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Abstract. We give a rigorous account on the complexity landscape of an im-
portant real-time scheduling problem that occurs in the design of software-based
aircraft control. The goal is to distribute tasks τi = (ci, pi) on a minimum number
of identical machines and to compute offsets ai for the tasks such that no collision
occurs. A task τi releases a job of running time ci at each time ai + k · pi, k ∈ N0
and a collision occurs if two jobs are simultaneously active on the same ma-
chine. Our main results are as follows: (i) We show that the minimization prob-
lem cannot be approximated within a factor of n1−ε for any ε > 0. (ii) If the
periods are harmonic (for each i, j one has pi | p j or p j | pi), then there exists
a 2-approximation for the minimization problem and this result is tight, even
asymptotically. (iii) We provide asymptotic approximation schemes in the har-
monic case if the number of different periods is constant.

1 Introduction

The motivation for this research comes from a real-word combinatorial optimization
problem that was communicated to us by our industrial partner, a major avionics com-
pany. The aircraft designers need to schedule highly critical periodic control tasks with
a predictable and static scheduling policy such that preemption and dynamic effects
are avoided. The model that is used in this context is as follows. One is given tasks
τ1, . . . ,τn where each task τi = (ci, pi) is characterized by its execution time ci ∈ N and
period pi ∈ N. The goal is to assign the tasks to identical machines and to compute
offsets ai ∈ N0 such that no collision occurs. A task τi generates one job with execution
time ci at every time unit ai + pi · k for all k ∈ N0. Each job needs to be processed im-
mediately and non-preemptively after its generation on the task’s machine. A collision
occurs if two jobs are simultaneously active on one machine.
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The picture above shows three tasks τ1 = (1,6),τ2 = (1,10) and τ3 = (2,15). The
upper part shows an infeasible assignment of offsets (a1 = 0, a2 = 1, a3 = 2) whereas
the lower part shows a feasible assignment of offsets (a1 = 1, a2 = 0, a3 = 2). Notice
that the schedule repeats after the least-common multiple (lcm) of the periods.

In the single machine context and with unit execution times, this problem was studied
by Wei and Liu [WL83] who called the problem of computing offsets the periodic
maintenance problem. Baruah et al. [BRTV90] and independently [BBNS02, Bha98]
show that the periodic maintenance problem is NP-hard in the strong sense.

The engineers are however interested in the corresponding machine minimization
problem, i.e., they want to find the minimum number of identical machines on which the
tasks can be distributed in a feasible way. We refer to this problem as the periodic main-
tenance minimization problem. Korst et al. [KALW91, KAL96] studied this problem
and show independently from [BRTV90] and [BBNS02, Bha98] that it is NP-hard in
the strong sense. It occurs in particular when additional features have to be implemented
on a given architecture. For the avionics company it is then preferable to re-design the
control software only rather than to re-design and change the hardware components.
Sometimes even moderately sized real-word instances turn out to be unsolvable with
state-of-the-art integer programming approaches. One feature that the easier instances
share is that, with only few exceptions, their tasks have harmonic periods, i.e., for each
pair of tasks τi,τ j one has pi | p j or p j | pi. Thus, one question that arises is whether
instances with this divisibility property are easier to solve than general instances.

For many combinatorial optimization problems, the answer to an analogous ques-
tion is indeed yes. For instance, KNAPSACK with divisible items [Mar85, VA97] or the
MIXING SET problem with divisible capacities [ZIRdF08, CSW08] are only two exam-
ples, where one has polynomial time algorithms on the one hand for the divisible case
and NP-hardness for the general case. For the periodic maintenance minimization prob-
lem that is in the focus of this work the difference is however drastic and reflects very
well the experience with those real-word instances whose tasks mostly have harmonic
periods and very general instances.

Our contribution is a rigorous account on the complexity and approximability landscape
of the above described machine-minimization problem. Our results are summarized in
Table 1. In this extended abstract, we limit ourselves to the description of the following
results that are highlighted in this table. More results and details are presented in the
full version of this paper [EHN+10].
! We prove that, for any ε > 0, it is NP-hard to approximate the periodic maintenance
minimization problem within a factor of n1−ε , i.e., that the trivial approximation al-
gorithm is essentially tight. This explains the difficulty of moderately sized instances
without harmonic periods from a theoretical viewpoint. The result is achieved by a re-
duction from COLORING that relies on basic number-theoretic results like the Chinese
Remainder Theorem and the Prime Number Theorem. We remark that the reduction has
been given independently in [BBNS02, Bha98]. The hardness result also holds under
resource augmentation.
! We show that the periodic maintenance minimization problem with harmonic periods
allows for a 2-approximation algorithm. Furthermore, we show that this is tight, even
asymptotically. It is remarkable that a simple variant of First-Fit can be analyzed to
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Table 1. The approximability landscape of the periodic maintenance minimization problem. Here
qk and q1 denote the largest and smallest period length, respectively.

arbitrary periods
period lengths k algorithms hardness results

k arbitrary 2OPT +k−1 n1−ε OPT
k constant

( 3
2 + ε

)
OPT +k

( 3
2 − ε

)
OPT +k−1

harmonic periods
period lengths k algorithms hardness results

k arbitrary 2OPT (2− ε)OPT +o(OPT )
k constant (1+ ε)OPT +k

( 3
2 − ε

)
OPT +k−1

qk/q1 constant (1+ ε)OPT +1 (2− ε)OPT

be a 2-approximation algorithm. The analysis differs however considerably from the
simple analysis that shows that First-Fit for BIN-PACKING yields a 2-approximation.
The novel concept that we use is the one of a witness for certain groups of machines.
These witnesses prove that these groups are heavily loaded. If a witness for a certain
group of machines is missing, the instance can be separated into two independent sub-
instances. This allows for an analysis by induction.
! Even though the 2-approximation result for the case of harmonic periods is tight, we
show that a stronger restriction leads to an asymptotic PTAS: If the number of differ-
ent periods k is constant, we have an efficient algorithm with approximation guarantee
(1 + ε)OPT + k, for any constant ε > 0. The basic approach follows the ideas of the
classical APTAS for BIN-PACKING of Fernandez de la Vega and Luecker [FdlVL81].
The more complicated nature of the periodic maintenance problem, however, requires
several interesting and nontrivial extensions of the techniques such as a more sophis-
ticated rounding procedure and advanced structural insights into the solutions to the
periodic maintenance problem. This helps to enumerate the solution space to find a
template that can be turned into a solution with the desired approximation guarantee.

Related work. There is excessive literature on real-time scheduling; for surveys see,
e.g., [BHR93, But04, Leu04]. In contrast to our problem, one is often interested in veri-
fying whether a set of tasks can be scheduled on one machine with a certain scheduling
policy. The periodic maintenance minimization problem generalizes BIN-PACKING. In
fact, if the periods of tasks are all identical, the problem is equivalent to BIN-PACKING.
The problem is, however, more general and the approximation ratios known for BIN-
PACKING do not carry over. While there is, for instance, a 1.5-approximation algorithm
for BIN-PACKING [SL94], achieving this performance ratio is impossible for our prob-
lem, even for the case of harmonic periods.

2 Harmonic Periods

First-Fit is a simple and very popular heuristic for many packing problems, such as,
e.g., BIN-PACKING etc. Adapted to our problem, First-Fit considers tasks in some given



302 F. Eisenbrand et al.

order and greedily packs the current task on the first open machine on which it fits. In
case there is no such machine, it opens a new machine on which the current task is
scheduled.

A crucial subproblem occurring in this context is to decide whether a task τ can be
scheduled on a machine on which other tasks, say τ1, . . . ,τn, have already been sched-
uled without changing the offsets of these tasks. If all processing times are equal to 1
and the period of τ is p, we will see in Section 3 that the feasible offsets a for task τ are
the solutions to the system

a #≡ a j mod gcd(p, p j) for j = 1, . . . ,n. (1)

For arbitrary (not harmonic) p j ∈ N and p = ∏n
i=1 p j, this is the NP-complete problem

of computing simultaneous incongruences, see, e.g., [GJ79]. Thus, for instances of the
periodic maintenance minimization problem with arbitrary periods, already this crucial
subproblem is NP-hard and it is not clear how to implement First-Fit.

In this section we consider the special case of harmonic periods. In Section 2.1 we
show how the crucial subproblem can be solved efficiently in this case by making clever
use of a special solution structure.

In the following we always assume that tasks τ1 = (c1, p1), . . . ,τn = (cn, pn) are
sorted such that p j | p j+1, for j = 1, . . . ,n−1. Moreover, the number of different period
lengths of the input-tasks is denoted by k and the set of all task periods is denoted by
Q = {q1, . . . ,qk}, where qi | qi+1, for i = 1, . . . ,k−1.

2.1 Bin Trees

An important encoding of single-machine schedules which we use repeatedly in this
paper is the (compressed) bin tree that we now explain. Assume that offsets a j for tasks
τ j = (c j, p j), j = 1, . . . ,n, are given. Then the resulting schedule, i.e., which task runs a
job at which time, repeats itself after the largest period qk. The smallest period q1 par-
titions the time-horizon [0,qk) into bins [i ·q1,(i+1) ·q1); see Figure 1 for an example.

Assume that the offsets a j, j = 1, . . . ,n, determine a feasible single-machine schedule
for tasks τ1, . . . ,τn where no two jobs collide. By a simple shifting argument, we can
assume w.l.o.g. that the first task τ1 with minimum period p1 = q1 has offset a1 = 0
(see also Figure 1). Now consider an additional task τ = (c, p) with maximum period
p = qk. Clearly, one can find a feasible offset for this task if and only if one of the qk/q1
bins has a free slot of size c.

0 q1 2 ·q1 3 ·q1 4 ·q1 5 ·q1 6 ·q1

Fig. 1. A schedule for a single machine. The gray jobs belong to tasks with period length q1, the
striped jobs to tasks with period length q2 = 3 · q1, and the checkered jobs to tasks with period
length q3 = 6 ·q1.
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Fig. 2. The full bin tree corresponding to the schedule in Figure 1

Fig. 3. The compact form of the bin tree in Figure 2

Consider two bins Bi = [i · q1,(i + 1) · q1) and B j = [ j · q1,( j + 1) · q1) such that
i ≡ j mod qr/q1. As far as tasks with period length up to qr are concerned, these bins
look the same. As a shorthand, we write Bi ≡r B j when i ≡ j mod qr/q1.

The root of a full bin tree is a node representing a bin containing all tasks of period
length q1. It has q2/q1 children, each of which represents a bin that contains all its
parent’s tasks and may contain additional tasks of period length q2. We say that the root
is of period q1, and its children are of period q2.

In general, a node B of period qr contains only tasks of period length up to qr. If
qr < qk, it has qr+1/qr children, each of which is a node of period qr+1. Each child of B
represents a bin that contains all tasks of B and may contain additional tasks of period
length qr+1. Each scheduled task of period length qr appears in a unique node of period
qr and in all children of that node.

As a consequence of this definition, there is a one-to-one correspondence between
nodes of period qr in the full bin tree and equivalence classes of bins modulo the equiv-
alence relation ≡r. Furthermore, the hierarchy of equivalence relations ≡r (r = 1, . . . ,k)
corresponds to the hierarchy of the tree in the following way: If two nodes of period
≥ qr have the same ancestor of period qr, then their corresponding bins are equivalent
modulo ≡r, and vice versa. In particular the leafs of the bin-tree correspond to the bins
of the schedule. Thus we can freely convert between a feasible schedule in terms of task
offsets and the corresponding bin tree representation; see Figure 2.

The number of nodes in a full bin tree is dominated by its leaves, of which there
are qk/q1 many, so we cannot operate efficiently on full bin trees and, in particular, we
cannot afford to store a full bin tree to implement our First-Fit heuristic. However, if a
node of period qr does not contain a task of period qr, it is completely determined by
its parent. Therefore, we only need to store those nodes of the tree that introduce a new
task to the schedule, see Figure 3 for an example. In this way we have a compressed
bin tree whose number of nodes is bounded by the number of tasks and that can be
constructed in polynomial time.
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Coming back to the implementation of First-Fit, given a bin tree and an unscheduled
task τ whose period length is greater or equal to the period lengths of all tasks in the
bin tree, one can easily determine whether τ can be inserted into the bin tree in compact
form by checking all the leaves of the compact tree, as well as all nodes to which a new
leaf of the right period can be added. We will use this fact in the next subsection.

2.2 First-Fit Algorithm

In the sequel we use the following term: If a subset of tasks is assigned to a machine,
then the type of this machine is the smallest period of these tasks. The First-Fit algorithm
maintains a list M1, . . . ,M" of open machines where Mi was opened before Mj if i < j.
The algorithm is initialized with the empty list. Then, the algorithm proceeds as follows.
For j = 1, . . . ,n:

1. Find the first machine on which τ j fits and insert it into a leaf of that machine’s bin
tree such that no gaps are created within the leaf. Within this machine’s bin tree,
break ties between leaves arbitrarily.

2. If τ j does not fit on any open machine, we open a new machine of type p j and add
τ j to the root node of its bin tree. Furthermore, to simplify the analysis later, we
open a second new machine of type p j. On this machine we schedule a dummy task
with running time 0 and period p j.

Note that, because tasks are added in non-decreasing order of period lengths, we only
add tasks to leaves of the compressed bin tree as discussed above.

The utilization of a task τ = (c, p) is defined as util(τ) = c/p. For a set of tasks I and
a machine M we define util(I) = ∑τ∈I util(τ) and util(M) = ∑τ on M util(τ), respectively.
The utilization util(I) is a lower bound for OPT (I). The main result of this section is
the following theorem.

Theorem 1. The First-Fit algorithm is a 2-approximation algorithm.

Before we present the proof of Theorem 1 we will discuss some differences to the
analysis of the First-Fit algorithm for BIN-PACKING and motivate the concept of a
witness that turns out to be very useful. The simple observation showing that First-
Fit for BIN-PACKING is a 2-approximation is as follows: If First-Fit opens a new bin,
then let α be the minimum weight of all previously opened bins. This implies that the
current item has weight at least 1−α and if there are any other open bins, they must
have weight at least max{α,1−α}. The average weight of the bins is thus at least 1/2.

Now suppose that the First-Fit algorithm for the machine minimization problem
opens a new machine for task τ j = (c j, p j). If the type q of some machine with low
utilization is smaller than the running time c j of the task, then this task cannot be run
on this machine. Thus, it may happen that there are many open machines with a low
utilization. In particular, it is not true that the average utilization of the open machines
is at least 1/2. However, we can derive a lower bound on the average load of the ma-
chines whose type is compatible with τ j , where the set of compatible types is denoted
by Q( j) := {q ∈ Q : c j ≤ q ≤ p j}.
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Lemma 1. Suppose that the First-Fit algorithm cannot schedule τ j on one of its open
machines and opens two new machines instead. Let q ∈ Q( j) be a compatible machine
type, and let M1, . . . ,M", " > 0, be the machines of type q that were open before the
algorithm tries to assign τ j . Then, 1

" ∑"
i=1 util(Mi) > 1

2 .

Proof. First observe that " ≥ 2 because the First-Fit algorithm always opens two ma-
chines of the same type at a time. Consider the bin trees corresponding to machines
M1, . . . ,M" when τ j should be added. Note that the leaves of the trees are of period at
most p j. Let α > 0 be the minimum fill ratio over all leaf-bins of the trees. If α > 1

2 ,
then every bin is more than half filled and the claim follows.

Thus, we can assume that α ≤ 1
2 . Let B be a leaf bin of fill ratio α , and M be the

machine B belongs to. Thus, the utilization of M is at least α . We will show that all
leaf bins of the machines {M1, . . . ,M"} \ {M} have a fill ratio greater than 1−α . This
implies, in particular, that all machines other than M have a utilization greater than
1−α . Since " ≥ 2, the claim then follows by an averaging argument.

Let B be a leaf bin on a machine Mi #= M. There are two cases to consider: The
First-Fit algorithm considers Mi before or after M. If Mi is considered before M, let τ
be any task assigned to B. Now consider the time when τ was assigned by First-Fit. At
that time, either B or an ancestor of B was a leaf-bin. First-Fit tried to assign τ to B (or
its ancestor) but failed. Now τ fills at most an α-fraction of a bin, which implies that
the fill ratio of B (or its ancestor) must have been more than 1−α , otherwise τ would
have been packed there instead. Thus, B has fill ratio greater than 1−α at the time τ is
assigned. For the case where Mi is considered after M, we can analogously argue that a
task in B could have been assigned to B (or an ancestor). '(

Let τ j be a task and let M j be the set of machines that are open when First-Fit tries to
assign τ j. Let Q′ ⊆ Q( j) be a subset of the compatible machine types and let M ′ ⊆M j
be the subset of machines whose type is in Q′. The above lemma implies that, if First-
Fit opens two new machines when it tries to assign τ j, then the average load of the
machines in M ′ is at least 1/2. We say that τ j is a witness of M ′. In particular, if
q < p j is compatible with τ j and if Mq denotes the machines of type q that are created
by First-Fit, then τ j is a witness of Mq. We have the following lemma.

Lemma 2. FF(I) denotes the number of machines opened by the First-Fit heuristic. If
for all q ∈ Q, q < qk, the set Mq has a witness, then FF(I) ≤ 2OPT (I).

Proof. Let q ∈ Q with q < qk, and let τ be a witness for Mq. Then we can apply
Lemma 1 to show that ∑M∈Mq util(M) ≥ 1

2 |Mq|. Now let M ′ be the set Mqk without

the two last machines that we call M̃1 and M̃2. Let τ be a task assigned to M̃1. Observe
that τ is a witness for M ′. Thus, ∑M∈M ′ util(M)≥ 1

2 |M
′|. Hence we have FF(I)−2≤

2 · util(I \ {τ}) which implies FF(I)− 2 < 2 · util(I) ≤ 2 ·OPT(I). Since both FF(I)
and 2 ·OPT(I) are even, we conclude FF(I) ≤ 2 ·OPT(I). '(

If the special case of Lemma 2 does not apply, we can identify sub-instances that are
pairwise independent of each other, yet cover all machines opened by First-Fit. We use
this observation to prove Theorem 1 by induction.
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Proof (of Theorem 1). We prove the theorem by induction on k, the number of dif-
ferent periods. If k = 1, then the claim is obvious. Now assume that First-Fit is a
2-approximation for all instances with less than k periods. If for all q ∈ Q, q < qk,
the set Mq has a witness, again the claim follows directly with Lemma 2.

Thus, let q ∈ Q, q < qk be a period such that Mq does not have a witness. We now
partition the tasks into I′ := {τ ∈ I : First-Fit assigns τ to a machine of type ≤ q} and
I′′ := I\I′. Moreover, let I := {τi ∈ I′ : pi ≤ q}. Let τ j be an arbitrary task in I′′. Then
q is not compatible with τ j since otherwise τ j would be a witness for Mq. Thus, each
task in I′′ has a running time > q. As the period lengths of all tasks in I are at most q,
no task in I can be scheduled together with a task in I′′. This shows that I and I′′ are
independent in the sense that OPT (I)+ OPT(I′′) = OPT (I ∪ I′′) ≤ OPT (I).

On the other hand, since First-Fit assigns each task of I′ to a machine of type ≤ q
and these must have been opened and typed by a job in I, one has FF(I) = FF(I′) and
FF(I) = FF(I)+ FF(I′′). Using the induction hypothesis, we get

FF(I) = FF(I)+ FF(I′′) ≤ 2OPT (I)+ 2OPT(I′′) ≤ 2OPT (I).
This concludes the proof. '(

Surprisingly, the approximation result in Theorem 1 is tight, even if one aims for asymp-
totic approximation guarantees. This is in sharp contrast to the classical BIN-PACKING

problem, where one has a fully polynomial asymptotic approximation scheme [KK82]
and for which one does not know variants of First-Fit with optimal (asymptotic) ap-
proximation ratios. The proof of the following theorem can be found in [EHN+10]. It
is established via a reduction from PARTITION and boosting.

Theorem 2. Unless P = NP, there is no approximation algorithm with a guarantee of
(2− ε)OPT + o(OPT) for the case of harmonic periods, for any ε > 0.

2.3 An APTAS for a Constant Number of Periods

For the case of harmonic periods the 2-approximation algorithm cannot be improved,
unless P = NP. This holds even asymptotically. In particular, there is no hope for an
asymptotic PTAS. Our experience with real-world instances from our industrial partner,
however, is that these instances often have only very few different period lengths. We
thus consider the case where the number of different periods k is bounded by a constant
and present an asymptotic PTAS for this restricted setting.

Theorem 3. For any ε > 0 and k bounded by a constant, there is an efficient algorithm
that computes a solution of value at most (1 + ε)OPT(I)+ k.

We only sketch the main ideas of the algorithm. For a complete description we refer
to the full version of this paper [EHN+10]. Although the high level idea is the same
as for the APTAS for BIN-PACKING [FdlVL81], the more complex nature of the peri-
odic maintenance problem imposes novel and interesting difficulties. In particular, we
cannot simply classify tasks as big or small, since different bin sizes occur on different
machines. Therefore we must do this classification relative to the size of the bin, making
the rounding procedure significantly more involved. After the rounding, we determine
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q1 2q1 3q1 4q1 5q10 6q1

Fig. 4. A schedule in bin structure. The gray jobs belong to tasks with period length q1, the
striped jobs to tasks with period length q2 = 3 · q1 and the checkered jobs to tasks with period
length q3 = 6 ·q1.

the optimal solution for the big tasks by enumeration, making non-trivial use of the con-
cept of bin trees. Finally, we add the small tasks using First-Fit. All these steps have to
be performed with extreme care not to introduce extra additive factors to the guarantee
on the objective function.

First, we show that the individual schedule for each machine can be assumed to have
a particular structure. More precisely, we say that a schedule obeys the bin structure
if each bin satisfies the following (see also Figure 4): (i) Let q be the smallest period
length of a task on the machine; then, there is a task τ j with p j = q and a j = 0; (ii) if
a task τ j starts before a task τ j′ in the bin, then p j ≤ p j′ ; and (iii) all jobs in a bin are
processed consecutively.

Notice that the same bin tree structure described in Section 2.1 can be used for so-
lutions that follow the bin structure. Moreover, a simple swapping argument shows the
following lemma.

Lemma 3. Let I′ be a set of tasks assigned to a machine M. If there is a feasible sched-
ule for I′, then there is a feasible schedule that obeys the bin structure.

The structure given by this lemma is crucial to describe schedules compactly: Given an
assignment of tasks to bins in the bin tree such that no bin is overloaded, we can find an
offset for each task such that no two tasks collide. In particular, in the enumeration step
of our APTAS, we will only enumerate over the assignments of the tasks to the bins,
not the individual schedules within each bin.

Rounding. In order to round the execution times of big tasks, more forethought is nec-
essary compared to the APTAS for BIN-PACKING. We want to achieve two goals: On
the one hand, only a constant number of big tasks should fit into a bin. On the other
hand, we want to ensure that, later on, the remaining space in the bins can be used
efficiently by the First-Fit procedure for the small tasks.

Given a bin size q ∈ Q, we say that a task τ j is small with respect to q if c j < εq and
big if εq ≤ c j ≤ q. Now the rounding is done independently for each period length q":
For i = 1, . . . ,k, in iteration i, we only round tasks that are big with respect to qi, and that
have not been rounded before. These tasks are sorted by non-decreasing execution times
and then partitioned into O(1/ε2) many groups. All groups are of equal size except for
the first group which may have fewer elements. The execution times of all tasks of the
same group are then rounded up to the maximum execution time of that group.

Denote by I′ the rounded instance. For each period length q" and each bin size qi,
denote by L",i the set of tasks on the last group. We define L := ∪",iL",i and J := I′ \L.
Using OPT (I) as a template for J, one can show that OPT (J) ≤ OPT (I). For each bin
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size q, denote by Cq the set of all execution times c of big tasks in J such that c ≤ q
(and thus a task with execution time c could possibly be scheduled in such a bin). The
rounding ensures that the cardinality of each set Cq is bounded by a constant.

We will show at the end that the tasks in L together with a certain subset of the
small tasks can be packed onto O(ε)OPT (I)+k extra machines. Now, we proceed with
presenting an approximation algorithm for J.

Enumeration of Solutions. In order to enumerate the solutions of big tasks in J, it is
crucial to compactly represent the bin trees. We introduce the concept of a bin configu-
ration which, given a bin schedule, encodes: (a) the level of a bin on the bin tree; (b) the
size of the bin q; (c) the assignment of big tasks; and (d) the space reserved for small
tasks for each period length, rounded down to the nearest multiple of εq.

Since the number of big tasks in a bin is at most 1/ε , and |Cq| is bounded by a
constant, the total number of bin configurations is also bounded by a constant. We can
therefore enumerate the bin configurations on the compressed bin trees in polynomial
time as follows:

(i) Assume that, for each machine, we have already determined the bin configurations
of all bins up to level qi in its corresponding compressed bin trees.

(ii) For each bin configuration of level qi+1, we enumerate the number of bins follow-
ing this configuration. In what follows, we consider only the iteration in which we
enumerate the respective amount that corresponds to the optimal solution to J.

(iii) Attach each node configuration to a parent node on any machine, such that the
jobs of period lengths up to qi coincide.

One of the enumerated solutions corresponds—up to permutation of sub-trees—to an
optimal solution to J. Indeed, by an inductive argument, we can assume that levels up
to qi contains the right number of nodes of each configuration. Then, if in Step (ii) we
enumerate the correct number of bins with each configuration, it is clear that Step (iii)
will successfully attach the nodes to the trees.

Moreover, the running time of the algorithm is polynomial. Indeed, since the number
of configurations on each level is at most a constant λ , Step (ii) can be performed in
time O(nλ ). Thus, the running time of the whole algorithm is bounded by O(nkλ ).

The APTAS. We are now ready to state the APTAS: (1) Round tasks and define instances
J and L; (2) enumerate over all possible configurations of bin trees; (3) assign the big
tasks in J according to the bin configurations; (4) greedily assign small tasks to bins by
using the reserved space in the configurations; call S the set of small tasks that could
not be assigned; (5) for each period length q independently, schedule all jobs in L∪ S
of period q with the classical First-Fit algorithm for BIN-PACKING. (Notice that, in this
last step, we do not mix tasks of different period lengths on the same machine.)

Up to Step (4) of the algorithm, we have only used OPT (J) ≤ OPT (I) many ma-
chines. It remains to show that First-Fit in Step (5) assigns tasks in L∪ S to at most
O(ε)OPT + k machines. We omit the proof and refer to [EHN+10].

Lemma 4. First-Fit assigns tasks in L∪S to at most O(ε)OPT + k machines.

If not only k is bounded by a constant but even qk/q1, one can obtain a better bound.
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Theorem 4. For any ε > 0 and qk/q1 bounded by a constant, there is an efficient algo-
rithm that computes a solution of value at most (1 + ε)OPT(I)+ 1.

The main difference to the algorithm above is that here a task τi is small if ci ≤ εq1 and
big otherwise. Also, we need to be more careful with the First-Fit procedure to assign
the remaining small jobs as in Step (5). For full details we refer to [EHN+10].

3 Arbitrary Period Lengths

In this section we study the periodic maintenance problem in the setting of arbitrary,
i.e., not necessarily harmonic, period lengths. We only sketch the results. For more
details see [EHN+10].

One can derive a First-Fit algorithm as follows: Partition the tasks according to their
period lengths. Then do First-Fit for period lengths separately such that no two jobs
with different period lengths are scheduled on the same machine. Denote by FF(I)
the number of machines in the resulting schedule. Using utilization bound techniques
similar to BIN-PACKING, we obtain the following theorem.

Theorem 5. For any instance I it holds that FF(I) ≤ 2 ·OPT + k−1.

Now assume that k is bounded by some constant and let ε > 0. We call a task τ small
if util(τ) ≤ ε , otherwise we call τ big. We define the sets Ismall and Ibig respectively.
We enumerate all solutions for the big tasks and call the best solution ENUM(Ibig).
This can be done in polynomial time since there are at most ,1/ε- big tasks on each
machine and k is assumed to be constant (a similar argument as used in [FdlVL81] for
BIN-PACKING). We output EFF(I) := min

{
FF(I),ENUM(Ibig)+ FF(Ismall)

}
.

Theorem 6. Assume that k is bounded by a constant. Then, EFF(I) can be computed
in polynomial time and EFF(I) ≤ (3/2 + O(ε))OPT + k.

In the remainder of this section we show that the periodic maintenance minimization
problem is hard to approximate within a factor of n1−ε using an approximation preserv-
ing reduction from COLORING. We remark that this reduction has been stated indepen-
dently in [BBNS02, Bha98]. Again, we only sketch the results and refer to [EHN+10]
for more details. The result still holds if we restrict the problem to unit execution times.

For unit execution times, a set of offsets is feasible if and only if ai + ki · pi #=
a j + k j · p j for all i, j and ki,k j ∈ N0. With elementary number theory [NZM91] it is
easy to see that this is equivalent to ai #≡ a j mod gcd(pi, p j). The reduction works as
follows. Let the graph G = (V,E) be an instance of the COLORING problem. Let E be
the complement of E , i.e., E := {{u,v} : u,v ∈V,{u,v} /∈ E}. We choose pairwise dif-
ferent primes qe for all e ∈ E . This can be done in polynomial time with the sieve of
Eratosthenes since the Prime Number Theorem guarantees Θ (x/ ln(x)) primes among
the first x natural numbers (see, e.g., [NZM91]). For each node v ∈ V , we define a task
τv = (cv, pv) with cv := 1 and pv := ∏e∈E: v∈e qe. We denote with red(G) := {τv : v∈V}
the periodic maintenance instance obtained from the graph G using this construction.
Note that we can compute red(G) in polynomial time. Our construction has the follow-
ing properties:
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Lemma 5. Given a graph G = (V,E), the machine minimization instance red(G) sat-
isfies the following properties.

a) For each edge {u,v} ∈ E, tasks τu and τv cannot be assigned to the same machine.
b) For an independent set U ⊆V , tasks {τv : v ∈U} can be scheduled on one machine.

These properties can be used to show that our construction is a reduction.

Lemma 6. For each k ∈ N, a graph G is k-colorable if and only if red(G) can be
scheduled on k machines.

It is shown in [Zuc07] that it is NP-hard to approximate the COLORING problem within
a factor of n1−ε , for any constant ε > 0, where n is the number of nodes of the graph.
This immediately implies the claimed inapproximability result.

Theorem 7. The periodic maintenance minimization problem cannot be approximated
within a factor of n1−ε , for any constant ε > 0, unless P = NP.

We remark that the primes generated in the reduction can get exponentially large (al-
though their encoding length is polynomial). For that reason, this result only shows that
it is weakly NP-hard to approximate within the factor given in Theorem 7. The question
whether there is a pseudopolynomial time algorithm with a constant factor approxima-
tion guarantee remains open.
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