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Abstract. We consider scheduling on an unreliable machine that may experi-
ence unexpected changes in processing speed or even full breakdowns. We aim
for a universal solution that performs well without adaptation for any possible
machine behavior. For the objective of minimizing the total weighted completion
time, we design a polynomial time deterministic algorithm that finds a universal
scheduling sequence with a solution value within 4 times the value of an optimal
clairvoyant algorithm that knows the disruptions in advance. A randomized ver-
sion of this algorithm attains in expectation a ratio of e. We also show that both
results are best possible among all universal solutions. As a direct consequence of
our results, we answer affirmatively the question of whether a constant approx-
imation algorithm exists for the offline version of the problem when machine
unavailability periods are known in advance.

When jobs have individual release dates, the situation changes drastically.
Even if all weights are equal, there are instances for which any universal solution
is a factor of Ω(log n/ log log n) worse than an optimal sequence. Motivated by
this hardness, we study the special case when the processing time of each job is
proportional to its weight. We present a non-trivial algorithm with a small con-
stant performance guarantee.

1 Introduction

Traditional scheduling problems normally assume that jobs run on an ideal machine that
provides a constant performance throughout time. While in some settings this is a good
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enough approximation of real life machine behavior, in other situations this assump-
tion is decidedly unreasonable. Our machine, for example, can be a server shared by
multiple users; if other users suddenly increase their workload, this can cause a general
slowdown; or even worse, the machine may become unavailable for a given user due
to priority issues. In other cases, our machine may be a production unit that can break
down altogether and remain offline for some time until it is repaired. In these cases, it
is crucial to have schedules that take such unreliable machine behavior into account.

Different machine behaviors will typically lead to widely different optimal sched-
ules. This creates a burden on the scheduler who would have to periodically recompute
the schedule from scratch. In some situations, recomputing the schedule may not even
be feasible: when submitting a set of jobs to a server, a user can choose the order in
which it presents these jobs, but cannot alter this ordering later on. Therefore, it is de-
sirable in general to have a fixed master schedule that will perform well regardless of
the actual machine behavior. In other words, we want a universal schedule that, for any
given machine behavior, has cost close to that of an optimal clairvoyant algorithm.

In this paper we initiate the study of universal scheduling by considering the problem
of sequencing jobs on a single machine to minimize average completion times. Our
main result is an algorithm for computing a universal schedule that is always a constant
factor away from an optimal clairvoyant algorithm. We complement this by showing
that our upper bound is best possible among universal schedules. We also consider
the case when jobs have release dates. Here we provide an almost logarithmic lower
bound on the performance of universal schedules, thus showing a drastic difference
with respect to the setting without release dates. Finally, we design an algorithm with
constant performance for the interesting case of scheduling jobs with release dates and
proportional weights. Our hope is that these results stimulate the study of universal
solutions for other scheduling problems, and, more broadly, the study of more realistic
scheduling models. In the rest of this section we introduce our model formally, discuss
related work, and explain our contributions in detail.

The model. We are given a job set J with processing times pj ∈ Q+ and weights
wj ∈ Q+ for each job j ∈ J . Using a standard scaling argument, we can assume
w.l.o.g. that wj ≥ 1 for j ∈ J . The problem is to find a sequence π of jobs to be
scheduled on a single machine that minimizes the total sum of weighted completion
times. The jobs are processed in the prefixed order π no matter how the machine may
change its processing speed or whether it becomes unavailable. In case of a machine
breakdown the currently running job is preempted and will be resumed processing at
any later moment when the machine becomes available again. We analyze the worst
case performance by comparing the solution value provided by an algorithm with that
of an optimal clairvoyant algorithm that knows the machine behavior in advance, and
that is even allowed to preempt jobs at any time.

We also consider the more general problem in which each job j ∈ J has its individ-
ual release date rj ≥ 0, which is the earliest point in time when it can start processing.
In this model, it is necessary to allow job preemption, otherwise no constant perfor-
mance guarantee is possible as simple examples show. We allow preemption in the
actual scheduling procedure, however, as in the case without release dates, we aim for
non-adaptive universal solutions. That is, a schedule will be specified by a total ordering
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of the jobs. At any point in time we work on the first job in this ordering that has not
finished yet and that has already been released. This procedure is called preemptive list
scheduling [9, 28]. Note that a newly released job will preempt the job that is currently
running if it comes earlier than the current job in the ordering.

Related work. The concept of universal solutions, that perform well for every single
input of a superset of possible inputs, has been used already decades ago in different
contexts, as e.g. in hashing [4] and routing [31]. The latter is also known as oblivious
routing and has been studied extensively; see [26] for a state-of-the-art overview. Jia et
al. [12] considered universal approximations for TSP, Steiner Tree, and Set Cover Prob-
lems. All this research falls broadly into the field of robust optimization [3]. The term
robust is not used consistently in the literature. In particular, the term robust scheduling
refers mainly to robustness against uncertain processing times; see e.g. [17, chap. 7]
and [23]. Here, quite strong restrictions on the input or weakened notions of robustness
are necessary to guarantee meaningful worst case solutions. We emphasize, that our
results in this paper are robust in the most conservative, classical notion of robustness
originating by Soyster [30], also called strict robustness [22], and in this regard, we
follow the terminology of universal solutions.

Scheduling with limited machine availability is a subfield of machine scheduling
that has been studied for over twenty years; see, e.g., the surveys [27, 20, 7]. Different
objective functions, stochastic breakdowns, as well as the offline problem with known
availability periods have been investigated. Nevertheless, only few results are known on
the problem of scheduling to minimize the total weighted completion time, and none of
these deal with release dates. If all jobs have equal weights, a simple interchange argu-
ment shows that sequencing jobs in non-increasing order of processing times is optimal
as it is in the setting with continuous machine availability [29]. Obviously, this result
immediately transfers to the universal setting in which machine breakdowns or changes
in processing speeds are not known beforehand. The special case of proportional jobs,
in which the processing time of each job is proportional to its weight, has been stud-
ied in [32]. The authors showed that scheduling in non-increasing order of processing
times (or weights) yields a 2-approximation for preemptive scheduling. However, for
the general problem with arbitrary job weights, it remained an open question [32] if a
polynomial time algorithm with constant approximation ratio exists, even without re-
lease dates. In this case, the problem is strongly NP-hard [32].

A major line of research within this area focused on the offline scheduling prob-
lem with a single unavailable period. This problem is weakly NP-hard in both, the
preemptive [19] and the non-preemptive variant [1, 21]. Several approximation results
have been derived, see [19, 21, 32, 13, 24]. Only very recently, and independently of
us, Kellerer and Strusevich [16] derived FPTASes with running time O(n4/ε2) for the
non-preemptive problem and O(n6/ε3) in the preemptive case. An even improved non-
preemptive FPTAS with running time O(n2/ε2) is claimed in [14]. However, the proof
seems incomplete in bounding the deviation of an algorithm’s solution from an optimal
one; in particular, the claim after Ineq. (11) in the proof of Lem. 1 is not proved.

Our results. Our main results are algorithms that compute deterministic and randomized
universal schedules for jobs without release dates. These algorithms run in polynomial
time and output an ordering of the jobs such that scheduling the jobs in this order will
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always yield a solution that remains within multiplicative factor 4 and within multiplica-
tive factor e in expectation from any given schedule. Furthermore, we show that our
algorithms can be adapted to solve more general problem instances with certain types
of precedence constraints without loosing performance quality. We also show that our
upper bounds are best possible for universal scheduling. This is done by establishing an
interesting connection between our problem and a certain online bidding problem [5].

It may seem rather surprising that universal schedules with constant performance
guarantee should always exist. In fact, our results immediately answer affirmatively
an open question in the area of offline scheduling with limited machine availability:
whether there exists a constant factor approximation algorithm for scheduling jobs in a
machine having multiple unavailable periods that are known in advance.

To derive our results, we study the objective of minimizing the total weight of un-
completed jobs at any point in time. First, we show that the performance guarantee
is given directly by a bound on the ratio between the remaining weight of our algo-
rithm and that of an optimal clairvoyant algorithm at every point in time on an ideal.
Then, we devise an algorithm that computes the job sequence iteratively backwards: in
each iteration we find a subset of jobs with largest total processing time subject to a
bound on their total weight. The bound is doubled in each iteration. Our approach is
related to, but not equivalent to, an algorithm of Hall et al. [9] for online scheduling
on ideal machines—the doubling there happens in the time horizon. Indeed, this type
of doubling strategy has been applied successfully in the design of algorithms for var-
ious problems; the interested reader is referred to the excellent survey of Chrobak and
Kenyon-Mathieu [6] for a collection of such examples.

The problem of minimizing the total weight of uncompleted jobs at any time was
previously considered [2] in the context of on-line scheduling to minimize flow time on
a single machine; there, a constant approximation algorithm is presented with a worst
case bound of 24. Our results imply an improved 4-approximation for this problem.
Furthermore, we show that the same guarantee holds for the setting with release dates;
unfortunately, unlike in the case without release dates, this does not translate into the
same performance guarantee for universal schedules. In fact, when jobs have individual
release dates, the problem changes drastically.

In Section 4 we show that in the presence of release dates, even if all weights are
equal, there are instances for which the ratio between the value of any universal solution
and that of an optimal schedule is Ω(log n/ log log n). Our proof relies on the classical
theorem of Erdős and Szekeres [8] on the existence of long increasing/decreasing sub-
sequences of a given sequence of numbers. Motivated by this hardness, we study the
class of instances with proportional jobs. We present a non-trivial algorithm and prove
a performance guarantee of 5. Additionally, we give a lower bound of 3 for all universal
solutions in this special case.

Our last result, Section 5, is a fully polynomial time approximation scheme (FPTAS)
for offline scheduling on a machine with a single unavailable period. Compared to the
FPTAS presented recently in [16], our scheme, which was discovered independently
from the former, is faster and seems to be simpler, even though the basic ideas are
similar. Our FPTAS for the non-preemptive variant has running time O(n3/ε2) and for
the preemptive variant O(n4/ε3 log pmax).
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2 Preliminaries and Key Observations

Given a single machine that runs continuously at unit speed (ideal machine), the com-
pletion time Cπ

j of job j when applying preemptive list scheduling to sequence π is
uniquely defined. For some point in time t ≥ 0 let Wπ(t) denote the total weight
of jobs that are not yet completed by time t according to sequence π, i.e., Wπ(t) :=∑

j:Cπ
j >t wj . Then,

∑

j∈J

wjC
π
j =

∫ ∞

0
Wπ(t)dt. (1)

Clearly, breaks or fluctuations in the speed of the machine delay the completion times.
To describe a particular machine behavior, let f : R+ → R+ be a non-decreasing con-
tinuous function, with f(t) being the aggregated amount of processing time available
on the machine up to time t. We refer to f as the machine capacity function. If the
derivative of f at time t exists, it can be interpreted as the speed of the machine at that
point in time.

For a given capacity function f , let S(π, f) denote the single machine schedule
when applying preemptive list scheduling to permutation π, and let CS(π,f)

j denote
the completion time of job j in this particular schedule. For some point in time t ≥ 0,
let WS(π,f)(t) denote the total weight of jobs that are not yet completed by time t in
schedule S(π, f). Then,

∑

j∈J

wjC
S(π,f)
j =

∫ ∞

0
WS(π,f)(t)dt .

For t ≥ 0 let WS∗(f)(t) := minπ WS(π,f)(t).

Observation 1. For a given machine capacity function f ,
∫ ∞

0
WS∗(f)(t)dt (2)

is a lower bound on the objective function of any schedule.

We construct a universal sequence of jobs π such that, no matter how the single machine
behaves, the objective value of the corresponding schedule S(π, f) is within a constant
factor of the optimum.

Lemma 1. Let π be a sequence of jobs, and let c > 0. Then, the value
∑

j∈J wjC
S(π,f)
j

is at most c times the optimum for all machine capacity functions f if and only if

WS(π,f)(t) ≤ cWS∗(f)(t) for all t ≥ 0, and for each f .

Proof. The “if” part is clear, since by Observation 1

∑

j∈J

wjC
S(π,f)
j =

∫ ∞

0
WS(π,f)(t)dt ≤ c

∫ ∞

0
WS∗(f)(t)dt.
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We prove the “only if” part by contradiction. Assume that WS(π,f)(t0) > cWS∗(f)(t0)
for some t0 and f . For any t1 > t0 consider the following machine capacity function

f ′(t) =






f(t) if t ≤ t0,
f(t0) if t0 < t ≤ t1,
f(t − t1 + t0) if t > t1

which equals f up to time t0 and then remains constant at value f ′(t) = f(t0) for the
time interval [t0, t1]. Hence,

∑

j∈J

wjC
S(π,f ′)
j =

∑

j∈J

wjC
S(π,f ′)
j + (t1 − t0)WS(π,f ′)(t0). (3)

On the other hand, let π∗ be a sequence of jobs with WS(π∗,f ′)(t0) = WS∗(f ′)(t0).
Then,

∑

j∈J

wjC
S(π∗,f ′)
j =

∑

j∈J

wjC
S(π∗,f ′)
j + (t1 − t0)WS∗(f ′)(t0). (4)

As t1 tends to infinity, the ratio of (3) and (4) tends to WS(π,f ′)(t0)/WS∗(f ′)(t0) > c,
a contradiction. &'

In case that all release dates are equal, approximating the sum of weighted completion
times on a machine with unknown processing behavior is equivalent to approximating
the total remaining weight at any point in time on an ideal machine: f(t) = t, t ≥ 0.
Scheduling according to sequence π on such a machine yields for each j, Cπ

j :=∑
k:π(k)≤π(j) pk. The completion time under machine capacity function f is

CS(π,f)
j = min{t | f(t) ≥ Cπ

j }.

Observation 2. For any machine capacity function f and any sequence π of jobs with-
out release dates,

WS(π,f)(t) = Wπ(f(t)) for all t ≥ 0.

For f(t) = t let W ∗(t) := WS∗(f)(t). With Observation 2 we can significantly
strengthen the statement of Lemma 1.

Lemma 2. Let π be a sequence of jobs with equal release dates, and let c > 0. Then,
the objective value

∑
j∈J wjC

S(π,f)
j is at most c times the optimum for all machine

capacity functions f if and only if

Wπ(t) ≤ cW ∗(t) for all t ≥ 0.

Simple counter examples show that this lemma is only true if all release dates are equal,
otherwise, Observation 2 is simply not true.
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3 Universal Scheduling without Release Dates

3.1 Upper Bounds

In the sequel we use for a subset of jobs J ′ ⊆ J the notation p(J ′) :=
∑

j∈J′ pj

and w(J ′) :=
∑

j∈J′ wj . Based on key Lemma 2, we aim at approximating the min-
imum total weight of uncompleted jobs at any point in time on an ideal machine, i.e.,
we approximate the value of W ∗(t) for all values of t ≤ p(J) for a machine with ca-
pacity function f(t) = t, t ≥ 0. In our algorithm we do so by solving the problem
to find the set of jobs that has maximum total processing time and total weight within
a given bound. By sequentially doubling the weight bound, a sequence of job sets is
obtained. Jobs in job sets corresponding to smaller weight bounds are to come later in
the schedule, breaking ties arbitrarily.

Algorithm DOUBLE:

1. For i ∈ {0, 1, . . . , )log w(J)*}, find a subset J∗
i of jobs of total weight w(J∗

i ) ≤ 2i

and maximum total processing time p(J∗
i ). Notice that J∗

&log w(J)' = J .
2. Construct a permutation π as follows. Start with an empty sequence of jobs. For i =

)log w(J)* down to 0, append the jobs in J∗
i \

⋃i−1
k=0 J∗

k in any order at the end of
the sequence.

Theorem 1. For every scheduling instance, DOUBLE produces a permutation π such
that the objective value

∑
j∈J wjC

S(π,f)
j is less than 4 times the optimum for all ma-

chine capacity functions f .

Proof. Using Lemma 2 it is sufficient to show that Wπ(t) < 4W ∗(t) for all t ≥ 0.
Let t ≥ 0 and let i be minimal such that p(J∗

i ) ≥ p(J) − t. By construction of π, only
jobs j in

⋃i
k=0 J∗

k have a completion time Cπ
j > t. Thus,

Wπ(t) ≤
i∑

k=0

w(J∗
k ) ≤

i∑

k=0

2k = 2i+1 − 1. (5)

In case i = 0, the claim is trivially true since wj ≥ 1 for any j ∈ J , and thus, W ∗(t) =
Wπ(t). Suppose i ≥ 1, then by our choice of i, it holds that p(J∗

i−1) < p(J) − t.
Therefore, in any sequence π′, the total weight of jobs completing after time t is larger
than 2i−1, because otherwise we get a contradiction to the maximality of p(J∗

i−1). That
is, W ∗(t) > 2i−1. Together with (5) this concludes the proof. &'

Notice that the algorithm takes exponential time since finding the subsets of jobs J∗
i is

a KNAPSACK problem and, thus, NP-hard [15]. However, we adapt the algorithm by,
instead of J∗

i , computing a subset of jobs Ji of total weight w(Ji) ≤ (1 + ε/4)2i and
processing time p(Ji) ≥ max{p(J ′) | J ′ ⊆ J and w(J ′) ≤ 2i}. This can be done in
time polynomial in the input size and 1/ε adapting, e.g., the FPTAS in [11] for KNAP-
SACK. The subsets Ji obtained in this way are turned into a sequence π′ as in DOUBLE.
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Theorem 2. Let ε > 0. For every scheduling instance, we can construct a permuta-
tion π in time polynomial in the input size and 1/ε such that the value

∑
j∈J wjC

S(π,f)
j

is less than 4 + ε times the optimum for all machine capacity functions f .

Proof. Again, by Lemma 2 it is sufficient to prove that Wπ(t) < 4W ∗(t) for all t ≥ 0.
Instead of inequality (5) we get the slightly weaker bound

Wπ′
(t) ≤

i∑

k=0

w(Jk) ≤
i∑

k=0

(1 + ε/4)2k = (1 + ε/4)(2i+1 − 1) < (4 + ε) 2i−1.

Moreover, the lower bound W ∗(t) > 2i−1 still holds. &'

We improve Theorem 1 by adding randomization to DOUBLE in a quite standard fash-
ion. Instead of the fixed bound of 2i on the total weight of job set J∗

i in iteration i ∈
{0, 1, . . . , )log w(J)*} we use the randomly chosen bound Xei where X = eY and Y
is picked uniformly at random from [0, 1] before the first iteration. We omit the proof.

Theorem 3. Let ε > 0. For every scheduling instance, randomized DOUBLE constructs
a permutation π in time that is polynomial in the input size and 1/ε such that the objec-
tive value

∑
j∈J wjC

S(π,f)
j is in expectation less than e + ε times the optimum value

for all machine capacity functions f .

A natural generalization of the universal sequencing problem requires that jobs are se-
quenced in compliance with given precedence constraints. We extend the results in
Theorems 1 and 3 to this model for certain classes of precedence constraints such as
directed out-trees, two dimensional orders, and the complement of chordal bipartite
orders.

3.2 Lower Bounds

In this section we show a connection between the performance guarantee for sequencing
jobs on a single machine without release dates and an online bidding problem investi-
gated by Chrobak et al. [5]. This allows us to prove tight lower bounds for our problem.

In online bidding, we are given a universe U = {1, . . . , n}. A bid set is just a subset
of U . A given bid set B is said to be α-competitive if

∑

b∈B : b<T

b + min
b∈B : b≥T

b ≤ αT ∀T ∈ U . (6)

Chrobak et al. [5] gave lower bounds of 4−ε and e−ε, for any ε > 0, for deterministic
and randomized algorithms, respectively.

Theorem 4. For any ε > 0, there exists an instance of the universal scheduling problem
without release dates on which the performance ratio of any deterministic schedule is
at least 4 − ε and the performance ratio of any randomized schedule is at least e − ε.



238 L. Epstein et al.

Proof. Take an instance of the online bidding problem and create the following instance
of the scheduling problem: For each j ∈ U create job j with weight wj = j and
processing time pj = jj . Consider any permutation π of the jobs U . For any j ∈ U ,
let k(j) be the largest index such that πk(j) ≥ j. Since pj >

∑j−1
i=1 pj , at time t =

p(U)− pj we have Wπ(t) =
∑n

k=k(j) wπk , while W ∗(t) = wj . If sequence π yields a
performance ratio of α then, Lemma 2 tell us that

n∑

k=k(j)

πk ≤ α j ∀ j ∈ U . (7)

From sequence π we extract another sequence of jobs as follows: W1 = πn, Wk =
argmaxi∈U

{
π−1(i) | i > Wk−1

}
. Then Wi+1 > Wi, and all j with π−1(Wi+1) <

π−1(j) < π−1(Wi) have weight less than Wi. Therefore, we have {i ∈ W | i < j} ∪
min {i ∈ W | i ≥ j} ⊂ {πk(j), . . . , πn}, for all j ∈ U . Hence, if π achieves a perfor-
mance ratio of α then

∑

i∈W : i<j

i + min
i∈W : i≥j

i ≤
n∑

k=k(j)

πk ≤ α j ∀ j ∈ U ,

that is, the bid set W induced by the sequence π must be α-competitive. Since there
is a lower bound of 4 − ε for the competitiveness of deterministic strategies for on-
line bidding, the same bound holds for the performance ratio of deterministic universal
schedules.

The same approach yields the lower bound for randomized strategies. &'

4 Universal Scheduling with Release Dates

In this section we study the problem of the previous section when jobs have release
dates. Algorithm DOUBLE, which aims at minimizing the total remaining weight, can
be adapted to the setting with release dates: Instead of a knapsack algorithm we use,
within a binary search routine, Lawler’s pseudo-polynomial time algorithm [18] or the
FPTAS by Pruhs and Woeginger [25] for preemptively scheduling jobs with release
dates and due dates on a single machine to minimize the total weight of late jobs.

However, this approach does not yield a bounded performance guarantee for the uni-
versal scheduling problem. In the presence of release dates approximation ratios on
an ideal machine do not translate directly to a performance guarantee of the univer-
sal scheduling strategy, see Section 2. In fact, universal scheduling with release dates
cannot be approximated within a constant ratio as we show below.

4.1 Lower Bound

Theorem 5. There exists an instance with n jobs with equal weights and release dates,
where any universal schedule has a performance guarantee of Ω(log n/ log log n).
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In our lower bound instance each job j has wj = 1, j = 0, 1, . . . , n−1. Their processing
times form a geometric series pj = 2j , j = 0, 1, . . . , n − 1, and they are released in
reversed order rj =

∑n
i>j 2i =

∑
i>j pi, j = 0, 1, . . . , n − 1.

To show the bound, we rely on a classic theorem of Erdős and Szekeres [8] or, more
precisely, on Hammersley’s proof [10] of this result.

Lemma 3 (Hammersley [10]). Given a sequence of n distinct numbers x1, x2, . . . , xn,
we can decompose this set into k increasing subsequences %1, %2, . . . , %k such that:

– There is a decreasing subsequence of length k;
– If xi belongs to %a then for all j > i if xj < xi then xj belongs to %b and b > a.

The idea is now to view a universal schedule as a permutation of {0, 1, . . . , n − 1}
and use Lemma 3 to decompose the sequence into k increasing subsequences. This
decomposition is then used to design a breakdown pattern that will yield Theorem 5.
The next two lemmas outline two kinds of breakdown patterns that apply to the two
possibilities offered by Lemma 3.

Lemma 4. The performance guarantee of a universal schedule that has % as a decreas-
ing subsequence is at least |%|.

Proof. Let j be the first job in %. The machine has breakdowns [rj , r0] and [r0 + 2j −
1, L] for large L. At time r0 all jobs have been released. 2j − 1 time units later, at
the start of the second breakdown, all jobs in % belong to the set of jobs uncompleted
by the universal schedule, whereas an optimal solution can complete all jobs except j.
Choosing L large enough implies the lemma. &'

Lemma 5. Let %1, %2, . . . , %k be the decomposition described in Lemma 3 when applied
to a universal schedule. Then for all i = 1, . . . , k the performance guarantee is at
least |#i|+|#i−1|+···+|#1|

1+|#i−1|+···+|#1|

Proof. For each job j in %i there is a breakdown [rj , rj+ε]. For each job j in %i+1, . . . , %k

there is a breakdown [rj , rj + pj] = [rj , rj + 2j ]. As a consequence, at time 2n − 1 the
universal schedule has all jobs in %i and all jobs in %i+1, . . . , %k uncompleted, whereas,
a schedule exists that leaves the last job of %i and all jobs in %j+1, . . . , %k uncompleted.
Therefore, a breakdown [2n − 1, L] for L large enough implies the lemma. &'

Proof (Proof of Theorem 5). Consider an arbitrary universal scheduling solution and its
decomposition into increasing subsequences %1, . . . , %k as in Lemma 3 and let α be its
performance guarantee. Using Lemma 5, one can easily prove by induction that |%i| ≤
αk−i+1. Since %1, . . . , %k is a partition of the jobs, we have

n =
k∑

i=1

|%i| ≤
k∑

i=1

αk−i+1 ≤ αk+1.

By Lemma 4, it follows that k ≤ α. Therefore log n = O(α logα) and

α = Ω
(

log n
log log n

)
.

&'
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4.2 Jobs with Proportional Weights

Motivated by the negative result in the previous section, we turn our attention to the
special case with proportional weights, that is, there exists a fixed γ ∈ Q such that wj =
γpj , for all j ∈ J . Using a standard scaling argument we can assume w.l.o.g. that pj =
wj , for all j. We provide an algorithm with a performance guarantee 5, and prove a
lower bound of 3 on the performance guarantee of any universal scheduling algorithm.

Algorithm SORTCLASS:

1. Partition the set of jobs into z := )log maxj∈J wj* classes, such that j belongs to
class Ji, for i ∈ 1, 2, . . . , z, if and only if pj ∈ (2i−1, 2i].

2. Construct a permutation π as follows. Start with an empty sequence of jobs. For
i = z down to 1, append the jobs of class Ji in non-decreasing order of release
dates at the end of π.

Theorem 6. The performance guarantee of SORTCLASS for universal scheduling of
jobs with proportional weights and release dates is exactly 5.

Proof. Let π be the job sequence computed by SORTCLASS. By Lemma 1, it is suffi-
cient to prove

WS(π,f)(t) ≤ 5WS∗(f)(t) ∀t > 0. (8)

Take any time t and any machine capacity function f . Let j ∈ Ji be the job being
processed at time t according to the schedule S(π, f). We say that a job other than
job j is in the stack at time t if it was processed for a positive amount of time before t.
The algorithm needs to complete all jobs in the stack, job j, and jobs that did not start
before t, which have a total weight of at most p(J) − f(t), the amount of remaining
processing time at time t to be done by the algorithm.

Since jobs within a class are ordered by release times, there is at most one job per
class in the stack at any point in time. Since jobs in higher classes have higher priority
and job j ∈ Ji is processed at time t, there are no jobs in Ji+1, . . . , Jz in the stack at
time t. Thus the weight of the jobs in the stack together with the weight of job j is at
most

∑i
k=1 2k = 2i+1 − 1. Hence,

WS(π,f)(t) < 2i+1 + p(J) − f(t) . (9)

A first obvious lower bound on the remaining weight of any schedule at time t is

WS∗(f)(t) ≥ p(J) − f(t) . (10)

For another lower bound, let t′ be the last time before t in which the machine is avail-
able but it is either idle or a job of a class Ji′ with i′ < i is being processed. Note that t′

is well-defined. By definition, all jobs processed during the time interval [t′, t] are in
classes with index at least i, but also, they are released in the interval [t′, t] since at t′ a
job of a lower class was processed or the machine was idle. Since at time t at least one
of these jobs is unfinished in S(π, f), even though the machine continuously processed
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only those jobs, no algorithm can complete all these jobs. Thus, at time t, an optimal
schedule also still needs to complete at least one job with weight at least 2i−1:

WS∗(f)(t) ≥ 2i−1 . (11)

Combining (9), (10), and (11) yields (8) and thus the upper bound of the theorem.
We omit the example that shows that the analysis is tight. &'

We complement this result by a lower bound of 3, but have to omit the proof.

Theorem 7. There is no algorithm with performance guarantee strictly smaller than 3
for universal scheduling of jobs with release dates and wj = pj , for all j ∈ J .

5 The Offline Problem

Clearly, the performance guarantees derived in Sections 3 and 4 also hold in the offline
version of our problem in which machine breakdowns and changes in speed are known
in advance. Additionally, we investigate in this section the special case in which the
machine has a single, a priori-known non-availability interval [s, t], for 1 ≤ s < t.

Theorem 8. There exists an FPTAS with running time O(n3/ε2) for non-preemptive
scheduling to minimize

∑
wjCj on a single machine that is not available for processing

during a given time interval [s, t]. The approximation scheme can be extended to the
preemptive (resumable) setting with an increased running time of O(n4/ε2 log pmax).

Due to space limitations we defer all details to the full version of the paper. The idea for
our FPTAS is based on a natural non-preemptive dynamic programming algorithm, used
also in [16]. Given a non-available time interval [s, t], the job set must be partitioned
into jobs that complete before s and jobs that complete after t. Clearly, the jobs in
each individual set are scheduled in non-increasing order of ratios wj/pj . This order is
known to be optimal on an ideal machine [29].

The main challenge in designing the FPTAS is to discretize the range of possible
total processing times of jobs scheduled before s in an appropriate way. Notice that
we cannot afford to round these values since they contain critical information on how
much processing time remains before the break. Perturbing this information causes a
considerable change in the set of feasible schedules that cannot be controlled easily. The
intuition behind our algorithm is to reduce the number of states by removing those with
the same (rounded) objective value and nearly the same total processing time before the
break. Among them, we want to store those with smallest amount of processing before
the break in order to make sure that enough space remains for further jobs that need to
be scheduled there.

The algorithm can be extended easily to the preemptive (resumable) problem. We
can assume, w.l.o.g., that in an optimal solution there is at most one job j interrupted
by the break [s, t] and it resumes processing as soon as the machine is available again.
For a given job j and with start time Sj , we define a non-preemptive problem with non-
available period [Sj , Sj + pj + t − s], which we solve by the FPTAS above. Thus, we
can solve the preemptive problem by running the FPTAS above O(n log pmax) times.
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6 Further Remarks

In Section 4 we have shown that the performance of universal scheduling algorithms
may deteriorate drastically when generalizing the universal scheduling problem slightly.
Other generalizations do not admit any (exponential time) algorithm with bounded per-
formance guarantee. If a non-adaptive algorithm cannot guarantee to finish within the
minimum makespan, then an adversary creates an arbitrarily long breakdown at the mo-
ment that an optimal schedule has completed all jobs. Examples of such variations are
the problem with two or more machines instead of a single machine, or the problem in
which preempting or resuming a job requires (even the slightest amount of) extra work.

The offline version of our problem (without release dates) in which preemption is
not allowed or causes extra work is not approximable in polynomial time; a reduction
from 2-PARTITION shows that the problem with two or more non-available periods is
not approximable, unless P=NP, even if all jobs have equal weight. A reduction in that
spirit has been used in [33] for a scheduling problem with some jobs having a fixed
position in the schedule. Similarly, we can rule out constant approximation factors for
any preemptive problem variant in which the makespan cannot be computed exactly in
polynomial time. This is shown by simple reductions from the corresponding decision
version of the makespan minimization problem. Such variations of our problem are
scheduling with release dates and scheduling with general precedence constraints.
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