Solving an Avionics Real-Time Scheduling
Problem by Advanced IP-Methods*

Friedrich Eisenbrand!, Karthikeyan Kesavan?, Raju S. MattikalliZ,
Martin Niemeier!', Arnold W. Nordsieck?, Martin Skutella3,
José Verschae3, and Andreas Wiese?

! EPFL, Lausanne, Switzerland
2 Boeing, USA
3 TU Berlin, Germany

Abstract. We report on the solution of a real-time scheduling problem
that arises in the design of software-based operation control of aircraft.
A set of tasks has to be distributed on a minimum number of machines
and offsets of the tasks have to be computed. The tasks emit jobs pe-
riodically starting at their offset and then need to be executed on the
machines without any delay. Also, further constraints in terms of mem-
ory usage and redundancy requirements have to be met. Approaches
based on standard integer programming formulations fail to solve our
real-world instances. By exploiting structural insights of the problem we
obtain an IP-formulation and primal heuristics that together solve the
real-world instances to optimality and outperform text-book approaches
by several orders of magnitude. Our methods lead, for the first time, to
an industry strength tool to optimally schedule aircraft sized problems.

1 Introduction

Modern aircraft computing systems are employing new architectures that pro-
vide significant weight and cost advantages over previous architectures. They
include computing, network, and I/O modules that are highly configurable.
However these architectures present integration complexities which require auto-
mated methods to achieve configuration design centering. One such complexity is
the allocation and scheduling of applications on processors. Due to the hard real-
time nature of the airplane systems, a static cyclic execution schedule is required.
For allocation purposes, applications are characterized by performance, memory,
1/0, operational availability, functional separation, and functional grouping re-
quirements. The processors are characterized by performance as implemented
in a schedule, limited memory capabilities, and limited I/O capabilities via the
network. A significant challenge associated with solving this problem in the con-
text of a commercial aircraft is that of scale — it requires careful consideration
of problem formulation and solution efficiency.

* This work was partially supported by Berlin Mathematical School, by DFG research
center MATHEON in Berlin, by DFG Focus Program 1307 within the project “Algo-
rithm Engineering for Real-time Scheduling and Routing”, and by the Swiss National
Science Foundation.

M. de Berg and U. Meyer (Eds.): ESA 2010, Part I, LNCS 6346, pp. 11{22]2010.
© Springer-Verlag Berlin Heidelberg 2010

12 F. Eisenbrand et al.

We report on integer programming approaches for this problem. It turns out
that textbook formulations, like the time-indexed formulation, are not well suited
to tackle the problems of complexity arising in real-world applications. By ex-
ploiting structural insights of the problem we provide an integer programming
model and primal heuristics that outperform the textbook approach significantly.
By restricting to a relevant subclass of instances and exploiting a bin-tree struc-
ture [EHNT10], we obtain a model that is tailored to this subclass and outper-
forms the other formulations drastically. The latter formulation is able to handle
industrial size instances of the scheduling problem. Even for real-world instances
not belonging to the subclass, one can still use the formulation as a heuristic
using a rounding technique. For our real-world instance, this heuristic finally
provides optimal solutions.

1.1 Problem Definition

Our problem is a variant of the periodic maintenance problem (PMP) [WL83].
First, we describe a simplified version called the basic PMP. It is the core of
the real problem that Boeing is challenged with, the extended PMP, which we
describe afterwards.

In the basic PMP we are given a set of tasks 7 = {7y, ..., 7,} where each task
7; = (¢4, pi) is characterized by its execution time ¢; € N and period p; € N. The
goal is to assign the tasks to identical machines and to compute offsets a; € Ny.
A task 7; generates one job with execution time ¢; at every time unit a; + p; -k for
all £ € Ny. Each job needs to be processed immediately and non-preemptively
after its generation on the task’s machine. A collision occurs if two jobs are
simultaneously active on the same machine. A schedule is feasible if no collision
occurs. In the sequel, we denote by @ = {q1, ..., qr} the set of all period lengths
arising in the respective instance. We assume that ¢; < ... < ¢x. An important
special case, in particular in real-world instances, is the case of harmonic periods.
In this case for each pair of tasks 7;, 7,/ we have that either p;|py or py|p;.

In the extended PMP, machines have additional resource limitations in terms
of memory of different types (RAM, ROM, etc.) and communication links that
need to be considered. Each task has a given requirement for each type of memory
and needs certain communication links to be open on its machine. Each machine
can handle only a limited number of links and a limited bandwidth used by them.
Like in the basic PMP, all machines are identical.

Moreover, due to system stability requirements certain tasks need to be as-
signed to different machines. Also, the machines have to be partitioned into two
cabinets (left and right). To this end, we are given sets of tasks which have to be
distributed evenly among the cabinets in order to design a fail-safe architecture.

1.2 Related Work

There is a large amount of literature on real-time scheduling; see, for exam-
ple, [BHRO3| But04l, [Leu04] for surveys. The periodic maintenance problem was
introduced by Wei and Liu [WL83] in the context of single machine and unit

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 13

execution times. Baruah et al. [BRTV90| and independently Korst et al.
IKALWO1l, [KAL96|] show that the periodic maintenance problem is NP-hard.
Moreover, minimizing the number of machines is hard to approximate within a
factor of n!=¢ for any ¢ > 0 unless P = NP |[EHN™10, Bha98g].

The (basic) PMP generalizes BIN-PACKING. For Bin-Packing, First-Fit with
decreasing item sizes is a 1.5-approximation algorithm [ST.94] which is best pos-
sible unless P = N P. For the harmonic case of the PMP a First-Fit heuristic
achieves an approximation factor of 2 and it is INP-hard to approximate it
any better [EHN™T10]. The general case cannot be approximated non-trivially if
P # NP |[EHNT10].

From a computational point of view, there exists extensive literature on
heuristics as well as branch-and-bound and column generations methods for Bin-
Packing. In [MT90] polynomial time approximation algorithms as well as lower
bounds, and exact algorithms are studied. Lower bounds to the optimal solution
(which can be computed fast) are presented in [CPPT07]. Several approaches
have been proposed for solving the Bin-Packing problem with branch-and-price
techniques; see, e.g., [Van99, [VBJIN94, [VAC99]. An algorithm called BISON is
proposed in [SKJ97], where branch-and-bound techniques and tabu search are
combined to design an exact hybrid algorithm. There is also a lot of literature
on heuristics for the Bin-Packing problem. For example, Gupta and Ho propose
a heuristic that greedily minimizes the slack of the machines. Fleszar and Hindi
[FHO2] modify these ideas and combine them with variable neighborhood search
to design an hybrid algorithm. Moreover, Loh et al. [LGWO8| propose a simple
local heuristic based in the concept of weighted annealing.

2 Structural Insights

We now review some properties of the (basic) PMP which we will exploit later
in our IP-formulations. First, we state a lemma which formulates an algebraic
condition for the collision of two tasks, shown by Korst et al.

Lemma 1 ([KALWO9L]|). Let 7; and 7y be two tasks which are scheduled on
the same machine with offsets a; € Ny and ay € Ny, respectively. They do not
collide if and only if

cy < (a; — ay) mod ged (pi, pir) < ged (pi, pir) — i

We now restrict to the case of harmonic periods and describe some structural
properties of this case. First, we sketch the concept of bin-trees which was first
introduced in [EHN™10].

Assume we have a feasible schedule for an harmonic instance of tasks 7, =
(¢ci,pi), i =1,...,n on one machine, given by an offset a; for each task. Due to
a shifting argument we can show that there exists a feasible schedule in which
a task 7; with p; = g1 has offset a¢; = 0. This task divides the hyperperiod
[0, gx) (after which the schedule repeats itself) into bins By = [0 - q1,(+1) - ¢q1)
with £ € {0,...,qx/q1 — 1}. Using an exchange argument we can also show that

14 F. Eisenbrand et al.

I

5.qs - qs

Fig. 1. A schedule for a single machine and a schedule for the same tasks which is in
bin structure. The gray jobs belong to tasks with period length ¢i, the striped jobs to
tasks with period length g2 = 3- g1, and the checkered jobs to tasks with period length
3 =06-q.

w.l.o.g. inside each bin the jobs are ordered by the period length of the tasks
which created them. Moreover, the jobs are executed consecutively and all idle
time is accumulated at the end of the bin. See |[EHNT10| for formal proofs of
the assumptions made. Figure [Tl shows an example schedule with the described
adjustments.

An important observation is the following: Consider two bins By = [£-q1, (£ +
1)-q1) and By = [¢' - q1, (¢’ + 1) - q1) such that £ = ¢ mod ¢, /q1. As far as tasks
with period length up to g, are concerned, these bins look the same. Hence, the
whole structure can be represented as a tree. Each node in level £ encodes the
tasks of period length up to g, that are scheduled in all its child nodes. We see
that if a task with period length ¢, executes a job in a bin By, then it executes
its other jobs in bins By with £ = ¢ mod ¢, /q;.

From any feasible schedule with the structure described above, we can obtain
an assignment of tasks to the bins of a machine. We show in the following lemma
that the inverse is also true if no bin is overloaded. This allows us to model the
basic PMP in terms of assignments of tasks to bins.

Lemma 2. LetT be a set of tasks with period lengths g1 < ... < qi. Assume that
for each task T; we are given a value ¢; € {0,...,p;/q1 — 1} (assigning the jobs of
7; to bins By with €; = ¢’ mod p;/q1). For each bin By with £ € {0,...,qk/q1 — 1}
denote by Ty C T the tasks 7; with ¢; = £ mod p;/q1 (i.e., the tasks which run a
jobin By). If for each bin By we have that ZﬂET(¢; < q1, then there is a schedule
for the tasks T on one machine. Moreover, this schedule can be found efficiently.

The proof for this lemma is omitted due to space limitations. To compute a sched-
ule from the assignment of tasks to bins, a greedy type algorithm can be used.

3 IP-Formulations

In what follows we describe several formulations for the basic PMP. First we con-
sider a time indezed formulation, where we have variables assigning tasks to time
slots on each machine. Then, we present a less naive approach that exploits the
algebraic feasibility criterion of Lemma [Il We call this model the congruence-
formulation. It uses variables that indicate the offset of each task. We also describe
a third model, the bin-formulation, that is specifically designed for the important
case of harmonic periods. This last IP is based on Lemma [21 It uses the concept
of bins and directly assigns the tasks to the bins of the machines.

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 15

At the end of this section we explain how to model the additional constraints of
the extended PMP. For sake of briefness, we define some global variables that are
be used by all formulations. To this end, let M be a set of m identical machines.
Since we are interested in minimizing the number of used machines, we assume
that m is a precomputed upper bound on the total number of needed machines.
For example, we can trivially take m = |7|. In all our formulations we use variables
u; € {0, 1} that are equal to one if machine M; € M is being used by some task.
With these variables, the objective function is always to minimize Myem Uj-

3.1 Time-Indexed-Formulation

Our first formulation is a naive formulation that uses variables indicating whether
a task starts processing at a certain time slot. More precisely, we consider vari-
ables w; j; € {0,1} which have a value of one if machine M; € M starts pro-
cessing task 7; € 7 at time ¢, and zero otherwise. Linking these variables in a
straigt forward manner ensures that no two tasks on the same machine collide.
The total number of variables is in @(]M|-|7|-gx) and the number of constrains

is in O(T[2 - [M] - ¢2).

3.2 Congruence-Formulation

Now we describe our congruence-formulation for the basic PMP. Its main concept
is to introduce integer variables a; which model the offset for each task. In order
to check whether two tasks collide we derive linear constrains from the feasibility
criterion given in Lemma [T

For each task 7; we introduce a variable a; € N which defines its offset.
Additionally, we consider variables z; ; € {0,1} that indicate, for each task 7; €
7 and machine M; € M, whether 7; is assigned to M. To ensure that each task
is actually assigned to a machine, we introduce the constraint > MyemTig =1
for each task 7; € 7.

It remains to ensure that no two tasks 7;, 7 on the same machine collide.
Lemma [Tlimplies that it suffices to require that there is an integer s; ;» such that

cir <a;—ay + si - ged(pi, pir) < ged(pi, pir) — ¢ie

We want to enable the condition above only if two tasks 7; and 7;s share a
machine. In order to achieve this we introduce variables v; ;» such that v; ;y =1
if 7; and 7; are scheduled on the same machine. Hence, for each pair of tasks 7;
and 7 we introduce an integral variable s; ;» and the constraints

Vi G < ap — a4 8.4 - ged(pi, pir),
ged(pi, pir) — ¢i - Vi > a; — aiy + i - ged(pi, pir).
Note that if v; » = 0 there is always an integral value for s;;» such that these
constraints are satisfied (independently from the values for a; and a;). For the
variables v; i we add constraints of the form v; i+ > x; j + 2 ; — 1 to ensure that
they equal one if two tasks 7; and 7;; are scheduled on the same machine.

In total, we have O(|T|> + |7 - |M|) variables and ©(|T| - | M|) constraints.
The size of the formulation is thus polynomial in the input size.

16 F. Eisenbrand et al.

3.3 Bin-Formulation

In this section we consider the case of harmonic period lengths. We make crucial
use of the bin-tree concept explained in Section Pl to obtain a strong IP. The
main idea is to define variables that model the assignment of tasks to bins on
each machine. Then, we add restrictions to ensure that no bin is overloaded. By
Lemma [2] this will imply a feasible schedule.

We first describe our model for the single machine case, where we only want
to determine whether a set of tasks can be processed on one machine without
collisions. In this case we already know the minimum period length of the tasks
assigned to the machine, and thus the size of the bins is known to be g;. We later
generalize the model to the problem of minimizing the number of used machines.

Consider the single machine feasibility problem. Recall that in this case all
bins have size ¢;. We introduce a variable z; ; € {0,1} that determines whether
task 7; € 7 is assigned to each bin By, with ¢ € {0,...,p;/q1 — 1}. Notice that
we do not need to consider bins with ¢ > p;/q1, since for these bins the schedule
of 7; is repeated periodically. First of all we require that all jobs are assigned to
some bin by requiring Zfi:é“_l zig=1forall 7, € T.

Now we ensure that no bin is overloaded. Notice that if 7; is assigned to bin By
then this task creates jobs in all bins By so that ¢ = ¢ mod p; /q1. Equivalently,
a job created by task 7; is processed on bin By if and only if 2; (4 mod p;/q1) = 1-
Then, we can guarantee that a bin is not overloaded by imposing a knapsack
type constraint

Z Ci * Zi (£ mod p; /q1) <¢ WG{Owu»Qk/Ql—l}
T, €T
In the multiple machine problem we have the extra difficulty that it is not
known a priori which is the smallest period length appearing on each machine.
Therefore, the size of the bins on a machine is not determined until all jobs are
assigned to the machine.
As before, we consider variables z; ; » € {0,1} that indicates whether a task
7; € T is assigned to machine M; € M on bin B, for £ € {0,...,qx/q1 —1}. We
consider here that bin B, has size ¢;. Note that in the case that machine M;
processes no task with period length ¢;, we cannot really consider assignment
of jobs to bins of size ¢, since some job may be partially assigned to more than
one bin. We then must “glue” bins of size g1 together to create new bins of size
g2 or larger. This can be describe mathematically by considering the sum of
several variables z; ;.. If, for example, go = 2¢1, then the variable describing
whether a tasks 7; is assigned to machine M; in the first bin of size ¢» is equal
to zi 50 + Zij,1-
We generalize the ideas just discussed by introducing dummy variables z i €
{0, 1} that are equal to one if 7; is assigned to machine j on the ¢-th bin of size ¢,
for £ € {0,...,qr/qr — 1}. Formally, the dummy variables are defined as follows

(+1)-qr/q1 -1
Fie= Y. zige VR VMVre{l,... k}Vee{0,...,q/q —1}.
U=L-qr/q1

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 17

In the case that there is a task with period length ¢,., our assignment must
satisfy that no bin of size ¢, is overloaded. However, this should not be required
for machines that have no job with period length ¢, assigned to it. Therefore,
we introduce variables d;, € {0,1} that equal one if there is a tasks with period
gr assigned to machine M;.

i/q1—

P 1
djﬂn > Z Zi e VMJ' e M,Vr e {1,...,k},vn~ Pi = qr
£=0

This yields the following inequalities for ensuring that no bin is overloaded.

Soeal<art(—dian VM, eM,We{o,...,g—’“—1},w:1,...,k
TjET r

Finally, we must link the variables u; to the variables z; ; . This can be easily
done with analogous constraints as in the time-indexed-formulation. Also note
that the variables x; ; can be trivially introduced to our formulation. The bin-

formulation needs © <|T| M- %) variables and constraints in total (note that

the dummy variables do not need to be added explicitely).

3.4 Extended Constraints

In order to handle the conditions additionally introduced in the extended PMP
we need to add more linear constraints. Due to space limitations we sketch them
only briefly. For the memory restrictions we introduce knapsack constraints that
model the limited memory on a machine. The constraints that some tasks have
to be scheduled on different machines are modeled in a straight-forward manner
by suitably linking the variables of the tasks. By introducing variables for the
communication links on each machine, we ensure that a machine opens all links
which are needed by its tasks. Further knapsack constraints ensure that the total
number of links and their total bandwidth does not exceed the resources on each
machine. For each available machine we pre-define whether it is in the left or in
the right cabinet. We introduce constraints which ensure that sets of tasks are
distributed evenly on the cabinets if required.

4 Computational Results

In this section we present our computational results. We solved all real-world in-
stances provided by Boeing within minutes, with all constraints of the extended
PMP and some additional constraints which we describe later. The most difficult
instance has 177 tasks and needs 16 machines. The period lengths are almost
harmonic (see details below). Instances of this size are far beyond of what the
time-indexed formulation and the congruence formulation can solve in a reason-
able amount of time. However, the special design of the bin-formulation allowed
to solve the instances within 15 minutes.

18 F. Eisenbrand et al.

For benchmarking purposes we first analyze how our different models perform
on random instances. Moreover, we study the quality of solutions obtained by a
First-Fit heuristic. The heuristic orders the tasks by period length and execution
time and greedily assigns them to the first machine where it can find a suitable
start offset. Note that for the basic PMP in the harmonic case this is already a
2-approximation algorithm [EHNT10|. In the non-harmonic case one can prove
with similar arguments as in [EHN™10] that the algorithm uses at most 20PT +
k — 1 machines. Reflecting the theoretical results, our benchmarking shows that
First-Fit has a good performance in the basic PMP. However, as we will see, it
does not cope well with the additional constraints of the extended PMP.

Due to the novelty of our problem, there is no existing standard set of instances
for benchmarking. Therefore, we must rely on generating random instances. We
consider two ways of generating random instances: pure random instances and
random perturbations of real-world instances arising at Boeing. We will call
the latter instances the real-world perturbed (RWP) instances. There are four
different settings: for the basic PMP, we consider the non-harmonic case with
pure random instances, the harmonic case with pure random instances, and the
harmonic case with RWP instances. For the extended PMP we benchmark only
with RWP instances in the harmonic case.

All computations were done on a two-processor machine with Intel Xeon 2.66
GHz CPUs with 8 GB of RAM, running Linux. We used CPLEX release version
12.1.0.

We remark that additionally we introduce some cuts to the IP formulations. If
for two tasks, the sum of their execution times exceeds the greatest common di-
visor of their periods, Lemma[Ilimplies that they cannot be assigned to the same
machine. Thus we can add separation constraints for these tasks similar to those
used in the extended PMP model. Moreover, for any assignment of tasks to a pro-
cessor, the sum of their total required execution times during the hyperperiod may
not exceed the hyperperiod. This is expressed with knapsack type constraints. No-
tice that in all our IP-formulations we need an upper bound on the number of
machines. This was obtained by first running the First-Fit heuristic.

4.1 Non-harmonic Case

In the non-harmonic case we benchmark the following IP-formulations and algo-
rithms: the time-indexed-formulation (TIF), the congruence-formulation (CF),
and the First-Fit heuristic (FF). For each pure random instance we drew five
different period lengths from the set {2%-3¥ .50 |z € {0,...,4},y € {0,...,3}}
uniformly at random. This is a typical number of period lengths in real-world
instances. For each task 7;, its period length p; is chosen uniformly at random
from one of the five period lengths. (In our experiments we observed that larger
values for the number of period lengths in an instance result in instances which
are harder to solve; however, the relation of the running times between the three
IP-formulations remains the same.) Its execution time is drawn from an inverse
exponential distribution. This results in realistically small execution times in
comparison with the period length and hence mimics the real instances from

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 19

Table 1. The table shows our computational results for the pure random instances in
the non-harmonic case

IP-formulations Heuristic

tasks CF | TIF FF
10 0.11s|98%| - 0% 2.99%
20 2.52s5192%| - 0% 2.23%
30 277.41s(42%| - [0% 1.92%

Boeing. We created 200 random instances each for the case of 10, 20, 30, 40, and
50 tasks. Whenever ten runs in a row did not finish before the timeout of 30
minutes or ran out of memory, we did not consider the respective formulation
any further (denoted by dashes in the table).

Table [I shows our computational results. In all our tables, for each IP-
formulation the left column shows the average running times in seconddl]. The
right column shows the percentage of instances that could be solved to opti-
mality within the time limit. For the First-Fit algorithm, we show the average
relative error (in %) of the solutions with respect to the optimal solution. The
running time of First-Fit is negligible.

Discussion. The First-Fit heuristic apparently performs very well, obtaining the
optimal solution most of the time regardless of the number of tasks. This is
somewhat surprising given that the problem is theoretically rather difficult (i.e.,
N P-hard to approximate within a factor of |7|'~¢), see [EHN'10|. However, the
instances created in that reduction are very special and not likely to arise in our
random draws. We notice that TIF is impractical even for small instances due to
the huge number of integer variables involved in the formulation. In comparison,
CF does much better and is able to solve most instances with up to 30 tasks in
reasonable time (less than 30 min.).

4.2 Harmonic Case

In the harmonic case we benchmark the following IP-formulations/algorithms:
the time-indexed-formulation (TIF), the congruence-formulation (CF), the bin-
formulation (BF) and the First-Fit heuristic (FF). In the harmonic case the pure
random instances were created by first generating a harmonic sequence of five
periods in the following way: We start with period length 50 and successively
generate the other periods by multiplying two, three, or six to the previous
period. The periods and execution times for the tasks are drawn as in the non-
harmonic case. The RWP instances were created by taking tasks uniformly at
random from a large harmonic Boeing-instance and perturbing execution time
and — for the extended PMP — the memory requirements randomly by up to 25
%. The other extended constraints remain unchanged.

! We wuse the shifted geometric mean of running times ¢; calculated by
(I, (t + 1))1/n — 1. We use the shift in order to decrease the strong influence
of the very easy instances in the mean values.

20 F. Eisenbrand et al.

Table 2. Computational results for the pure random instances in the harmonic case
(basic PMP)

IP-formulations
tasks BF | CF | TIF FF
10 0.28s (1x)| 99% 0.25s (0.9%)[97% —-10%110.00%
20 1.8s (1x)[100% 6.54s (3.6x)[90% —[0%110.27%
30 8.2s (1x)| 97%369.39s (45.1x)|32% —10%110.06%
40 36.64s (1x)| 80% - 0% —10%(10.70%

Table 3. Computational results for the RWP instances (harmonic case) for the basic
PMP

IP-formulations Heuristic
4 tasks BF | CF | TIF FF

10 0.01s (1x)[100% 0.35s (33.1x)[100%| 2.79(265.5%)|98% 0.00%
20 0.19s (1x)| 99% 32.51s (174x)| 66%|260.3(1393.4%)|50% 1.26%
30 0.45s (1x)| 99%487.04s (1072.5x)| 3% - 0% 0.76%
40 1.17s (1x)| 98% - 0% - 0% 1.36%
50 2.96s (1x)| 98% - 0% - 0% 0.63%
60 7.25s (1x)] 97% - 0% - 0% 0.85%
70 12.76s (1x)| 95% - 0% - 0% 0.00%
80 28.47s (1x)| 94% - 0% - 0% 0.09%
90 45.58s (1x)| 89% - 0% - 0% 0.00%
100 113.89s (1x)| 90% - 0% - 0% 0.00%
150 977.97s (1x)| 74% - 0% - 0% 0.00%

For the pure random instance we consider the basic PMP only. When run-
ning the RWP instances we consider both the basic and the extended PMP.
Tables 2 Bl and @l show our computational results for the harmonic case. For the
IP-formulations the value in parenthesis denotes the ratio between the respective
running time and the time needed by the bin-formulation.

Discussion. In the three settings of the harmonic case the bin-formulation clearly
outperforms the two other IP-formulations. While for small instances the con-
gruence formulation is still competitive, as the number of tasks increases the bin
formulation becomes superior. The time-indexed formulation failed to find an
optimal solution before the timeout even on small instances with ten tasks.

This shows that taking the bin structure into account in the bin-formulation
allows a significantly better running time in comparison with the other for-
mulations. In contrast to the congruence formulation no modulo-operation has
to be encoded in the IP-model (recall the conditions for a collision derived in
Lemmall). Also, the number of variables is a lot smaller than in the time-indexed
formulation.

The First-Fit heuristic performs very well for the basic PMP and finds an
optimal solution for most instances. Even though theoretically First-Fit is only

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods 21

Table 4. Computational results for the RWP instances (harmonic case) for the
extended PMP

IP-formulations Heuristic
tasks BF | CF | TIF FF

10 0.09s (1x)[100%]| 0.2s (2.4x)|100%| 5.03(58.7x)[100% 4.02%
20 2.16s (1x)| 99%(19.96s (9.2%x)| 85%(29.19(13.5%x)| 15%|| 15.15%
30 19.8s (1x)| 99%| 119.22s (6x)| 20% - 0%l 27.81%
40 97.02s (1x)] 93% - 0% - 0%|| 25.13%
50 401.75s (1x)| 62% - 0% - 0%]|| 28.40%
60 655.06s (1x)| 30% - 0% - 0%l 14.12%
70 644.54s (1x)| 8% - 0% - 0%|| 33.33%

a 2-approximation algorithm, it performs much better in practice. However, for
real-world data we need to consider the extended PMP. In these instances First-
Fit mostly missed the optimum by a significant margin. Also, it cannot pro-
vide a certificate of optimality and hence, in real settings one has to resort to
IP-formulations. Nevertheless, First-Fit can be used as a fast heuristic which
computes an upper bound on the number of needed machines.

4.3 Original Boeing Instances

We solved each real-world instance from Boeing in less than 15 minutes to opti-
mality. The most challenging one consists of 177 tasks, and an optimal solution
uses 16 machines. The arising period lengths were 50, 100, 200, 400, 800, 1000,
and 2000. Note that this instance is not harmonic. Nonetheless, the number of
jobs having one of the problematic period lengths (that is, 1000 and 2000) were
very small (three and six respectively). We transform the instance to be har-
monic by taking the 3 tasks with period length 1000 and changing their periods
to 200, and changing the 6 tasks with period 2000 to have period length 400.
Note that a solution of the modified instance can be easily converted to a solu-
tion of the original instance. On the other hand, we could prove that the optimal
solution of the restrictive instance is also optimal for the original instance since
the separation constraints already contained a set of 16 tasks that had to be
assigned to different machines.

The instances from Boeing also have an additional extra constraint not yet
discussed: We are given subsets of tasks that must be processed on the same
machine. We call these the cohabitation constraints. Moreover, for a subset of
tasks, a predefined assignment of tasks to machines is already given as part of
the input. We have not considered these constraints in the previous experiments
for several reasons: For the RWP case it is not clear how to generate meaningful
random perturbations of these constrains. Also, the First-Fit algorithms some-
times fail to produce feasible schedules, even though the respective instance has
a solution. In particular combinations of cohabitation and cabinet constraints
often require a more sophisticated approach than pure greedy. Therefore, the IP
formulations are much more appropriate for the real world instances.

22 F. Eisenbrand et al.

References

[Bha98] Bhatia, R.: Approximation Algorithms for Scheduling Problems. PhD thesis,
University of Maryland (1998)

[BHR93| Baruah, S.K., Howell, R.R., Rosier, L.E.: Feasibility problems for recurring
tasks on one processor. In: Selected papers of the 15th International Sympo-
sium on Mathematical Foundations of Computer Science, pp. 3-20. Elsevier,
Amsterdam (1993)

[BRTV90] Baruah, S., Rousier, L., Tulchinsky, I., Varvel, D.: The complexity of pe-
riodic maintenance. In: Proceedings of the International Computer Sympo-
sium (1990)

[But04] Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms and Applications. Springer, Heidelberg (2004)

[CPPTO07] Crainic, T.G., Perboli, G., Pezzuto, M., Tadei, R.: New bin packing fast
lower bounds. Computers & Operations Research 34, 3439-3457 (2007)

[EHN*10] Eisenbrand, F., Hahnle, N., Niemeier, M., Skutella, M., Verschae, J., Wiese,
A.: Scheduling periodic tasks in a hard real-time environment. In: Proceed-
ings of ICALP 2010. LNCS. Springer, Heidelberg (2010) (to appear)

[FHO2] Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin-packing.
Computers & Operations Research 29, 821-839 (2002)

[KAL96] Korst, J., Aarts, E., Lenstra, J.K.: Scheduling periodic tasks. INFORMS
Journal on Computing 8, 428-435 (1996)

[KALWO1] Korst, J., Aarts, E., Lenstra, J.K., Wessels, J.: Periodic multiprocessor
scheduling. In: Aarts, E.H.L., Rem, M., van Leeuwen, J. (eds.) PARLE 1991.
LNCS, vol. 505, pp. 166-178. Springer, Heidelberg (1991)

[Leu04] Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Perfor-
mance Analysis. Chapman & Hall/CRC, Boca Raton (2004)

[LGWO08] Loh, K.-H., Golden, B., Wasil, E.: Solving the one-dimensional bin pack-
ing problem with a weight annealing heuristic. Computers & Operations
Research 35, 2283-2291 (2008)

[MT90] Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Im-
plementations, revised edn. John Wiley & Sons, Chichester (November 1990)

[SKJ97] Scholl, A., Klein, R., Jiirgens, C.: BISON: a fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Computers & Operations
Research 24, 627-645 (1997)

[SL94] Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval
Research Logistics 41, 579-585 (1994)

[Van99] Vanderbeck, F.: Computational study of a column generation algorithm for
bin packing and cutting stock problems. Mathematical Programming 86,
565-594 (1999)

[VBIN94] Vance, P.H., Barnhart, C., Johnson, E.L., Nemhauser, G.L.: Solving binary
cutting stock problems by column generation and branch-and-bound. Com-
putational Optimization and Applications 3, 111-130 (1994)

[VAC99] Valério de Carvalho, J.M.: Exact solution of bin packing problems using col-
umn generation and branch and bound. Annals of Operations Research 86,
629-659 (1999)

[WL83] Wei, W.D., Liu, C.L.: On a periodic maintenance problem. Operations Re-
search Letters 2, 90-93 (1983)

	Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods
	Introduction
	Problem Definition
	Related Work

	Structural Insights
	IP-Formulations
	Time-Indexed-Formulation
	Congruence-Formulation
	Bin-Formulation
	Extended Constraints

	Computational Results
	Non-harmonic Case
	Harmonic Case
	Original Boeing Instances

	References

