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Abstract

Earliest arrival flows model a central aspect of evacuation planning: In a dangerous
situation, as many individuals as possible should be rescued at any point in time.
Unfortunately, given a network with multiple sinks, flows over time satisfying this
condition do not always exist. We analyze the special case of flows over time with
zero transit times and characterize which networks always allow for earliest arrival
flows.
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1 Introduction

Flows over time provide a valuable tool to model evacuation situations. While
quickest flows over time capture the idea that all individuals shall leave a
dangerous area as quickly as possible, earliest arrival flows additionally require
that the number of individuals already saved shall be maximal at every point
in time. This ensures that an earliest arrival flow is optimal regardless of the
time actually available for the evacuation. However, the goal to compute a
flow satisfying the earliest arrival property is somewhat ambitious, and indeed
not even the existence of such flows is assured in general. It turns out that the
number of sinks (modelling exits/escapes) is crucial in this context: Minieka [6]
shows that earliest arrival flows do always exist if there is only one sink. On the
other hand, very simple examples of networks are known that do not allow for
an earliest arrival flow [1,2]. Consequentially, a lot of research has been devoted
to single-sink networks and algorithms to compute earliest arrival flows in
this special situation, both for single-source-single-sink networks [5,6,9] and
for multiple-sources-single-sink networks [1,2,3].

But how do we proceed if we encounter a situation where multiple sinks
are inevitable (e. g., a ship with several life-boats or widespread pick-up bus
stations in an urban evacuation)? Although in this setting earliest arrival
flows may not exist in general, it might very well be the case that they do
exist in the special case at hand. The question which networks with multiple
sinks still allow for earliest arrival flows was stated as an open problem in [1]
and has, to our knowledge, not been studied before. In this paper, we analyze
flows over time in networks where all edge transit times are zero. Surprisingly,
even in this reduced scenario, earliest arrival flows do not necessarily exists.
However, we give a classification of the class of all networks that always allow
for earliest arrival flows, regardless of the number of individuals, the capacity
of passages and the capacity of the sinks.

Due to space restrictions, many details are omitted in this extended ab-
stract. A complete description of all results and proofs can be found in [7]
and will appear in the full version of the paper.

2 Preliminaries

We consider directed networks N consisting of a directed graph G = (V, E),
capacities u : E → Z≥0 and balances ν : V → Z. The capacity of an edge
restricts the amount of flow that can travel through the edge in one time step.
We use the balance function ν to denote how much flow a node wants to send
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into the network. Nodes s ∈ V with positive value ν(s) > 0 are called sources.
A node t ∈ V with negative balance ν(t) < 0 wishes to receive −ν(s) units of
flow and is called sink, and by S+ and S− we denote the set of all sources and
sinks, respectively. We demand that

∑
v∈V ν(v) = 0.

A flow over time 4 with zero transit times f : E ×Z≥0 → R≥0 is a function
that assigns a flow value to each edge at each point in time. As we have no
transit times, flow sent into an edge will arrive at the end of the edge in the
same time step. We demand that a flow f respects the capacity constraint
f (e, t) ≤ u(e) on each edge e ∈ E at any point in time t ∈ Z≥0. Additionally,
f has to satisfy flow conservation at all nodes except the sources and sinks:
At any point in time, the amount of flow entering the node has to be equal to
the amount of flow leaving the node, i. e., for all t in Z≥0 and for all nodes v
in V \(S+ ∪ S−) it holds value(v, t) = 0, where

value(v, t) =
∑

e=(v,u)∈E

f(e, t) −
∑

e=(u,v)∈E

f (e, t)

is the amount of flow sent out of v at time t. A maximum flow over time
with zero transit times with time horizon T has the additional property that∑T

t=1

∑
s∈S+ value(s, t) is maximal. In the following, we will omit the term

‘with zero transit times’, since all variants of flows over time discussed here
are flows with zero transit times.

A transshipment over time is a flow over time that sends exactly ν(v) units
of flow out of node v for all nodes v ∈ V . For sinks, this implies that flow is
actually sent into the sink, for intermediate nodes v /∈ (S+ ∪ S−) this only re-
formulates the flow conservation. We are interested in special transshipments:
A quickest transshipment over time is a transshipment over time where all
balances are cancelled out as quickly as possible, i. e. the first point in time
t∗ where

∑t=t∗

t=1 value(v, t) = ν(v) holds for all nodes v ∈ V , is minimized.
Earliest arrival transshipments over time are special quickest transshipments
over time that simultaneously maximize the flow already sent for all points
in time, i. e.,

∑t′

t=1

∑
s∈S+ value(s, t) equals the value of a maximum flow over

time with time horizon t′ for all t′ ∈ N≥0.
Why are several sinks so problematic for the existence of earliest arrival

flows? Fleischer [2] states the main difficulty as follows: ‘The problem with
multiple sinks is that, in the rush to send flow, some source may send flow

into the wrong sink. This is not a problem when there is only one sink.’
Surprisingly, this can already be seen in very small examples.

4 For a detailed introduction to flows over time we refer to [8].
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(a) Graph G1.

c1 c2 c3 c4

(b) Graph G2.

Figure 1. Two graphs that do not always allow for earliest arrival transshipments.

Example 2.1 We define two graphs (see Figure 1) where the existence of
earliest arrival transshipments is not guaranteed:

G1 = (V1, E1) with V1 = {a1, a2 , b1, b2}, E1 = {(a1 , b1), (a1, b2), (a2, b2)} and

G2 = (V2, E2) with V2 = {c1 , c2 , c3 , c4}, E2 = {(c1 , c2), (c2 , c3), (c3, c4)}.

By assigning capacities u1 ≡ 1 and balances ν(a1) = ν(a2) = 2, ν(b1) =
ν(b2) = −2, we get a network N1 where no earliest arrival transshipment
exists: In the first time step, the best we can do is to send one unit of flow on
each edge, achieving a flow value of three. By this, the supply of a1 and the
demand of b2 are reduced to zero. This implies that no more flow can be sent,
i. e., the amount of flow in time step two is also three. On the other hand,
leaving the edge (a1, b2) empty in the first step allows us to send two units of
flow again in the second step, so that we can send all flow in two steps. Thus
we can either send three units in the first time step or four units in the first
and second time step, but not both, in other words there is no earliest arrival
transshipment.

Likewise, assigning u2(c1, c2) = u2(c3, c4) = 2, u2(c2, c3) = 1 and ν2(c1) =
4, ν2(c2) = −2, ν2(c3) = 2 and ν2(c4) = −4 leads to a network N2 without an
earliest arrival transshipment: The flow in the first time step is maximized by
sending two units of flow from c1 to c2 and, in parallel, sending two units of
flow from c3 to c4, but this will completely balance c2 and c3, such that the
remaining two units can only be send in different time steps, leading to a total
of three time steps. Then again, sending only three units of flow in the first
time step helps: By sending one unit from c1 to c2, one from c1 to c4 and one
from c3 to c4 we achieve less in the first step, but can balance all nodes in the
second one by repeating the same flow.

As we will see later on, these two examples are crucial for deciding whether
earliest arrival transshipments exist.
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3 Networks allowing for earliest arrival flows

As we already mentioned, earliest arrival flows do always exist in networks
where |S−| = 1, even in the much more general setting with arbitrary transit
times [1,4,6]. In the special case of zero transit times, the following lemma
implies that they also exist if |S+| = 1.

Lemma 3.1 Let N be a directed network on a directed graph G = (V, E) with
capacities u and balances ν. Define Gr = (V, Er) by Er = {(w, v) | (v, w) ∈
E}. The directed network Nr is the network consisting of Gr, capacities ur :=
u and balances νr : V → Z with νr(v) = −ν(v) for all v ∈ V .

N allows for an earliest arrival transshipment iff Nr allows for an earliest

arrival transshipment.

We note that this implies that a network without an earliest arrival trans-
shipment has to have at least two sources and two sinks, and thus the examples
given above are in this sense minimal. Additionally, the second example shows
that the class of trees is not a valid candidate as a graph class always allowing
for earliest arrival transshipments. The graph G2 is even an in-tree as well as
an out-tree of depth three. An in-tree with root r is a directed graph satisfying
that there is exactly one directed path from v to r for every node v. Similar,
an out-tree with root r satisfies that there is exactly one directed path from r
to every v for every node v. The depth of an in- or out-tree is the number of
edges on the longest path contained in it. To ensure the existence of earliest
arrival flows, we have to restrict the graph class even more.

Lemma 3.2 Let B be an in- or out-tree with depth d ≤ 2. Then B allows for

an earliest arrival transshipment for all choices of capacities and balances.

We have a closer look on another class of graphs allowing for earliest arrival
transshipments. By Gu we denote the undirected graph induced by a directed
graph G, and G−{v} is the graph that results from deleting v and all adjacent
edges from G.

Lemma 3.3 Let Nv be a network on a graph G = (V, E) that satisfies the

following property: There exists a node v ∈ V such that Gu − {v} consists of
two connected components GL

u = (V L
u , EL

u ) and GR
u = (V R

u , ER
u ) with S+ ⊆ V L

u

and S− ⊆ V R
u . Then Nv allows for an earliest arrival transshipment for all

choices of capacities and balances that respect S+ and S−.

Proof (idea). The definition of Nv already suggests how to proceed: We take
advantage of the fact that v ’looks like’ a sink to one part of Nv and like a
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source to the other part. Each of the smaller networks allows for an earliest
arrival transshipment, and combining the two flows in a clever way leads to
an earliest arrival transshipment in the entire network. !

With the above in mind, we can now proceed to characterize the class
of graphs that always allow for earliest arrival transshipments, i. e. such a
transshipment exists regardless of the capacities and balances we choose.

Theorem 3.4 Let N be a directed network on graph G. Network N allows
for an earliest arrival transshipment for all choices of capacities and balances

iff G contains no subdivision of the graphs G1 and G2.

Proof (sketch) It is easy to see that subdivisions G1 and G2 may not be
included in G if earliest arrival transshipments are supposed to exist regard-
less of capacities and balances: By setting the capacity of all edges outside
the subdivision to zero and then adjusting the remaining capacities and the
balances according to Example 2.1, we can create a network where no earliest
arrival transshipment exists.

We show that graphs not containing these subdivisions are either very
small or have a nice structure that supports earliest arrival transshipments.
We consider connected graphs, otherwise the connected components can be
checked independently. Let G = (V, E) be a connected graph that does not
contain any subdivision of G1 and G2. In particular, G cannot contain any
path of length three or more (by the length we denote the number of edges).

Case 1: The first case that we investigate is that G does not even contain
a path of length two. Let v ∈ V be a node with at least two outgoing edges.
We notice that v cannot have any incoming edge (because that would create
a path of length two), and the endpoints of outgoing edges of v cannot have
any outgoing edges (by the same argument). Additionally, these endpoints
cannot have incoming edges because that would complete a G1 subgraph. We
see that v is the only node in G that has outgoing edges, therefore G allows
for an earliest arrival transshipment because there is only one possible source.
Analogously the existence of a node with two incoming edges leads to the
conclusion that G has only one possible sink. The only remaining possibility
is that G is a single edge.

Case 2: In this case we assume that G contains a path of length two that
is either parallel to another path of length two or to one of length one (i. e.,
an edge). A case distinction shows that this implies that G cannot contain
additional nodes. What remains to show is in a thus restricted graph, earliest
arrival transshipments always exist. This can be done by constructing the
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s
u v

(a) If v /∈ VB, adding v to B does not
interfere with the out-tree property,
and the depth is still bounded by two.

s = v

u

a b

(b) If w = v, then (u, s), (s,a) and (a, b) or
(u, w), (w, x) and (x, y) form a G2.

s = v

u

n = v

(c) If v = n for n ∈ VB, but v )= s, we get case 1.
Nodes s and n are either connected directly . . .

s = v

u

n = v

(d) . . . or indirectly.

Figure 2. An illustration of the first subcase of case three (proof of Theorem 3.4).

transshipment explicitly.
Case 3: Now we cover the situation that G contains two paths starting in

the same node s, but continuing disjointly. Let (s, a) and (a, b) be the edges
of the first path and (s, x), (x, y) be the edges of the second path. We will
see that G is an out-tree whose depth is bounded by two. The root of the
out-tree is node s, as we can already guess by observing that s cannot have
any incoming edges. We consider the subgraph B = (VB , EB) of G that is
defined in the following way: B is an out-tree with root s, and adding any
edge e = (u, v) ∈ E\EB with u ∈ VB or v ∈ VB to B destroys this property.
We show that there can be no edge in E\EB and thus B equals G.

Assume e = (u, v) ∈ E\EB and u ∈ VB . Because B is an out-tree with root
s, B contains a path from s to u. Assume this path only consists of the edge
(s, u). We observe that there is no place where u could be in G that would
not violate an assumption by systematically iterating through all possibilities
as shown in Figure 2. Alternatively, the path from s to u could contain an
intermediate node. This can be disproved in the same way. Combined, we
gathered that u ∈ VB is not possible. To see that v ∈ VB (and u /∈ VB) is
not possible either, we observe the following: As B is an out-tree with root s,
there is a path p from s to v. Additionally, there has to be at least one other
outgoing edge e from s that has an endpoint not contained in p. But as p, e
and (u, v) form the graph G1 , this is not possible.

As an out-tree of depth at least two, G allows for earliest arrival transship-
ments because of Lemma 3.2.
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Case 4: If G contains two paths of length two that start in different nodes,
but end in the same node, we can use Lemma 3.1 and case 3 to see that G
always contains an earliest arrival transshipment.

Case 5: It remains to see how G can look like if neither of the first four
cases occurs. In particular this means that G contains at least one path of
length two. Starting with this path, we investigate which additional nodes and
edges can be part of G. A case distinction shows that G is either a star-shaped
graph with one central node that allows for earliest arrival transshipments due
to Lemma 3.3 or it has a structure very similiar to ordered trees such that the
existence of earliest arrival transshipments can be shown in an analogous way
as Lemma 3.2. !
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