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ABSTRACT

Runtime analyses of randomized search heuristics for com-
binatorial optimization problems often depend on the size
of the largest weight. We consider replacing the given set
of weights with smaller weights such that the behavior of
the randomized search heuristic does not change. Upper
bounds on the size of the new, equivalent weights allow us
to obtain upper bounds on the expected runtime of such
randomized search heuristics independent of the size of the
actual weights. Furthermore we give lower bounds on the
largest weights for worst-case instances. Finally we present
some experimental results, including examples for worst-case
instances.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: randomized search heuristics, evolutionary al-
gorithms

1. INTRODUCTION

We consider combinatorial optimization problems on the
search space S = {0, 1}n. The set of feasible search points
is denoted by F ⊆ S. For simplification, we restrict our-
selves to minimization problems. The objective function
f : S 7→ Z is given by f(x) =

Pn
i=1Wixi for x ∈ F with

integral positive weights Wi ∈ N. We demand that f sep-
arates F and S \ F , i. e., f(x) < f(y) for all x ∈ F and
y ∈ S \ F . We also assume that the feasibility of a search
point x ∈ S does not depend on the weights Wi. In other
words, the set F of feasible search points is independent from
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the weights Wi. Let H(x, y) denote the Hamming distance
of x, y ∈ S.

We consider the following class of randomized search heu-
ristics [8, 9].

Algorithm 1. Randomized Search Heuristic (RSH`)
1. Choose x ∈ F .
2. Repeat

• Choose x′ ∈ S such that H(x, x′) ≤ `.
• If f(x′) ≤ f(x), then x← x′.

In each step, RSH` chooses a search point x′ from the
neighborhood of the current search point x that consists
of all search points in S with a Hamming distance of at
most `. The acceptance of x′ is only based on the sign
of f(x′) − f(x), not on the value f(x′) − f(x) itself. The
variant RSH∗` of RSH` accepts search points x′ if and only
if f(x′) < f(x).

We do not make any assumptions on the way x and x′

are chosen. A well-studied evolutionary algorithm called
(1+1) EA obtains x′ by flipping the bits of x with probability
1/n. Another evolutionary algorithms called RLS` flips up
to ` bits according to a fixed probability distribution, where `
is typically a small number, e. g., ` = 2 or ` = 3. Some local
search algorithms consider the entire neighborhood within
Hamming distance ` and pick x′ from this neighborhood
according to some criterion. Tabu search methods maintain
a set of forbidden search points that are not considered in
the current iteration.

Note that in our description of Algorithm 1 the initial
search point x is chosen from the set F of feasible search
points. Often one chooses the initial search point randomly
from the search space S such that the algorithm does not
necessarily start from a feasible solution. In this case, divide
the run of RSH` into two phases. The second phase starts
as soon as a feasible search point x ∈ F has been found.
By definition of the objective function f , infeasible search
points are never accepted in the second phase. Then our
results apply to the analysis of the second phase.

Since runtime analyses of such randomized search heu-
ristics often depend on the largest weight Wmax [2, 4, 5,
6, 7], we would like to replace the weights W1, . . . ,Wn by
new weights w1, . . . , wn such that wmax is as small as possi-
ble under the condition that the behavior of RSH` does not
change.

In particular, we would like to bound the minimal wmax

from above over all inputs Wi. In the runtime analysis, such
an upper bound can be used instead of Wmax. Note that the



problem
known result

algorithm `
upper bd. new result

depending on Wmax on wmax independent of Wmax

Minimum Spanning
O(|E|2(log |V |+ logWmax))

RLS 2 |E| O(|E|2 log |V |)
Tree [6] (1+1) EA |E| |E||E|/2 O(|E|3 log |V |)

Minimum Weight
O(|E|2(log r(E) + logWmax))

RLS 2 |E| O(|E|2 log |E|)
Basis [7] (1+1) EA |E| |E||E|/2 O(|E|3 log |E|)

Weighted Matroid
O(|E|4(log r(E) + logWmax))

RLS3 3 2|E| O(|E|5)

Intersection [7] (1+1) EA |E| |E||E|/2 O(|E|5 log |E|)
Weighted Intersection

O(|E|p+2(log r(E) + logWmax))
RLSp+1 p+ 1 (p+ 2)|E|/2 O(|E|p+3 log p)

of p ≥ 3 Matroids [7] (1+1) EA |E| |E||E|/2 O(|E|p+3 log |E|)
Minimum Spanning O(|E||V |(log |V |+ logWmax)) (1st ph.) SEMO |E| (!) |E||E|/2 O(|E|2|V | log |V |)

Tree [5] O(|E||V |2) (2nd phase) GSEMO |E| |E||E|/2 O(|E|2|V | log |V |)
Minimum Set

O(|S|2|C|+ |S||C|(log |C|+ logWmax))
SEMO |C| (!) |C||C|/2 O(|S|2|C|+|S||C|2 log |C|)

Cover [2] GSEMO |C| |C||C|/2 O(|S|2|C|+|S||C|2 log |C|)

Table 1. Application of the upper bound of Theorem 3 to known results depending on Wmax (see Section 4 for a detailed discussion). The
new results are obtained by replacing Wmax by the upper bound on wmax. Note that n = |E| or n = |C|, respectively.Furthermore, in the
Minimum Spanning Tree problem we have log |E| = O(log |V |). The results for ` = 2 are trivial and are already mentioned in [7]. The
results for Weighted Matroid Intersection, Weighted Intersection of p ≥ 3 Matroids and Minimum Set Cover correspond to 1/2-, 1/p- and
log |S|-approximate solutions, respectively.

replacement of the given weights Wi by the new weights wi

is only done conceptually. The randomized search heuristic
still runs on the given weights Wi. Only the runtime analysis
is based on the new weights wi. If the new weights are
chosen such that the behavior of RSH` does not change,
then an upper bound on the optimal wmax can be used in
the runtime analysis instead of Wmax.

Consider for example the weights W = (3, 7, 11, 19, 31)
and ` = 3. These weights can be replaced by w = (1, 2, 4, 7,
12), because fW (x)−fW (x′) =

Pn
i=1Wixi−

Pn
i=1Wix

′
i has

the same sign as fw(x) − fw(x′) =
Pn

i=1 wixi −
Pn

i=1 wix
′
i

for all x, x′ ∈ S with H(x, x′) ≤ 3. On the other hand,
consider the weights W = (3, 5, 7, 11, 17). In this case, there
are no weights w with wmax < 17 satisfying the conditions
above.

A lower bound on the largest minimal wmax is interesting
for worst-case analyses. Such a bound implies the existence
of problem instances with weights of a certain size such that
these weights cannot be replaced by smaller weights with-
out affecting the behavior of the randomized search heuris-
tic. The second example given above is such a worst-case
instance for n = 5 and ` = 3.

In this paper we show that for any given weights W1, . . . ,
Wn there are always equivalent weights w1, . . . , wn such that
wmax ≤ nn/2. Two weight vectors are called equivalent
if the behavior of RSH` does not change by replacing one
weight vector with the other one in the objective function.
Depending on ` this bound can be improved significantly,
for example, for ` = 3 we have wmax ≤ 1

2

√
3 · 2n. These

results have important consequences for optimization prob-
lems where the runtime analysis of evolutionary algorithms
depends on Wmax. We obtain the first strongly polyno-
mial bounds for problems for which only weakly polynomial
bounds were previously known. We summarize these results
in Table 1 (see Section 4 for a detailed discussion).

The remainder of this work is structured as follows. In
Section 2 we give a formal definition of the considered prob-
lem. The main results are proved in Section 3, where we
show lower and upper bounds on the largest minimal wmax.
In Section 4 we apply these results to optimization problems

where the runtime analyses of evolutionary algorithms de-
pends on Wmax. Experimental results for ` = 3 and ` = n
are presented in Section 5. Finally we conclude our work in
Section 6.

2. PROBLEM DEFINITION

Let sign(·) denote the three-valued sign function

sign : R 7→ {−1, 0, 1}, sign(y) =

8><>:
+1, y > 0

0, y = 0

−1, y < 0

.

Furthermore, for z ∈ Rn let |z| 6=0 denote the number of
entries not equal to zero.

The difference of the objective values of two search points
x ∈ F and x′ ∈ F can be written as

f(x′)− f(x) =

nX
i=1

Wix
′
i −

nX
i=1

Wixi =

nX
i=1

diWi ,

with d := x′ − x ∈ {−1, 0, 1}n. If H(x, x′) ≤ `, we have
|d|6=0 ≤ `. Hence our problem can be stated as follows.

Problem 1. (Weight Minimization Problem) Given
n weights W1, . . . ,Wn ∈ N, 0 < W1 ≤ W2 ≤ . . . ≤ Wn, and
` ∈ N. Find weights w1, . . . , wn ∈ N, wn minimal, such that
0 < w1 ≤ . . . ≤ wn and

sign

 
nX

i=1

diwi

!
= sign

 
nX

i=1

diWi

!
(1)

for all d ∈ {−1, 0, 1}n, 2 ≤ |d|6=0 ≤ `.

For simplicity, we require all weights to be sorted in non-
decreasing order. Hence, Wn and wn take the role of Wmax

and wmax. Note that we explicitly allow non-unique weights,
because non-unique weights Wi = Wi+1 can be used to en-
code constraints such as Wk = Wi + Wi+1 = 2Wi. Also
note that the conditions (1) for |d| 6=0 = 0 and |d| 6=0 = 1 are
fulfilled trivially.



Algorithm 1 does not differentiate between f(x′) > f(x)
and f(x′) = f(x), while the three-valued sign function does.
This is intended, since x and x′ might appear in the algo-
rithm in interchanged roles. Hence, we have to distinguish
all three cases.

Note that the conditions (1) are sufficient for our original
motivitation, but not always necessary. In particular, if F ⊂
S there might be a d ∈ {−1, 0, 1}n such that there is no
x, x′ ∈ F with x−x′ = d. In this case, our formulation of the
weight minimization problem contains conditions that are
not necessary for w1, . . . , wn being equivalent to W1, . . . ,Wn

and . In the following, we assume the worst case F = S,
i. e., all constraints are necessary (in the sense that they do
not impose additional restrictions, some of them are still
redundant).

The right-hand sides of the conditions (1) are fixed num-
bers in {−1, 0, 1}. We divide these conditions into three
classes based on their right-hand side. Let

LT :=

(
d ∈ {−1, 0, 1}n

˛̨̨̨
2 ≤ |d| 6=0 ≤ `,

nX
i=1

diWi ≤ −1

)
,

EQ :=

(
d ∈ {−1, 0, 1}n

˛̨̨̨
2 ≤ |d| 6=0 ≤ `,

nX
i=1

diWi = 0

)
, and

GT :=

(
d ∈ {−1, 0, 1}n

˛̨̨̨
2 ≤ |d| 6=0 ≤ `,

nX
i=1

diWi ≥ 1

)
.

Since all di and Wi are integral, we have LT ∪̇ EQ ∪̇GT =
{d ∈ {−1, 0, 1}n | 2 ≤ |d| 6=0 ≤ `}. Using this notation we
can restate Problem 1 as follows.

Problem 2.Given n weights W1, . . . ,Wn ∈ N, 0 < W1 ≤
W2 ≤ . . . ≤ Wn, and ` ∈ N. Find weights w1, . . . , wn ∈ N,
wn minimal, such that w1 > 0,

nX
i=1

diwi ≤ −1 for all d ∈ LT ,

nX
i=1

diwi = 0 for all d ∈ EQ, and

nX
i=1

diwi ≥ 1 for all d ∈ GT .

Note that all constraints with d lexicographically smaller
than (0, . . . , 0) can be omitted from this description since
they are implied by the corresponding constraint for −d.

We would like to mention the following geometric interpre-
tation of Problem 2. The vector W can be interpreted as the
normal of a hyperplane in Rn through the origin. This hy-
perplane partitions the set {d ∈ {−1, 0, 1}n | 2 ≤ |d| 6=0 ≤ `}
into three subsets corresponding to the points below, on,
and above the hyperplane. The task is to find a hyperplane
through the origin that maintains this partition and whose
normal has integral components and minimal infinity norm.

Let w`∗
n := w`∗

n (W1, . . . ,Wn, `) denote the smallest wn

of all solutions to a given instance (W1, . . . ,Wn, `). Fur-
thermore let w`∗∗

n := maxW w`∗
n (W1, . . . ,Wn, `) denote the

largest w`∗
n over all instances for fixed parameters n and `.

We are interested in lower and upper bounds on w`∗∗
n . We

use the upper index ` in w`∗
n and `∗∗

n to stress the depen-
dence on `. For simplicity, we drop this index in general
discussions about the problem.

We remark that Problem 2 has a straightforward inte-
ger programming (IP) formulation with n variables and 1 +
|LT |+ |EQ|+ |GT | ∈ O(min{n`, 3n}) constraints. For ` = 3
there is a better formulation using only n2 constraints (see
Section 5.1) which can be easily solved by IP solvers, e. g.,
random instances up to n = 1000 can be solved within sec-
onds. Our focus is not to develop a combinatorial algorithm
to solve given instances of the problem. Rather we are in-
terested in lower and upper bounds on the optimal wn over
all input weights Wi.

3. LOWER AND UPPER BOUNDS

The case ` = 2 is trivial. The optimum weights wi are
given by wi = |{W1, . . . ,Wi}|. Hence, wi ≤ i and w2∗

n ≤ n.
Considering the weights Wi = i, we obtain w2∗∗

n = n.

We assume ` ≥ 3 in the remainder of this section.

3.1 Lower Bounds

First, we give constructive lower bounds by considering spe-
cific inputs Wi such that wi = Wi is an optimal solution.
Later, we prove a better, non-constructive lower bound for
the case ` = n. This bound can be generalized to ` < n but
leads only to weak bounds in the general case.

Constructive lower bounds

The constructive lower bounds are based on Fibonacci num-
bers.

Proposition 1. Let n ∈ N, n ≥ 3, ε > 0 and φ = 1
2
(1 +√

5). Then w3∗∗
n ≥ 1√

5
· φn+1 − ε for all n ≥ n0 for some

n0(ε) ∈ N.

Proof. Let Fi denote the i-th Fibonacci number (start-
ing with F1 = F2 = 1) and define Wi = Fi+1. We have
Wi−2 +Wi−1 = Fi−1 + Fi = Fi+1 = Wi for all i ∈ N, i ≥ 3.
Obviously, wi = Wi, i = 1, . . . , n is the optimal solution to
Problem 1. Thus, w3∗∗

n ≥ w3∗
n = Wn = Fn+1.

Since Fn = 1√
5
(φn − (1− φ)n) and limn→∞(1− φ)n = 0,

there exists an n0 (depending on ε) such that w3∗∗
n ≥ 1√

5
·

φn+1 − ε for all n ≥ n0.

The bound in Proposition 1 also holds for ` > 3, although
we can improve this bound using generalized Fibonacci num-

bers. The Fibonacci k-step numbers
“
F

(k)
i

”∞
i=1

, k ≥ 2 are

defined as

F
(k)
i = 0 for all i ≤ 0 ,

F
(k)
1 = 1 ,

F
(k)
i =

kX
j=1

F
(k)
i−j for all i ≥ 2 .

The ratio F
(k)
i /F

(k)
i−1 converges to φk where φk is the positive

root greater than 1 of xk − xk−1 . . .− x− 1. See Table 2 for
the first values of φk. Note that φ2 = φ. Subtracting the

definition of F
(k)
i−1 from the definition of F

(k)
i yields the three

term recursion formula

F
(k)
i = 2F

(k)
i−1 − F

(k)
i−k−1 for all i ≥ 3 .

Therefore, φk is bounded from above by 2.



k φk (approx.) name

2 1.618033989 Fibonacci constant
3 1.839286755 Tribonacci constant
4 1.927561975 Tetranacci constant
5 1.965948237 Pentanacci constant
6 1.983582843 Hexanacci constant
7 1.991964197 Heptanacci constant
8 1.996031180 Octanacci constant
9 1.998029470 Enneanacci constant

10 1.999018633 Decanacci constant

Table 2. Limit φk of the ratio of subsequent Fibonacci k-step num-
bers. The limit is given by the real root ξ ≥ 1 of xk−xk−1 . . .−x−1.

Theorem 1. Let n ∈ N, ` ≥ 3, and ε > 0. Then w`∗∗
n ∈

Ω((φ`−1 − ε)n).

Proof. Define Wi = F
(`−1)
i+1 for i ≥ 1. It holds

Wi = F
(`−1)
i+1 =

`−1X
j=1

F
(`−1)
i+1−j =

`−1X
j=1

Wi−j

(assuming Wi := 0 for i ≤ 0). Then wi = Wi, i = 1, . . . , n is
the optimal solution for the given weights Wi. Thus, w`∗∗

n ≥
w`∗

n = Wn = F
(`−1)
n+1 . Since F

(`−1)
i /F

(`−1)
i−1 converges to φ`−1,

there is an n0 such that F
(`−1)
i /F

(`−1)
i−1 ≥ φ`−1 − ε for all

n ≥ n0.

For ` = 3 the result of Proposition 1 can be improved by
a constant factor of slightly less than φ as follows.

Proposition 2. Let n ∈ N, n ≥ 3, ε > 0 and φ = 1
2
(1 +√

5). Then w3∗∗
n ≥ 1√

5
· φn+2 − 1− ε for all n ≥ n0(ε).

Proof. Define Wi = Fi+2 − 1. We have Wi−2 +Wi−1 =
Fi−1+Fi+1−1 = Fi+2−2 = Wi−1 < Wi for all i ∈ N, i ≥ 3.
Obviously, wi = Wi, i = 1, . . . , n is the optimal solution to
Problem 1, and hence, w3∗∗

n ≥ w3∗
n = Fn+2 − 1.

Since Fn = 1√
5
(φn − (1− φ)n) and limn→∞(1− φ)n = 0,

there exists an n0 (depending on ε) such that w3∗∗
n ≥ 1√

5
·

φn+2 − 1− ε for all n ≥ n0.

A similar construction leads to an explicit bound for ` = n.
Let W1 := 1 and Wi := 1 +

Pi−1
j=1Wj . Then wn∗∗

n ≥ wn∗
n =

2n−1.

Non-constructive lower bounds
For ` = n we can obtain a much better lower bound. Alon
and Vu [1] consider the problem of minimizing weights for
threshold gates. A threshold gate is a function fn : {−1, 1}n
7→ {−1, 1} defined by fn(x1, . . . , xn) = sign(

Pn
i=1Wixi−T ),

where the the weights W1, . . . ,Wn and the parameter T are
chosen such that

Pn
i=1Wixi − T 6= 0 for all x ∈ {−1, 1}. It

is easy to see that every threshold gate can be realized by
integral weights Wi. A natural question is how large one has
to choose these integral weights in the worst case.

Following the notation introduced in Section 2 we define

LT ′ :=

(
d ∈ {−1, 1}n

˛̨̨̨ nX
i=1

diWi − T ≤ −1

)
and

GT ′ :=

(
d ∈ {−1, 1}n

˛̨̨̨ nX
i=1

diWi − T ≥ 1

)
.

Now the weight minimization problem for threshold gates
can be stated as follows.

Problem 3. Given n weights W1, . . . ,Wn ∈ N, T ∈ N.
Find weights w1, . . . , wn ∈ N and t ∈ N minimizing
max{w1, . . . , wn}, such that

nX
i=1

diwi − t ≤ −1 for all d ∈ LT ′ , and

nX
i=1

diwi − t ≥ 1 for all d ∈ GT ′ .

Alon and Vu [1] prove the following result.

Proposition 3. Let n ∈ N. There is a threshold gate
fn with T = 0 such that, if one restricts oneself to integral
weights, the largest weight is at least

nn/2

2n(2+o(1))
.

Note that the property T = 0 is not explicitly spelled out
in [1, Theorem 3.3.1], but the proof constructs a threshold
gate such that T = 0. For n being a power of 2 an explicit
bound of

1

n
e−4nβ · n

n/2

2n

where β = log(3/2) can be found in [3]. Using the result of
Alon and Vu we can prove the same lower bound for our
problem.

Theorem 2. Let n ∈ N. Then

wn∗∗
n ≥ nn/2

2n(2+o(1))
.

Proof. Let B denote the bound in the theorem. By
Proposition 3 there is a threshold gate fn with T = 0 such
that the largest weight is at least B. Consider the corre-
sponding weight vector W = (W1, . . . ,Wn). By symmetry
of threshold gates, we can assume that 0 ≤W1 ≤ . . . ≤Wn.
Consider the case W1 > 0 first. Consider W as input to
Problem 2 and assume that wn∗∗

n < B. Then there is a
solution w to Problem 2 such that wn < B. However, the
weights w are also a solution to Problem 3, contradicting
the choice of fn. Hence, wn∗∗

n ≥ B.
If W1 = 0, let r := max{i | Wi = 0} and n′ := n − r.

Consider the vector W ′ = (Wr+1, . . . ,Wn). Using the same

argument as above for W ′ instead of W , we get wn′∗∗
n′ ≥ B,

which gives an even stronger bound (for n′) than claimed.
In particular, there is a solution w′ = (w′1, . . . , w

′
n′) to Prob-

lem 2 for input W ′ with w′n′ minimal and w′n′ ≥ B. Now
obtain the weights W ′′ by augmenting w′ by r copies of w′n′

and consider W ′′ again as input to Problem 2. Obviously,
we have w′′

∗
n ≥ w′n′ , since otherwise this would contradict

the minimality of w′n′ . Thus, we have wn∗∗
n ≥ w′′∗n ≥ w′n′ ≥

B.

The result of Theorem 2 can be used to derive a similar,
but weaker result for ` < n. Solving Problem 2 for any
subset of cardinality ` from the input weights yields a natural
lower bound for the original problem.

Corollary 1. Let n ∈ N and ` ≤ n. Then

w`∗∗
n ≥ ``/2

2`(2+o(1))
.

However, in light of Theorem 1 this result is only useful for
values ` close to n.



3.2 Upper Bound

To derive an upper bound on w`∗∗
n we need an upper bound

on the determinant of a matrix. Such a bound can be ob-
tained from Hadamard’s inequality.

Proposition 4. Let A ∈ {−1, 0, 1}n×n with at most `

non-zero entries per row. Then |det(A)| ≤ `n/2. If A has at
least one row with at most `− 1 non-zeroes, then |det(A)| ≤p

(`− 1)/` · `n/2.

Proof. By Hadamard’s inequality we have

|det(A)| ≤
nY

i=1

 
nX

j=1

a2
ij

!1/2

≤
nY

i=1

√
` = `n/2 .

The second results follows since at least one of the n factors√
` can be replaced with

√
`− 1.

Now we are able to prove an upper bound on w`∗∗
n .

Theorem 3. Let n ∈ N, ` ∈ N and ` ≤ n. Then w`∗∗
n ≤p

`/(`+ 1) · (`+ 1)n/2 holds. Furthermore, wn∗∗
n ≤ nn/2.

Proof. We prove that any optimal solution w`∗
n of a

given instance of Problem 2 is bounded as claimed. Then
w`∗∗

n is bounded in the same way.

Consider the natural IP formulation of Problem 2. This IP
is feasible since wi = Wi is a feasible solution. Let x denote
a basic feasible solution of the linear relaxation. There exist
n linearly independent constraints satisfied with equality.
Hence, we have Ax = b, where the rows of A ∈ {−1, 0, 1}n×n

are linearly independent, and b ∈ {−1, 0, 1}n.

By Cramer’s rule we have xi = det(A)−1 · det(Ai|b) ≥ 0,
where Ai|b denotes matrix A with the i-th column replaced
by b. Define x′i := |det(A)| · xi ≥ 0.

Note that A has at most ` non-zeroes per row, hence, Ai|b
has at most `+1 non-zeroes per row. Since A is non-singular,
there is at least one non-zero entry in the i-th column of A.
Hence, Ai|b has at least one row with at most ` non-zeroes.
By Proposition 4, we have

x′i = |det(A)| · xi = |det(Ai|b)| ≤
p
`/(`+ 1) · (`+ 1)n/2 .

The components of x′i are determinants of a matrix with
entries in {−1, 0, 1}, and hence, x′ is integral. It can easily
be verified that x′ ∈ Zn is a feasible solution. Since w`∗

n is
optimal, it is not larger than wn of any solution, and hence,
w`∗

n ≤ x′n ≤
p
`/(`+ 1) · (`+ 1)n/2.

If ` = n, then Ai|b has at most n non-zeroes per row and
the claimed results follows.

Note that for ` = n the gap between the lower bound in
Theorem 2 and the upper bound in Theorem 3 is 2n(2+o(1)).
An interesting open problem is to close this gap.

4. APPLICATIONS

An immediate consequence of the lower bound of Theo-
rem 1 is that there are instances of Problem 1 with Wn ∈
Ω((φ`−1 − ε)n) such that the weights cannot be replaced by
smaller weights without affecting the set of accepted transi-
tions from x to x′ in Algorithm 1. Examples of such worst-
case instances for ` = 3 are given in Section 5.2. Due to

the lower bound in Theorem 2 we know that for ` = n there
exist worst-case instances with

Wn ≥
nn/2

2n(2+o(1))
.

In particular, there is no fixed a > 1 such that wn∗∗
n ∈ O(an).

The application of the upper bound in Theorem 3 to
known results with runtimes depending on the largest weight
is summarized in Table 1. The table presents several com-
binatorial optimization problems for which the performance
of evolutionary algorithms has been analyzed. In the mini-
mum spanning tree problem |V | and |E| denote the number
of vertices and edges, respectively. In the matroid problems
|E| and r(E) denote the size of the ground set E and the
rank of the matroid, respectively. Note that n = |E| in all
cases. In the minimum set cover problem |S| and |C| de-
note the size of the ground set and the number of subsets,
respectively. In this case, n = |C|.

First we focus on the results for two evolutionary algo-
rithms called RLS and (1+1) EA. The (1+1) EA obtains
a new search point x′ by flipping the bits of a given search
point x uniformly at random with probability 1/n. The RLS
algorithm picks one or two bits to be flipped according to a
fixed probability distribution. Its variant RLS` picks up to `
such bits. The objective function used in the studies of the
considered problems is linear in the weights (if restricted to
feasible solutions in F ). Hence, our results for Problem 1
can be transferred back to the original problem.

The RLS algorithm itself leads to the trivial case ` = 2
which was already mentioned in [7]. Its variant RLS3 used in
the Weighted Matroid Intersection problem was the original
motivation for this study (see also the experimental results
for this special case in Section 5). While the number of bit
flips in the RLS algorithm is bounded by a small number,
the (1+1) EA algorithm might flip all bits of a search point
in one iteration (although the probability of this event is
exponentially small). Therefore, it is necessary to choose `
equal to n = |E|. This leads to worse bounds for (1+1) EA
compared to RLS and its variants.

The last two examples in Table 1 take a special position
since the SEMO and GSEMO algorithms do not fit into
our framework of randomized search heuristics presented in
the introduction. The SEMO and GSEMO algorithms are
generalizations of RLS and (1+1) EA that maintain a set of
search points called population. A newly generated search
point x′ is not only compared to its predecessor x, but to all
search points in the population. Hence, if we choose ` equal
to |E| or |C|, respectively (even though SEMO flips only at
most one bit per iteration), our results can also be applied
to this case.

We remark that there are other problems where the run-
time analysis of randomized search heuristics depends on
the largest weight. However, our approach cannot be ap-
plied to these problems. For example, using the DEMO al-
gorithm with ε = Θ(1/m) the expected number of iterations
to solve the minimum s-t-cut problem is O(|E|3(log2 |V | +
log2Wmax)) [4]. Unfortunately, the used objective function
is not a linear function as introduced in Section 2, since it
involves the value of a maximum s-t-flow. Moreover, the
diversity mechanism used by DEMO is not invariant under
weight changes as considered in this paper.



5. EXPERIMENTAL RESULTS

In this section we present some experimental results for the
cases ` = 3 and ` = n. The case ` = 3 is the smallest value
for ` for which the problem is non-trivial. Furthermore, it
has a special structure that admits an improved IP formula-
tion and it is of interest for the largest common independent
set in two matroids [7]. The case ` = n considers the largest
possible value for `. This case occurs for example in evolu-
tionary algorithms such as (1+1) EA, SEMO and GSEMO,
where search points of arbitrary large Hamming distances
are compared to each other.

5.1 Improved IP Formulation for ` = 3

In this section we consider the special case ` = 3. Problem 2
can be formulated as an IP in the following way.

minimize wn (2)

s.t. w1 ≥ 1
nX

i=1

diwi ≤ −1 for all d ∈ LT

nX
i=1

diwi = 0 for all d ∈ EQ

nX
i=1

diwi ≥ 1 for all d ∈ GT

wi ∈ Z for all 1 ≤ i ≤ n

We are interested in worst case instances, i. e., instances such
that w∗n = w∗∗n . To obtain such instances one could enumer-
ate all partitions LT ∪̇ EQ ∪̇ GT of {d ∈ {−1, 0, 1}n | 2 ≤
|d| 6=0 ≤ 3} and solve the corresponding IP. This approach
is very inefficient since a large fraction of such partitions
implies an infeasible IP. And if the IP is feasible, many con-
straints are redundant. Therefore we use another, more ef-
ficient IP formulation.

In the improved IP formulation the partition LT ∪̇ EQ ∪̇
GT is replaced by a vector and an upper right triangular ma-
trix. Let b ∈ {0, 1}n−1 denote a vector and A = (aj,k)j,k ∈
{0, . . . , 2n}n×n an upper right triangular matrix. The in-
teger program IP(A, b) corresponding to the matrix A and
vector b is defined as

minimize wn

s.t. w1 ≥ 1

wi − wi−1 ≥ 1 for all 2 ≤ i ≤ n, bi−1 = 1

wi − wi−1 = 0 for all 2 ≤ i ≤ n, bi−1 = 0

wj + wk − waj,k/2+1 ≤ −1 for all 1 ≤ j < k ≤ n, aj,k even,

aj,k/2 + 1 ≤ n
wj + wk − w(aj,k+1)/2 = 0 for all 1 ≤ j < k ≤ n, aj,k odd

wj + wk − waj,k/2 ≥ 1 for all 1 ≤ j < k ≤ n, aj,k even,

aj,k/2 ≥ 1

wi ∈ Z for all 1 ≤ i ≤ n

The vector component bi−1 encodes whether wi = wi−1 or
wi > wi−1 should hold. The matrix entry aj,k encodes con-
ditions for the range of the sum wj +wk. If aj,k is odd, then
wj + wk equals weight wi where i = (aj,k + 1)/2. If aj,k is
even, wi + 1 ≤ wj + wk ≤ wi+1 − 1 holds where i = aj,k/2
and w0 := 0, wn+1 :=∞.

n # 4 matr. # enum. 4 matr. # feas. IPs

1 1 1 1
2 1 1 2
3 3 3 8
4 125 22 46

5 1.2 · 105 372 442

6 3.4 · 109 10.936 6.395

7 4.2 · 1015 479.064 131.711

8 2.4 · 1023 30.846.418 3.658.432

9 8.5 · 1032 2.953.407.869 130.833.291

10 2.0 · 1044 433.550.516.563 5.822.596.188

Table 3. Total number of triangular matrices, number of enumerated
triangular matrices and number of feasible IPs.

Given weights W1, . . . ,Wn it is straightforward to com-
pute the matrix A and vector b such that w ∈ Nn is a
solution to IP(A, b) if and only if w is a solution to Prob-
lem 1. Likewise, given a partition LT ∪̇ EQ ∪̇ GT of {d ∈
{−1, 0, 1}n | 2 ≤ |d| 6=0 ≤ 3} such that the corresponding IP
is feasible, one can easily compute the matrix A and vector
b such that both IPs have the same set of solutions. The
reverse transformation is also straightforward for matrices
A and vectors b such that IP(A, b) is feasible.

The new formulation has at most n2 constraints. We can
easily derive necessary conditions on A such that there exists
a vector b such that IP(A, b) is feasible. By monotonicity of
wi we have wj + wk ≥ w1 + w2 > w2, and hence

aj,k ≥ 4 for all 1 ≤ j < k ≤ n, (3)

that is, all matrix entries are restricted to {4, . . . , 2n}. We
have wj + wn > wn, which implies

aj,n = 2n for all 1 ≤ j < n, (4)

that is, the last column of A is fixed to 2n. More generally,
we have wj + wk > wk, and hence

aj,k ≥ 2k for all 1 ≤ j < k ≤ n. (5)

The monotonicity of wi carries over to aj,k: We have wj +
wk ≥ wj−1 + wk and wj + wk ≥ wj + wk−1. This implies

aj,k ≥ aj−1,k for all 1 < j < k ≤ n, (6)

aj,k ≥ aj,k−1 for all 1 ≤ j < k < n. (7)

The set of upper right triangular matrices satisfying (3), (4),
(5), (6) and (7) can be easily enumerated. The columns of A
can be interpreted as a vector of dimension n(n− 1)/2 with
entries in {4, . . . , 2n}. Due to equation (4) we can ignore the
last column of A and reduce the dimension of the vector to
(n−1)(n−2)/2. This vector can be interpreted as a number
with (n − 1)(n − 2)/2 digits in a number system with base

2n+1. By counting from 0 to (2n+1)(n−1)(n−2)/2−1 we enu-
merate all upper right triangular matrices in {0, . . . , 2n}n×n

satisfying equation (4). The conditions (3), (5), (6) and (7)
can be easily integrated in the enumeration process. Note
that these conditions on the matrix A are necessary for the
existence of some vector b such that IP(A, b) is feasible, but
the conditions are not sufficient.



n W1, . . . ,Wn

1 1
2 1, 2
3 1, 2, 4

2, 3, 4
4 2, 3, 4, 8

2, 4, 5, 8
3, 4, 6, 8

5 3, 5, 7, 11, 17
6 4, 5, 10, 13, 16, 30
7 5, 17, 21, 25, 31, 37, 55
8 5, 17, 21, 25, 31, 37, 55, 93

7, 11, 19, 25, 31, 41, 51, 93
9 15, 25, 39, 53, 65, 69, 85, 91, 155

10 11, 49, 61, 73, 83, 93, 109, 157, 175, 267
11 11, 49, 61, 73, 83, 93, 109, 157, 175, 267, 443
12 11, 21, 33, 45, 55, 75, 101, 147, 249, 323, 397, 721

Table 4. Worst-case instances that maximize w3∗
n for n ≤ 12. Values

for n = 11 and n = 12 subject to the conjecture that there are
no equality constraints in worst-case instances. Values for n = 12
conjectured to be a worst-case instance.

5.2 Results for ` = 3

In Table 3 we present some numbers concerning the com-
plexity of our approach. The total number of considered
triangular matrices is (2n − 3)(n−1)(n−2)/2, i. e., conditions
(3) and (4) are already taken into account here. With a little
bit of extra work it is possible to skip matrices that do not
satisfy conditions (5), (6) or (7). Hence, the number of ac-
tually enumerated triangular matrices is much smaller. The
last column depicts the number of feasible integer programs
IP(A, b). While some of the enumerated matrices lead to
infeasible integer programs for any vector b, there are also
matrices such that there are several vectors b where IP(A, b)
is feasible.

A compilation of worst-case instances for n ≤ 12 is given
in Table 4. An instance is called worst-case instance if Wn =
w3∗

n = w3∗∗
n . Note that there are two such instances for n =

3, 8, and 12. For n = 4 there are even three such instances.
We remark that in these cases each instance corresponds
to a different matrix/vector pair (A, b) and integer program
IP(A, b). For all given worst-case instances there is exactly
one optimal solution to the corresponding integer program
IP(A, b).

In Table 5 we compare the lower bound from Proposi-
tion 2, the upper bound from Theorem 3, and the observed
optimal values w3∗∗

n for n ≤ 12.

5.3 Conjectures

We present two conjectures originating from the experimen-
tal results. By Theorem 3 we have w3∗∗

n ∈ O(2n). However,
in the experimental results in Table 5 the ratio w3∗∗

n /w3∗∗
n−1

approaches φ.

Conjecture 1. For n ∈ N holds w3∗∗
n ∈ O(φn).

Note that this upper bound is of the same order as the lower
bound in Proposition 1, Theorem 1 and Proposition 2.

As can be seen in Table 4 there are no equality constraints
in worst-case instances for ` = 3.

n low. bd. w3∗∗
n upp. bd.

1 1 1 1
2 2 2 3
3 4 4 6
4 7 8 13
5 12 17 27
6 20 30 55
7 33 55 110
8 54 93 221
9 88 155 443

10 143 267 886
11 232 ≥ 443 1773
12 376 ≥ 721 3547

Table 5. Lower and upper bounds on w3∗∗
n . The lower bound is

d1/
√

5 · φn+2 − 3/2e, the upper bound is b1/2
√

3 · 2nc.

n W1, . . . ,Wn

1 1
2 1, 2
3 1, 2, 4 2, 3, 4
4 2, 3, 4, 10 2, 6, 7, 10

2, 3, 6, 10 3, 4, 8, 10
2, 4, 7, 10 3, 6, 8, 10

5 4, 6, 11, 14, 30 5, 8, 12, 16, 30
4, 6, 11, 16, 30 5, 8, 14, 18, 30
4, 6, 14, 19, 30 5, 8, 16, 18, 30
4, 6, 16, 19, 30 5, 12, 14, 22, 30
4, 11, 14, 24, 30 5, 12, 16, 22, 30
4, 11, 16, 24, 30 6, 11, 14, 26, 30
5, 8, 12, 14, 30 8, 14, 18, 25, 30

6 10, 22, 27, 36, 40, 114 10, 22, 27, 74, 78, 114
10, 22, 27, 36, 74, 114 10, 22, 36, 40, 87, 114
10, 22, 27, 40, 78, 114 10, 27, 36, 40, 92, 114

Table 6. Worst-case instances that maximize wn∗
n for n ≤ 6.

Conjecture 2. Let n ∈ N and let W1, . . . ,Wn denote
weights such that w3∗

n = w3∗∗
n .Then for all i, j, k ∈ {1, . . . , n},

j < k < i holds Wj 6= Wk and Wj +Wk 6= Wi.

5.4 Results for ` = n

In the case ` = n the problem does not exhibit such a nice
structure as for ` = 3. Therefore, we perform an exhaustive
search using the IP formulation (2). Note that the number
of constraints can be reduced from 1

2
(3n + 1) to 2n − 1 as

follows. Sort the search points x ∈ {0, 1}n by their weight
f(x). Consider only those constraints in (2) where d is the
difference of two adjacent search points in the sorted se-
quence. Since ` = n this subset of constraints implies all
other constraints.

The results of such an exhaustive search among all non-
decreasing vectors in {1, . . . , bnn/2c}n are shown in Table 6.
For 7 ≤ n ≤ 13 a compilation of bad instances, i. e., with
large wn∗

n , is given in Table 7. In Table 8 we compare the
known lower and upper bounds with the largest values for
wn∗

n observed in our experiments. Here we used 2n−1 as
lower bound (see remark after Proposition 2), although The-
orem 2 yields an asymptotically better lower bound, but



n W1, . . . ,Wn

7 15, 32, 67, 72, 95, 146, 267
8 6, 19, 54, 104, 138, 538, 606, 822
9 95, 241, 262, 350, 682, 757, 844, 1993, 2078

10 82, 107, 160, 730, 766, 918, 1006, 3200, 3212,
6038

11 42, 872, 1993, 2966, 3095, 7159, 7165, 9751,
11880, 16010, 22024

12 2870, 7890, 11712, 14726, 15798, 17027, 18516
21457, 33910, 37217, 40292, 47266

13 5903, 10164, 24271, 24429, 30922, 31515, 59366,
69547, 74714, 87071, 98394, 105613, 123889

Table 7. Bad (but probably not worst-case) instances for 7 ≤ n ≤
13. These instances have largest wn∗

n among 105 instances with
weights randomly chosen from the interval [1, 106] and sorted.

n low. bd. wn∗∗
n upp. bd.

1 1 1 1
2 2 2 2
3 4 4 5
4 8 10 16
5 16 30 55
6 32 114 216
7 64 ≥ 267 907
8 128 ≥ 822 4096
9 256 ≥ 2078 19683

10 512 ≥ 6038 100000
11 1024 ≥ 22024 534145
12 2048 ≥ 47266 2985984
13 4096 ≥ 123889 17403307

Table 8. Lower and upper bounds on wn∗∗
n . The lower bound is

2n−1, the upper bound is bnn/2c. For n ≥ 7 the middle column
represents the largest wn∗

n found in 105 instances with weights ran-
domly chosen from the interval [1, 106] and sorted. The value given
for w6∗∗

6 is a conjecture.

more knowledge about the o(1) term is required to obtain
an explicit value. The first power of 2 for which the ex-
plicit bound in [3] gives a lower bound better than 2n−1 is
n = 128.

6. CONCLUSIONS

We have analyzed the influence of the size of weights on the
behavior of a certain class of randomized search heuristics.
It turns out that it is not necessary to handle arbitrarily
large weights. Instead it is possible to consider equivalent
weights where the largest weight is bounded exponentially
in the problem size.

This result allows to remove the dependency on Wmax in
the runtime analyses that have been carried out for evo-
lutionary algorithms on several combinatorial optimization
problems. In particular we obtain strongly instead of weakly
polynomial bounds on the runtime of these algorithms. Ad-
ditionally we give constructive as well as non-constructive
lower bounds for the largest weight in worst-case instances.
Finally we present experimental results for the important
subclasses ` = 3 and ` = n of the problem, including worst-
case instances.

An open problem is to close the gap between the lower
and the upper bounds. To this end it is probably helpful
to understand the structure of worst-case instances. For the
case ` = 3 we state conjectures about a smaller upper bound
and the structure of such worst-case instances.
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