution. The problem is
obviously in NP. To prove that it is NP-hard, we use a reduction fromr3®/e restrict to
instances where each clause contains exactly three (not necessarily different) literals.
Given an instance of 38 we construct the following facility location problem. For
each variableX we introduce one customgg and two facilitiesix andiy corresponding
to the two literalsX and its negatiorX . The cost for connecting customgy to these two
facilities is 0, the cost for opening one of the facilities is equal to 1 plus the number of
occurrences of the corresponding literal in the instance.
For each claus€ we introduce one customgg and for each of its three literals
a facility ic;, and a customejcr. Customerjc can be connected to the three facilities at
cost 0, the cost for opening each facility is 1; each custofagrcan be connected either
toicr ortoiz atcost 0. Finally, we introduce one additional dummy facilityvith fixed
cost 0. The customerg;, of all clauses can connect at cost 1 to this facility. An illustrating
example of this construction is given in Fig. 6. All connections that are not depicted in the
figure have infinite cost.

Fig. 6. A facility location instance corresponding to an instance afr3&ntaining variablesy, ¥, andZ and
aclauseC =(XVvYVZ).
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We claim that the LP relaxation of this facility location instance has an integral optimal
solution if and only if the underlying 3& instance can be satisfied. We first show that the
optimal LP value is: + 3m wheren denotes the number of variables andhe number of
clauses of the 3& instance. A feasible solution of valuet 3m is given by

yip =1/2 for each literalL,
Xixjx = Xigjx =1/2 for each variable,
Yicr = Xicpje = Xicpjer =1/3
Xigjer =1/2 for each claus€ and each of its literal&.
Yip = Xigjc, = 1/6
In order to show that this solution is optimal, we construct a dual solution of wialu@m .
The dual of the LP relaxation is given by

maximize ) v;,
JjeN

subjectto Y w;;=fi forallieF,
JEN
Vi — wij < Cjj forallie F, jeN,
w;; >0 forallieF, jeN.

A feasible dual solution of value + 3m is given by
Vjx = Wiy jy = Wigjxy =1  foreach variablé,

Vip = Wjp, jo = Wigie,; =0 o
Jc feLjc ojcL } for each claus€ and each of its literalg .

Vjcr = Wicy jer, = Wigjer =
Since the given dual solution is optimal, every primal optimal solution has to fulfill the
following complementary slackness conditions:

Xixjx = Yix> Xigjx = Yig for each variablex, (11)
Xicpjer =Yiers  Xipjer =i, foreach claus€ and each of its literalg. (12)

Using these conditions we can show that any primal integral optimal sol@tion)
corresponds to a satisfying truth-assignment of the underlyimg 3&tance. Condition
(11) and constraint (10) yield that for each varialflexactly one of the facilitiesxy and
ix has to be open. We set the variallldo the value true ify;, = 0 and to the value false
if y;, = 0. For an arbitrary clausg, at least one of the three facilitiés,, corresponding
to the three literals of C must be open to serve custoime€ondition (12) yields that the
customerjcy, is connected to this facility. It follows again from (12) that the facilityis
closed and the literdl is thus set to the value true such that the clatise fulfilled.

Using the same interpretation one can easily show that any satisfying truth-assignment
yields an integral optimal solution of the LP relaxation. This completes the praof.

We can state the following interesting corollary of the result in Theorem 5.1.
Corollary 5.2. Given an instance of the unconstrained facility location problem and a cost

allocation vectow € R", it is NP-complete to decide whether or nois in the core of the
corresponding game.
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Proof. The problem is in NP since a positive answer to the question can be proven in the
following way: give an integral optimal solution to the LP relaxation and a completion
of the given vectop to an optimal dual solutiotw, w). O

Quite interestingly, given the information that the core is non-empty, it is easy to
compute an element of the core and to decide whether a given cost allocéigbongs to
the core. Both problems reduce to solving the dual of the LP relaxation of the problem.

Corollary 5.3. If the core of an unconstrained facility location game is non-empty
an element of the core can be computed in polynomial time and it can be checked in
polynomial time whether a given cost allocatioe R" belongs to the core.

It follows from the considerations in Section 3 that the result in Corollary 5.3 can
be generalized to constrained variants of the facility location problem for which we can
optimize over the discrete seBs in polynomial time.
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