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NEW APPROACHES FOR VIRTUAL PRIVATE NETWORK DESIGN∗
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Abstract. Virtual private network design is the following NP-hard problem. We are given a
communication network represented as a weighted graph with thresholds on the nodes which represent
the amount of flow that a node can send to and receive from the network. The task is to reserve
capacities at minimum cost and to specify paths between every ordered pair of nodes such that all
valid traffic-matrices can be routed along the corresponding paths. Recently, this network design
problem has received considerable attention in the literature. It is motivated by the fact that the
exact amount of flow which is exchanged between terminals is not known in advance and prediction
is often elusive. The main contributions of this paper are as follows: (1) Using Hu’s 2-commodity
flow theorem, we provide a new and considerably stronger lower bound on the cost of an optimum
solution. With this lower bound we reanalyze a simple routing scheme which has been described in
the literature many times, and provide an improved upper bound on its approximation ratio. (2)
We present a new randomized approximation algorithm. In contrast to earlier approaches from the
literature, the resulting solution does not have tree structure. A combination of our new algorithm
with the simple routing scheme yields an expected performance ratio of 3.79 for virtual private
network design. This is a considerable improvement of the previously best known 5.55-approximation
result [A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation algorithms for
network design, in Proceedings of the ACM Symposium on Theory of Computing, ACM, New York,
2003, pp. 365–372]. (3) Our VPND algorithm uses a Steiner tree approximation algorithm as a
subroutine. It is known that an optimum Steiner tree can be computed in polynomial time if the
number of terminals is logarithmic. Replacing the approximate Steiner tree computation with an
exact one whenever the number of terminals is sufficiently small, we finally reduce the approximation
ratio to 3.55. To the best of our knowledge, this is the first time that a nontrivial result from exact
(exponential) algorithms leads to an improved polynomial-time approximation algorithm.
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1. Introduction. Consider a communication network which is represented by
an undirected graph G = (V,E) with edge-weights c : E → R+. Within this network
there is a set of terminals T ⊆ V which want to communicate with each other.
However, the exact amount of traffic between pairs of terminals is not known in
advance. Instead, each terminal v ∈ T has associated input and output thresholds
bin(v) ∈ Z≥0 and bout(v) ∈ Z≥0. A traffic-matrix D ∈ QTT

≥0 is valid if it respects the
lower and upper bounds on the incoming and outgoing traffic of the terminals, i.e., if
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the following holds for each terminal i ∈ T :
∑

j∈T,j %=i

D(i, j) ≤ bout(i) and
∑

j∈T,j %=i

D(j, i) ≤ bin(i).

The (asymmetric) virtual private network design (VPND) problem defined by G,
c, and T consists of finding capacities u(e), e ∈ E and paths Pij for each ordered pair
(i, j) ∈ TT such that the following conditions hold:

(i) All valid traffic-matrices can be routed without exceeding the installed capacities
where all traffic from terminal i to terminal j is routed along path Pij .

(ii) The total cost of the reservation
∑

e∈E u(e) c(e) is minimal.
A reservation of capacities u : E → R+ is a tree reservation if the subgraph of
G induced by the edges e ∈ E with u(e) > 0 is a tree. A general reservation is
sometimes referred to as a graph reservation.

The virtual private network design problem is NP-hard by the following reduction
from the Steiner tree problem [11]. Given an instance of the Steiner tree problem,
pick a terminal which has to be connected with the other terminals in a Steiner tree.
This terminal has thresholds bin(v) = 0 and bout(v) = 1. All other terminals u of the
Steiner tree instance have bin(u) = 1 and bout(u) = 0. A minimum cost Steiner tree
also yields an optimum reservation for this VPND instance.

The virtual private network design problem was independently defined by Finger-
hut, Suri, and Turner [10] and by Duffield et al. [6] and has since then been studied
by various authors in several variations which we next discuss. In the following list,
the last one (AsymG) is the one which we refer to as VPND.
(SymT ) Symmetric thresholds, tree reservation: In this variant, each terminal i ∈ T

has only one threshold b(i), which is an upper bound on the cumulative
amount of traffic that terminal i can send or receive. The task is to find
an optimal tree reservation which supports all valid traffic-matrices. Gupta
et al. [11] show that (SymT ) is polynomially solvable.

(SymG) Symmetric thresholds, graph reservation: This variant is defined in the same
way as (SymT ), except that the capacity reservation can be arbitrary and not
necessarily a tree. Gupta et al. [11] present a 2-approximation for (SymG).
It is not known whether SymG is NP-hard.

(BalT ) Balanced thresholds, tree reservation: The thresholds are balanced, which
means that

∑
v∈T bin(v) =

∑
v∈T bout(v). The reservation has to be a tree.

Italiano, Leonardi, and Oriolo [15] show that this variant can be solved in
polynomial time.

(BalG) Balanced thresholds, graph reservation: The same as (BalT ), except that an
arbitrary graph reservation is allowed.

(AsymT ) Asymmetric thresholds, tree reservation: This problem is NP-hard [11].
Constant approximation algorithms are presented in [11, 12]. Interestingly,
while the algorithm in [11] is deterministic, the algorithm in [12] is randomized
and seems difficult to derandomize.

(AsymG) Asymmetric thresholds, graph reservation: This is the VPND problem
defined above. We have seen that this problem is NP-hard. The randomized
5.55-approximation result presented in [12] in fact compares the computed
tree solution to an optimal graph reservation.

Simplifying assumptions and a lower bound. Following [12], we make some
simplifying assumptions without loss of generality. By duplicating nodes, we can
assume that each terminal is either a sender s, with bout(s) = 1 and bin(s) = 0, or a
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receiver r, with bout(r) = 0 and bin(r) = 1. This simplifying assumption is feasible
as long as we make sure that the selected paths in our solution between copies of a
terminal v and copies of a terminal u are all equal. The algorithms presented in this
paper can easily be adapted to run in polynomial time even when the thresholds are
not polynomially bounded and to satisfy the consistence property described above.
Let S and R be the set of senders and the set of receivers, respectively. By S = |S|
and R = |R| we denote the corresponding cardinalities. For symmetry reasons, we
always assume R ≥ S.

We can now interpret VPND as follows. Let B = (S ∪ R, EB) be the complete
bipartite graph with nodes partitioned into senders and receivers. We have to reserve
capacities on the edges of G and we have to specify a set of paths P in graph G
containing one path Psr for each edge sr ∈ EB such that each bipartite matching
of B can be routed along these paths. In other words, for each edge e ∈ E, the
reservation u(e) has to satisfy the following condition:

(1)
∣∣{Prs ∈ P | e ∈ Prs and rs ∈ M}

∣∣ ≤ u(e) for each matching M in B.

Notice that for a fixed set of paths P, an optimal reservation of capacity is the compo-
nentwise minimal u satisfying (1). (In particular, given P, the integral capacity u(e)
of edge e can be obtained by a maximum bipartite matching computation.) Thus, a
solution to VPND can be encoded by specifying only a set of paths P in G.

The cost of a bipartite matching between senders and receivers in the metric
closure of G is obviously a lower bound on OPT , the value of an optimum solution
to the VPND instance. We denote the shortest path distance between nodes u and v
of G by !(u, v). Thus, if edges (r, s) in B are assigned weights !(r, s), then the cost
of any matching in B is a lower bound on OPT . This lower bound is used in the
analysis of all previous constant-factor approximation algorithms for VPND.

Lemma 1 (see [12]). Let B = (S + R, EB) be the complete bipartite graph on
the senders and receivers with edge-weights ! : EB → R+ given by the shortest path
distances in the graph G. Then, the weight of any matching in B is a lower bound on
OPT .

Contribution of this paper. The design of good approximation results usually
requires two main ingredients—cleverly constructed algorithms and thoroughly chosen
lower bounds on the optimum such that the quality of the computed solutions can be
assessed in terms of the lower bounds. We considerably advance the state of the art
of approximating VPND by making contributions to both ingredients.

In section 2 we present a new lower bound which strengthens the one stated in
Lemma 1. We prove that the weight of any matching (not necessarily bipartite) on the
union of the senders and at most S receivers is at most OPT . The edge-weights in the
matching are again the shortest path distances in G. This new lower bound relies on
an interesting interrelation between a special case of VPND and 2-commodity flows.
Its proof is based on an application of Hu’s 2-commodity flow theorem [13].

In section 3 we employ the new lower bound in order to show that the following
simple algorithm achieves performance ratio 1 + R/S: Find a vertex v ∈ V which
minimizes the sum of the shortest path distances between v and the union of senders
and receivers; cumulatively install a capacity of one on each such shortest path. One
interesting consequence of this result is that (BalG), VPND with balanced thresholds
and graph reservation, has a 2-approximation. Thus our result improves upon the 3-
approximation of Italiano, Leonardi, and Oriolo [15] for this problem and generalizes
the 2-approximation for (SymG) by Gupta et al. [11].
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In section 4 we present a new randomized algorithm for VPND. The algorithm
chooses a random subset of receivers and connects each sender via its own Steiner tree
to this subset. The remaining receivers are then connected to the randomly chosen
subset of receivers by shortest paths. Due to the Steiner trees for each individual
sender, the resulting solution has in general no tree structure. In contrast to our new
approach, the previous algorithm by Gupta, Kumar, and Roughgarden [12] constructs
only one random “high-bandwidth core” which is a Steiner tree with high capacity.
All previous approximation algorithms for VPND produce tree solutions.

In section 4 we show also that our new algorithm in combination with the sim-
ple algorithm from above yields a 3.79 randomized approximation algorithm. The
previously best known algorithm [12] achieves performance ratio 5.55.

Our VPND algorithm uses a Steiner tree approximation algorithm as a subroutine.
Dreyfus and Wagner [5] showed how to compute optimum Steiner trees in polynomial
time when the number of terminals is logarithmic. In section 5, by replacing the
approximate Steiner tree computation with an exact one whenever the number of
terminals is sufficiently small, we eventually obtain a 3.55-approximation algorithm.
To the best of our knowledge, this is the first time a result from exact (exponential)
algorithms leads to an improved polynomial-time approximation algorithm, which
might be of independent interest.

Related work. We have seen that the Steiner tree problem is a special case of
VPND. The current best approximation ratio for the Steiner tree problem is ρst < 1.55
[18]. A related problem is buy-at-bulk network design (see, e.g., [1, 2]). Here, there is
a fixed demand di,j between each pair of nodes in the graph, specifying the amount
of flow which has to be sent from i to j. The costs of the capacities however is
a concave function on the amount purchased, which reflects “economies of scale.”
Gupta, Kumar, and Roughgarden [12] consider the single source buy-at-bulk network
design problem and present a simple constant-factor approximation algorithm.

Another important issue in this context is to cope with arc failures in the network
[3, 4]. Italiano, Rastogi, and Yener [16] consider the problem of restoring the network,
when at most one arc in a tree solution to VPND might fail and provide a constant-
factor approximation algorithm.

It is conjectured that (SymG) can be solved in polynomial time. It is in fact con-
jectured that an optimal solution to (SymT ) is also an optimal solution to (SymG).
Hurkens, Keijsper, and Stougie [14] show that this conjecture holds for rings. The
authors also describe an integer programming formulation for VPND, which proves
that a fractional version can be solved in polynomial time. This fractional version al-
lows us to specify several paths for each sender-receiver pair and requires the fraction
for each of these paths, which describes how the commodity has to be split.

2. A new lower bound via Hu’s 2-commodity flow theorem. This section
is devoted to proving a new lower bound on the cost of an optimal solution to VPND.
Generalizing Lemma 1, we prove that the cost of an arbitrary (not necessarily bipar-
tite) matching between terminals in S∪R′ is at most OPT for any subset of receivers
R′ ⊆ R of cardinality |R′| = S. The proof of this result is based on Hu’s classical
2-commodity flow theorem [13].

Theorem 1 (Hu’s 2-commodity flow theorem). Let G = (V,E) be a graph and
let s1, r1, s2, r2 be pairs of vertices of G; let u : E → R+ be a capacity function
on the edges and let d1, d2 ∈ R+. There exists a (fractional) 2-commodity flow of
value d1, d2 if and only if the cut condition is satisfied, i.e., if and only if u(δ(U)) ≥
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Fig. 1. An undirected graph with unit capacities on the edges. While there exist integral 2-
commodity flows satisfying unit demands for terminal pairs {s1, r1}, {s2, r2} and for terminal pairs
{s1, r2}, {s2, r1}, there is only a half-integral 2-commodity flow for terminal pairs {s1, s2}, {r1, r2}.

d1 χ1(U)+d2 χ2(U) for each U ⊆ V . Here δ(U) denotes the cut induced by U and, for
i ∈ {1, 2}, χi(U) = 1 if the cut δ(U) separates si from ri, and χi(U) = 0 otherwise.

Hu’s theorem immediately implies the following corollary.
Corollary 1. Let G = (V,E) be an undirected graph with edge capacity function

u : E → R+ and s1, s2, r1, r2 ∈ V . In the following, all demand values are equal to 1.
If there exists a feasible 2-commodity flow for terminal pairs {s1, r1}, {s2, r2} and for
terminal pairs {s1, r2}, {s2, r1}, then there also exists a feasible 2-commodity flow for
terminal pairs {s1, s2}, {r1, r2}.

Proof. Hu’s 2-commodity flow theorem states that there exists a feasible 2-
commodity flow if and only if the “cut condition” is satisfied. In the case of unit
demands, the cut condition says that, for all U ⊆ V , the capacity u(δ(U)) of the cut
induced by U must be at least the number of terminal pairs which are separated by
the cut.

It thus remains to show that the cut condition holds for terminal pairs {s1, s2},
{r1, r2} if it holds for {s1, r1}, {s2, r2} and for {s1, r2}, {s2, r1}. Consider an arbitrary
U ⊆ V . If the corresponding cut separates neither {s1, s2} nor {r1, r2}, nothing needs
to be shown. If δ(U) separates one terminal pair, say, {s1, s2}, then it separates either
{s1, r1} or {s2, r1} since s1 and s2 lie on different sides of the cut. In particular,
the capacity of the cut is at least 1. Finally, if δ(U) separates both terminal pairs
{s1, s2}, {r1, r2}, then it must separate either {s1, r1} and {s2, r2} or {s1, r2} and
{s2, r1}. In both cases the capacity of the cut is at least 2.

We remark that Corollary 1 is no longer true if we replace “2-commodity flow”
by “integral 2-commodity flow.” A counterexample is given in Figure 1. Even, Itai,
and Shamir show that finding an integer 2-commodity flow is NP-hard [9]. On the
other hand, Hu’s result states that there always exists a half-integral flow in this case.
For a more detailed account of results we refer the reader to Schrijver’s book [19,
Chapter 71].

The next lemma shows that a partition of the senders and receivers into k-subsets
each and the “addition” of the optimal solutions of the k subproblems induced by the
pairs of subsets provide a lower bound on the optimal solution.

Lemma 2. Suppose that S1, S2, . . . , Sk is a partition of S and that R1,R2, . . . ,Rk

is a partition of R. Let Ii be the VPND instance on graph G with senders Si and
receivers Ri, and let OPTi be the value of an optimal solution to instance Ii. Then
the following holds:

k∑

i=1

OPTi ≤ OPT.

Proof. Let P be an optimal set of paths for the original VPND instance with
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resulting capacity reservation u : E → R+. The subset Pi ⊆ P of paths with endpoints
in Si∪Ri defines a solution to subinstances Ii with capacity reservation ui : E → R+.
It suffices to show that u(e) ≥

∑k
i=1 ui(e) for each edge e ∈ E.

It follows from (1) that for each i = 1, 2, . . . , k

ui(e) = max
Mi

|{Prs ∈ Pi | e ∈ Prs and rs ∈ Mi}|,

where Mi ranges over all bipartite matchings between senders Si and receivers Ri. We
denote the matching for which the maximum is attained by M̃i. Then, the disjoint
union M̃ :=

⋃k
i=1 M̃i is a bipartite matching between senders S and receivers R. It

thus follows from (1) that

u(e) ≥ |{Prs ∈ P | e ∈ Prs and rs ∈ M̃}|

=
k∑

I=1

|{Prs ∈ Pi | e ∈ Prs and rs ∈ M̃i}| =
k∑

i=1

ui(e)

for each edge e ∈ E. This concludes the proof.

We are now ready to prove the following theorem which gives a new lower bound
on the cost of an optimal VPND solution.

Theorem 2. Consider an arbitrary subset R′ ⊆ R of S receivers. Let M be a
matching in the complete graph on S ∪ R′. Then

∑

vw∈M

!(v, w) ≤ OPT.

Proof. Let S = {s1, s2, . . . , sS} and R′ = {r1, r2, . . . , rS}. It suffices to prove the
claim for perfect matchings. Suppose that the matching consists of the edges

s1s2, s3s4, . . . , s2k−1s2k and r1r2, r3r4, . . . , r2k−1r2k,

and s2k+1r2k+1, s2k+2r2k+2, . . . , sSrS .

Consider the following partition of S and R′ into S − k subsets Si and R′
i:

Si = {s2 i−1, s2 i}, R′
i = {r2 i−1, r2 i}, 1 ≤ i ≤ k,

Si = {si}, R′
i = {ri}, 2 k + 1 ≤ i ≤ S.

By Lemma 2, the sum of the optimum solutions OPTi of the VPND subinstances Ii
with senders Si and receivers R′

i is a lower bound on OPT . Thus we need only to
prove that !(s2 i−1, s2 i) + !(r2 i−1, r2 i) ≤ OPTi for each 1 ≤ i ≤ k.

An optimum solution to the subproblem Ii, 1 ≤ i ≤ k, is a reservation of ca-
pacities that supports 2-commodity flows with unit demands for the terminal pairs
{s2 i−1, r2 i−1}, {s2 i, r2 i} and for the terminal pairs {s2 i−1, r2 i}, {s2 i, r2 i−1}. By
Corollary 1, it must also support a 2-commodity flow for the terminal pairs {s2 i−1, s2 i},
{r2 i−1, r2 i}. Therefore, the cost of this solution is at least !(s2 i−1, s2 i)+!(r2 i−1, r2 i).
This concludes the proof.



712 EISENBRAND, GRANDONI, ORIOLO, AND SKUTELLA

3. The quality of a simple routing scheme. Consider the following simple
VPND algorithm.

Algorithm 1 (simple routing scheme).
(1) Compute a vertex v ∈ V such that

∑
s∈S !(s, v) +

∑
r∈R !(r, v) is minimal.

(2) Add one unit of capacity along the shortest path between each u ∈ R ∪ S and
v.

Algorithm 1 selects the vertex v ∈ V which minimizes the sum of the distances
from v to the union of the senders and receivers, and reserves one unit of capacity
along each of the shortest paths. Note that the effects of installing capacities along
the shortest paths is cumulative. In other words, if k shortest paths share the same
edge, the algorithm adds k units of capacity to that edge. Moreover, we assume the
shortest paths are computed with a consistent tie-breaking rule. This way, the edges
with nonzero capacity form a tree.

Algorithm 1 produces an optimal tree reservation in the symmetric case (SymT )
[11] and in the balanced case (BalT ) [15]. In the symmetric case, Gupta et al. [11]
showed that the tree produced by the algorithm is a 2-approximate solution to the
optimum graph reservation. Italiano, Leonardi, and Oriolo [15] show that, in the
balanced case, the produced tree is a 3-approximate solution to the optimum graph
reservation.

In this section, we apply our new lower-bound result to show that the algorithm
produces a tree solution which is within 1+R/S from the optimum graph reservation.
Thus (BalG) can also be approximated within a factor of two. We first need the
following simple lower bound on OPT . Let !(E′) :=

∑
uv∈E′ !(u, v) for any subset of

edges E′.
Lemma 3. The sum of the distances between each sender-receiver pair is at most

R times the optimum:

(2)
∑

s∈S

∑

r∈R

!(s, r) ≤ R ·OPT.

Proof. Let B = (S + R, EB) be the complete bipartite graph on the senders and
receivers with edge-weights ! : EB → R+ given by the shortest path distances in
the graph G. The edges of B can be partitioned into a set M of R matchings. By
Lemma 1, the cost !(M) of each M ∈ M is at most OPT . Hence

∑

s∈S

∑

r∈R

!(s, r) =
∑

M∈M

!(M) ≤ R ·OPT.

We are now ready to bound the approximation ratio provided by Algorithm 1.
Theorem 3. Algorithm 1 is a (1 + R/S)-approximation algorithm for VPND.
Proof. Let Gm = (R ∪ S, Em) be the metric closure of R ∪ S, i.e., the complete

graph on R ∪ S with edge-weight !(u, v) given by the shortest path distance between
u and v in G. We show that there exists a node u ∈ R ∪ S such that the cost of the
complete star centered at u satisfies

∑

v∈R∪S

!(u, v) ≤ (1 + R/S)OPT.

If R = S, the edges of Em can be partitioned into 2S − 1 perfect matchings. By
Theorem 2, the weight of each matching is a lower bound on OPT . Since each edge
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is contained in exactly two stars of Gm,

∑

v∈R∪S

∑

u∈R∪S

!(v, u) = 2!(Em) ≤ 2(2S − 1)OPT.

Thus there must exist one star, whose weight is at most 2(2S−1)OPT/(2S) < 2OPT .
Suppose for the remainder of the proof that R > S. In the following we denote by

MS and MR the set of matchings of cardinality at most (S/2) involving only senders
and only receivers, respectively. Theorem 2 implies the inequality

(3) !(MS) + !(MR) ≤ OPT for each MS ∈ MS, MR ∈ MR.

In consideration of (3), we distinguish two cases.
(A) !(MS) ≤ OPT/2 for each MS ∈ MS. Consider the subgraph Gm

S of Gm which
is induced by the senders. The edges Em

S of Gm
S can be partitioned into S matchings.

Therefore

(4)
∑

s′∈S

∑

s∈S

!(s′, s) = 2 !(Em
S ) ≤ 2S

OPT

2
= S OPT.

Combining (4) and (2), one obtains

∑

s′∈S

(
∑

s∈S

!(s′, s) +
∑

r∈R

!(s′, r)

)
≤ (S + R)OPT.

Therefore there is a sender s∗ such that
∑

v∈S∪R

!(s∗, v) ≤ (1 + R/S)OPT.

(B) !(MS) > OPT/2 for some maximum weight matching MS ∈ MS. Let Gm
R

denote the subgraph of Gm which is induced by the receivers. We will show below
that, for any maximal matching M̃ in Gm

R ,

(5) !(M̃) ≤ (R/S)OPT/2.

Since the edges of Gm
R can be partitioned into at most R maximal matchings, we can

then argue in a similar manner as in case (A) that

∑

r′∈R

∑

r∈R

!(r, r′) ≤ 2R
R

S

OPT

2
= (R 2/S)OPT.

Together with (2) this implies

∑

r′∈R

(
∑

s∈S

!(s, r′) +
∑

r∈R

!(r, r′)

)
≤ (R + R 2/S)OPT,

from which we conclude that there is a receiver r∗ satisfying

∑

v∈S∪R

!(v, r∗) ≤ (1 + R/S)OPT.
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It remains to prove (5). We distinguish between the two subcases in which S is
even and S is odd.

(B.1) S is even. Theorem 2, together with the assumption !(MS) > OPT/2, im-
plies !(MR) ≤ OPT/2 for each matching MR ∈ MR. Note that |M̃ | = (R/2) ≥ S/2.
Consider the S/2 most expensive edges M ′ of M̃ . Since M ′ ∈ MR, !(M ′) ≤ OPT/2.
Hence the average cost of one edge of M̃ is upper bounded by (OPT/2)/(S/2) =
OPT/S. Since M̃ has at most R/2 edges, we get

!(M̃) ≤ |M̃ |OPT

S
≤ R

2

OPT

S
= (R/S)OPT/2.

(B.2) S is odd. There is a sender s∗ which is missed by the maximum cost
matching MS of Gm

S . For each matching MR ∈ MR and r∗1 ∈ R which is not matched
by MR, Theorem 2 yields

!(MS) + !(MR) + !(s∗, r∗1) ≤ OPT,

and hence

!(MR) + !(s∗, r∗1) ≤ OPT/2.

Consider any other receiver r∗2 which is not matched by MR. This receiver must exist
since R > S. By the triangle inequality one has !(r∗1 , r

∗
2) ≤ !(s∗, r∗1) + !(s∗, r∗2). As a

result we get

(6) !(MR) + 1/2 !(r∗1 , r
∗
2) ≤ OPT/2

for each matching MR ∈ MR and receivers r∗1 , r
∗
2 which are missed by MR.

Now consider the (S−1)/2 most expensive edges M ′ of M̃ , and let e′ be the next
most expensive edge of M̃ . Since M ′ ∈ MR, by (6),

!(M ′) + 1/2 !(e′) ≤ OPT/2.

It follows that half the average cost of one edge of M̃ is upper bounded by (OPT/2)/(S−
1 + 1) = OPT/(2S), from which we conclude

!(M̃) ≤ 2 |M̃ |OPT

2S
≤ 2

R

2

OPT

2S
= (R/S)OPT/2.

4. A new algorithm for VPND. In section 3 we described an algorithm which
guarantees a good approximation ratio for R close to S. Here we present a better
approximation algorithm in case R is sufficiently larger than S.

The algorithm by Gupta et al. [12] constructs one random “high-bandwidth core,”
i.e., a small Steiner tree with high capacity, where the terminals are a random sender
and a random subset of receivers. Such a Steiner tree collects and distributes the
demands from outside, and routes them along its high capacity paths. Our algorithm
is also based on Steiner tree computations, but we proceed by connecting each sender
to a previously sampled subset of receivers via S distinct Steiner trees of low capacity,
and by connecting the other receivers along their shortest paths to the sampled subset
(see Figure 2). More precisely, our algorithm works as follows.

Algorithm 2.
(1) Partition R into S subsets uniformly at random. Select one subset R′ uni-

formly at random, among the nonempty subsets in the partition.
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Fig. 2. Intuitive comparison between Algorithm 2 (on the left) and the algorithm in [12]. Black
nodes form the randomly sampled subsets. Positive capacity is reserved on thick edges only: Dashed
thick edges correspond to Steiner trees, while full ones correspond to shortest paths.

(2) For each sender s ∈ S, compute a ρst-approximate Steiner tree T (s) on {s}∪
R′, and add one unit of capacity to each edge of T (s).

(3) Add one unit of capacity along the shortest path between each receiver r ∈ R
and R′.

It remains to specify the path between each sender-receiver pair (s, r). Assume
that the shortest paths are computed with a consistent tie-breaking rule. Let r∗ be
the receiver in R′ which is closest to r. The path Psr between s and r is obtained
by concatenating the (simple) path between s and r∗ in T (s), with the shortest path
between r∗ and r.

The thereby produced solution is not a tree solution. Though an optimal tree
solution is a constant-factor approximation to an optimal graph solution, it is known
[11] that an optimal solution to (AsymT ) is not an optimal solution to VPND. All pre-
vious constant-factor approximation algorithms for VPND, however [12, 7], produce
tree reservations.

Before we proceed with the analysis of Algorithm 2, we state a corollary of
Lemma 2. Here, given a subset V ′ of nodes, we denote the cost of the optimum
Steiner tree on V ′ by st(V ′).

Corollary 2 (see [12]). Let R1,R2, . . . ,Rs be a partition of R into S (disjoint)
subsets. Consider an arbitrary perfect matching between S and this family of subsets.
Let R(s) be the subset matched with sender s. The sum over S of the costs of the
optimum Steiner trees on {s} ∪ R(s) is a lower bound on OPT :

∑

s∈S

st({s} ∪ R(s)) ≤ OPT.

Proof. This follows from Lemma 2 since a solution of a subinstance {s},R(s)
contains a Steiner tree with terminals {s} ∪ R(s).

Theorem 4. Algorithm 2 is a (2+ρst)/(1− e−R/S)-approximation algorithm for
VPND.

Theorem 4 is a straightforward consequence of the following lemmas.
Lemma 4. For a uniformly chosen random sender s′,

E[st({s′} ∪ R′)] ≤ OPT

S(1 − e−R/S)
.

Proof. Consider the following random process. For each receiver r, we assign r to
a sender s chosen uniformly at random. Let R(s) be the subset of receivers assigned
to s. Note that the subsets R(s) partition R into S (possibly empty) subsets. Thus,
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by Corollary 2,

∑

s∈S

st({s} ∪ R(s)) ≤ OPT.

This means that, for the random sender s′,

E[st({s′} ∪ R(s′))] ≤ OPT/S.

Let A denote the event that R(s′) is empty. By elementary probability theory,

E[st({s′} ∪ R(s′))] = P (A)E[st({s′} ∪ R(s′)) | A] + P (A)E[st({s′} ∪ R(s′)) | A].

Now observe that

P (A) = 1 − (1 − 1/S)R ≥ 1 − e−R/S .

Moreover

E[st({s′} ∪ R(s′)) | A] = E[st({s′})] = 0.

Thus

E[st({s′} ∪ R(s′)) | A] =
E[st({s′} ∪ R(s′))]

P (A)
≤ OPT

S(1 − e−R/S)
.

The claim follows by observing that, given A, R(s′) and R′ are identically distributed.
Thus

E[st({s′} ∪ R′)] = E[st({s′} ∪ R(s′)) | A] ≤ OPT

S(1 − e−R/S)
.

Lemma 5. The expected cost of the capacity installed in the second step of Algo-
rithm 2 is at most

ρst OPT/(1 − e−R/S).

Proof. The expected cost considered is

E

[
∑

s∈S

c(T (s))

]
,

where c(T (s)) is the cost of the Steiner tree T (s). Of course

c(T (s)) ≤ ρst st({s} ∪ R′).

Let s′ be a sender chosen uniformly at random. By Lemma 4,

E

[
∑

s∈S

c(T (s))

]
≤ ρst E

[
∑

s∈S

st({s} ∪ R′)

]
= ρst S E[st({s′} ∪ R′)]

≤ ρst S
OPT

S(1 − e−R/S)
=
ρst OPT

1 − e−R/S
.
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Lemma 6. The expected cost of the capacity installed in the third step of Algo-
rithm 2 is at most

2OPT/(1 − e−R/S).

Proof. Let r′ be an arbitrary receiver in R′. Observe that the probability of any
other receiver r′′ being in R′, given that r′ is in R′, is 1/S. In fact, let R∗ be a random
(possibly empty) partition element. Then

P (r′ ∈ R′) = P (r′ ∈ R∗ | R∗ *= ∅) =
P (r′ ∈ R∗ ∩ R∗ *= ∅)

P (R∗ *= ∅)

=
P (r′ ∈ R∗)

P (R∗ *= ∅) =
1/S

1 − (1 − 1/S)R
.

By basically the same argument

P (r′ ∈ R′ ∩ r′′ ∈ R′) =
(1/S)2

1 − (1 − 1/S)R
.

Thus

P (r′′ ∈ R′ | r′ ∈ R′) =
P (r′′ ∈ R′ ∩ r′ ∈ R′)

P (r′ ∈ R′)
=

(1/S)2/(1 − (1 − 1/S)R)

(1/S)/(1 − (1 − 1/S)R)
=

1

S
.

Now consider the following random process. In step t, let At be the subset of receivers
considered so far, and let Bt be the bought receivers in At. Initially A1 = B1 = {r′},
where r′ is a random receiver. In step t, we consider the receiver rt ∈ R \At which is
closest to Bt, and we set At+1 = At ∪ {rt}. Then, with probability 1/S, we buy rt;
that is,

• we add S units of capacity along the shortest path from rt to Bt, and
• we set Bt+1 = Bt ∪ {rt}.

Otherwise, we rent rt; that is,
• we add one unit of capacity along the shortest path from rt to Bt, and
• we set Bt+1 = Bt.

Note that, at the end of the process, the set of bought receivers B′ has the same
distribution as the set R′ of selected receivers. Let !(v, V ′) = minv′∈V ′{!(v, v′)}
denote the minimum distance between a node v and a subset of nodes V ′. The
expected cost of the third step of the algorithm is upper bounded by the expected
cost crent of renting receivers

E




∑

r∈R\R′

!(r, R′)



 = E




∑

rt∈R\B′

!(rt, B′)



 ≤ E




∑

rt∈R\B′

!(rt, Bt)





= E

[
∑

rt∈R

(
1 − 1

S

)
!(rt, Bt)

]
= crent,

where the inequality comes from the fact that Bt ⊆ B′ for any t.
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The expected cost cbuy of buying receivers is an upper bound on crent:

crent = E

[
∑

rt∈R

(
1 − 1

S

)
!(rt, Bt)

]
≤ E

[
∑

rt∈R

(
1

S

)
S !(rt, Bt)

]

= E

[
∑

rt∈B′

S !(rt, Bt)

]
= cbuy .

Note that cbuy is equal to S times the expected cost of the Steiner tree on B′ which
is obtained via the minimum spanning tree heuristic (starting Prim’s algorithm from
node r′). It is well known that this heuristic provides a 2-approximate solution [17].
Thus

cbuy ≤ 2S E[st(B′)] = 2S E[st(R′)].

For a random sender s′, by Lemma 4,

E[st(R′)] ≤ E[st({s′} ∪ R′)] ≤ OPT

S(1 − e−R/S)
.

Altogether,

E

[
∑

r∈R

!(r,R′)

]
≤ crent ≤ cbuy ≤ 2S

OPT

S(1 − e−R/S)
=

2OPT

1 − e−R/S
.

In section 3 we described a (1 + R/S)-approximation algorithm. The factors
1 + R/S and (2 + ρst)/(1 − e−R/S) are equal for R/S = 2.78 . . . < 2.79. Note that
1+R/S is increasing in R/S and (2+ρst)/(1−e−R/S) is decreasing in R/S. It follows
that a combination (taking the minimum cost solution) of Algorithms 1 and 2 has an
expected approximation guarantee of 3.79, which is a considerable improvement com-
pared to the 5.55-approximation ratio achieved by Gupta, Kumar, and Roughgarden
[12].

Theorem 5. The combination (taking the cheaper solution) of Algorithms 1 and
2 is an expected 3.79-approximation algorithm for VPND.

5. Computing optimum Steiner trees. The performance ratios of Algo-
rithms 1 and 2 meet roughly at R/S - 2.78. In this case, the sampled set R′ of
receivers has expected constant size. An optimum Steiner tree on a graph with n
nodes and t terminals can be computed in O(3t n+2t n2 +n3) time with the Dreyfus–
Wagner algorithm [5]. This suggests the following variant of Algorithm 2, which
computes optimal Steiner trees in step (2), instead of ρst-approximate ones, whenever
|R′| ≤ log n. Here n is the number of nodes in the original graph G. Without loss of
generality, we assume n is sufficiently large.

Algorithm 3.
(1) Partition R into S subsets uniformly at random. Select one subset R′ uni-

formly at random, among the nonempty subsets in the partition.
(2) For each sender s ∈ S, compute a ρst-approximate Steiner tree T (s) on {s}∪

R′ if |R′| > log n. Otherwise, compute an optimum Steiner tree T (s) on
{s} ∪ R′. In both cases, add one unit of capacity to each edge of T (s).

(3) Add one unit of capacity along the shortest path between each receiver r ∈ R
and R′.
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Clearly, Algorithm 3 is a polynomial-time algorithm whose expected approxima-
tion guarantee is not worse than the one of Algorithm 2. In particular, if R/S is very
large, say, R/S ≥ log logn, the approximation achieved is

2 + ρst
1 − e−R/S

≤ 2 + ρst
1 − 1/ log n

= 2 + ρst + o(1) < 3.55.

What can be said about the approximation guarantee if R/S ≤ log logn? In that
case, the expected size of R′ is 1 + (R − 1)/S < 1 + log logn. The probability that
the size of R′ exceeds log n is at most (1 + log logn)/ log n by Markov’s inequality.
Thus with high probability Algorithm 3 computes optimum Steiner trees. When this
happens, the approximation ratio is bounded by 3.325 . . . < 3.326. In the very unlikely
event that Algorithm 3 computes ρst-approximate Steiner trees, the approximation
guaranteed by Algorithm 1 alone is O(log logn). Hence this event contributes to the
expected approximation ratio with o(1) only. This is the intuition behind the following
theorem.

Theorem 6. For a sufficiently large n, the combination (taking the cheaper solu-
tion) of Algorithms 1 and 3 is an expected 3.55-approximation algorithm for VPND.

Proof. Following the discussion above, if R/S > log logn, the expected approxi-
mation ratio achieved is 2+ρst+o(1) < 3.55. Then we can restrict our analysis to the
case R/S ≤ log logn. Let APX denote the expected cost of the solution computed.
One has

APX ≤ E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s)) +
∑

r∈R

!(r,R′)

}]
.

Of course,

(7) APX ≤ (1 + R/S)OPT,

and

APX ≤ E

[
∑

r∈R

!(r,R′)

]
+ E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s))

}]
.

By Lemma 6,

(8) E

[
∑

r∈R

!(r,R′)

]
≤ 2OPT

1 − e−R/S
.

Let A denote the event that R′ = |R′| ≤ log n. By elementary probability theory one
has

E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s))

}]
≤ P (A)E

[
(1 + R/S)OPT | A

]

+ P (A)E

[
∑

s∈S

c(T (s)) | A
]
.

(9)
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We now consider both terms separately. By Markov’s inequality one has P (A) ≤
(1 + log logn)/ log n. Thus

P (A)E
[
(1 + R/S)OPT | A

]
≤ P (A)E

[
(1 + log logn)OPT | A

]

≤ (1 + log logn)2

log n
OPT.

Given A, Algorithm 3 computes optimal Steiner trees T (s) of cost st({s} ∪R′). Also
E
[
st({s} ∪ R′) | R′ ≤ h

]
is a nondecreasing function of h. Thus, from the proof of

Lemma 5, the second term on the right of (9) can be bounded by

P (A)E

[
∑

s∈S

c(T (s)) | A
]
≤ E

[
∑

s∈S

st({s} ∪ R′)

]
≤ OPT

1 − e−R/S
.

One therefore has

E

[
min

{
(1 + R/S)OPT,

∑

s∈S

c(T (s))

}]
≤ (1 + log logn)2

log n
OPT +

OPT

1 − e−R/S

≤
(

1 +
(1 + log logn)2

log n

)
OPT

1 − e−R/S
.(10)

Combining (7), (8), and (10), we conclude that

APX ≤ min

{
(1 + R/S)OPT,

(
3 +

(1 + log logn)2

log n

)
OPT

1 − e−R/S

}
.

Thus, for a sufficiently large n, the expected approximation ratio for R/S ≤ log logn
is upper bounded by 3.325 . . . < 3.326. Altogether, the approximation ratio is

min{3.326, 2 + ρst + o(1)} < 3.55.

Corollary 3. There is an expected 3.55-approximation algorithm for VPND.
Proof. When n is upper bounded by a constant, the optimum solution can be

computed in polynomial time by trivial enumeration. The claim follows from
Theorem 6.
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