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Abstract. In the single source unsplittable flow problem, commodities must be
routed simultaneously from a common source vertex to certain destination ver-
tices in a given digraph. The demand of each commodity must be routed along
a single path. In a groundbreaking paper Dinitz, Garg, and Goemans [4] prove
that any given (splittable) flow satisfying certain demands can be turned into an
unsplittable flow with the following nice property: In the unsplittable flow, the
flow value on any arc exceeds the flow value on that arc in the given flow by no
more than the maximum demand.

Goemans conjectures that this result even holds in the more general context
with arbitrary costs on the arcs when it is required that the cost of the unsplit-
table flow must not exceed the cost of the given (splittable) flow. The following is
an equivalent formulation of Goemans’ conjecture: Any (splittable) flow can be
written as a convex combination of unsplittable flows such that the unsplittable
flows have the nice property mentioned above. We prove a slightly weaker ver-
sion of this conjecture where each individual unsplittable flow occurring in the
convex combination does not necessarily fulfill the original demands but rounded
demands. Preliminary computational results based on our underlying algorithm
support the strong version of the conjecture.

1 Introduction

Problem Definition and Notation. The single source unsplittable flow problem was
introduced by Kleinberg [8]. We are given a digraph D = (V, A), a source s ∈ V
and K sinks t1, . . . , tK ∈ V . The source and sink nodes are also called terminals. We
assume without loss of generality that the terminals are pairwise distinct. An unsplit-
table flow f consists of s-ti-paths Pi, for i = 1, . . . , K , together with corresponding
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flow values fi ≥ 0. The flow on arc a ∈ A is then given as f(a) =
∑

i:a∈Pi
fi. An

unsplittable flow is said to satisfy demands di, i = 1, . . . , K , if fi = di for all i.
We also consider flows from s to the sinks t1, . . . , tK that are not necessarily un-

splittable. Such a flow f is given by flow values f(a) for all arcs a ∈ A such that flow
conservation constraints for all non-terminal nodes are met. Moreover, the net amount
of flow leaving the source s as well as the net amount of flow arriving at each sink ti
must be non-negative. In order to emphasize that a flow is not unsplittable we some-
times also call it a splittable flow. A splittable flow satisfies demands di, i = 1, . . . , K ,
if the net amount of flow arriving at ti equals di for all i. The flow traveling from the
source to sink ti is sometimes also referred to as commodity i.

Dinitz, Garg, and Goemans [4] present an algorithm that turns a given splittable
flow f init satisfying demands di, i = 1, . . . , K , into an unsplittable flow f satisfying
the same demands such that

f(a) ≤ f init(a) + dmax for all arcs a ∈ A (1)

where dmax := maxi=1,...,K di. Goemans conjectures that this result can be generalized
as follows.

Conjecture 1 (Goemans [6]). For any cost function c : A → R, a splittable flow f init

satisfying given demands di, i = 1, . . . , K , can be turned into an unsplittable flow f
satisfying the same demands such that property (1) holds and the cost of f is bounded
by the cost of f init, i.e.,

∑

a∈A

c(a)f(a) ≤
∑

a∈A

c(a)f init(a).

Network flows are usually considered in digraphs with arc capacities u : A → R
+
0 . The

capacity u(a) of arc a is an upper bound on the amount of flow that can be sent through
arc a. Moreover, for unsplittable flow problems it is often assumed that all demands are
at most as large as the minimum arc capacity, i.e., dmax ≤ umin := mina∈A u(a) such
that any commodity can in principle be routed through any arc unsplittably. This condi-
tion is also known as the balance condition. If the balance condition is fulfilled and f init

obeys given arc capacities, then it follows from property (1) that the unsplittable flow f
has congestion at most 2, i.e., f(a) ≤ 2u(a) for all arcs a ∈ A. In particular, the al-
gorithm presented by Dinitz et al. [4] achieves performance ratio 2 for the objective to
minimize congestion.

Related Results from the Literature. The single source unsplittable flow problem is a
special case of the more general unsplittable flow problem (UFP) where each commod-
ity has its own source and sink. This problem has been well studied in the literature.
In the case that we are given arc capacities and demands for each commodity and look
for an unsplittable flow of minimum congestion, i.e., of minimum overload of arc ca-
pacities, Raghavan and Thompson [13,12] introduce a randomized rounding technique
which yields an O(log m/ log log m)-approximation algorithm provided that the bal-
ance condition1 holds. Here, m is the number of arcs in the underlying graph. Chuzhoy

1 Unless stated otherwise, the balance condition is always assumed to be met for the UFP.
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and Naor [3] show that the directed case of the UFP is Ω(log log m)-hard to approx-
imate unless NP ⊆ DTIME(nO(log log log n)), where n is the number of vertices in
the underlying graph. Before this result was found, only APX-hardness for the UFP
was known (see, e.g., Kleinberg [8]). In the special case of unit demands and unit edge
capacities (the edge-disjoint paths problem) Andrews and Zhang [1] prove that there is
no (log log m)1−ε-approximation for the undirected congestion minimization problem,
unless NP ⊆ ZPTIME(npolylog n).

For the optimization problem to route a subset of commodities whose total sum of
demands is maximal, Azar and Regev [2] present a strongly polynomial algorithm with
approximation ratio O(

√
m). Kolman and Scheideler [10] even give a strongly polyno-

mial O(
√

m)-approximation algorithm for the problem without the balance condition.
On the other hand, Guruswami, Khanna, Rajaraman, Shepherd, and Yannakakis [7]
show that there is no approximation algorithm with performance ratio O(m

1
2−ε) for

any ε > 0, unless P = NP .
It is an easy observation that already the single source unsplittable flow problem

without costs contains several well-known NP-complete problems as special cases, such
as, for example, PARTITION, BIN PACKING, or even scheduling parallel machines with
makespan objective [11]. If we consider the problem with costs, we obtain the KNAP-
SACK problem as a special case. We refer to [4,8,9,14] for more details and other special
cases.

Kleinberg [8], Dinitz, Garg, and Goemans [4], Kolliopoulos and Stein [9], and
Skutella [14] present approximation algorithms for various optimization versions of
the single source unsplittable flow problem. Du and Kolliopoulos [5] have implemented
and empirically tested several of those approximation algorithms. As already mentioned
above, a 2-approximation algorithm for congestion minimization is given in [4]. In [14],
a 3-approximation algorithm is presented for the corresponding problem with costs. It
is also shown there that the performance ratio can be decreased to 2 if the demands are
multiples of each other, i.e., di|dj or dj |di for all i, j = 1, . . . , K . In fact, it is shown
in [14] that Conjecture 1 holds in this special case. For arbitrary demands, a weaker
version of Conjecture 1 is shown where property (1) is replaced with the following less
restrictive property: f(a) ≤ 2f init(a) + dmax for all arcs a ∈ A.

Contribution of this Paper. It is not difficult to observe that the following conjecture is
equivalent to Conjecture 1.

Conjecture 2. A splittable flow f init satisfying given demands di, i = 1, . . . , K , can be
written as a convex combination of unsplittable flows satisfying the same demands such
that property (1) holds for each unsplittable flow f occurring in the convex combination.

We argue briefly that the two conjectures are indeed equivalent. It is easy to see that
Conjecture 1 holds if Conjecture 2 is true. On the other hand, if Conjecture 2 is false,
then there exists a splittable flow f init that is not contained in the convex hull of the
set of unsplittable flows f satisfying property (1) and the same demands as f init. In
this case there must exist a separating hyperplane whose normal vector yields a cost
function c such that the cost of f init with respect to c is strictly smaller than the cost of
every unsplittable flow under consideration. This contradicts Conjecture 1.

Unfortunately we are not able to prove Goemans’ Conjecture in this paper but we
show the following slightly weaker version.



398 M. Martens, F. Salazar, and M. Skutella

Theorem 1. A splittable flow f init satisfying given demands di, i = 1, . . . , K , can be
written as a convex combination of unsplittable flows such that property (1) holds for
each unsplittable flow f occurring in the convex combination.

The only difference to Conjecture 2 is that we cannot guarantee that the unsplittable
flows occurring in the convex combination satisfy the same demands as the given
flow f init. Instead the demands satisfied by an individual unsplittable flow are the orig-
inal demands rounded (up or down) by a factor of at most 2 to the next dmax/2�

with � ∈ N. Here, dmax is the maximum original demand.
In Section 2 we present an algorithm that, given a splittable flow f init, computes un-

splittable flows together with appropriate weights such that the resulting convex com-
bination (weighted sum) is equal to the given flow f init. The algorithm uses ideas of
Kolliopoulos and Stein [9] and Skutella [14]. It builds a binary tree whose root node
is the given splittable flow f init and whose leafs are unsplittable flows fulfilling prop-
erty (1). Moreover, each non-leaf node is a convex combination of its two children.
As a consequence, the splittable flow f init at the root is a convex combination of the
unsplittable flows at the leafs.

We give a detailed analysis of the algorithm proving its correctness and the existence
of the requested unsplittable flows in Section 3. Finally, in Section 4 we discuss prelim-
inary computational results trying to confirm that there also exist convex combinations
of unsplittable flows of additive congestion at most dmax if we restrict to using the
original demands instead of the rounded ones that are produced by our algorithm. We
also observe in this section that a convex combination as described in Theorem 1 can
be computed in polynomial time.

2 Constructing the Convex Combination

We present an algorithm that, given a splittable flow f init, computes unsplittable flows
with weights such that the weighted sum (convex combination) of the unsplittable flows
equals f init. These unsplittable flows have property (1) and they satisfy demands that are
obtained by rounding the ones in f init.

2.1 Preliminaries

To simplify the description of the algorithm we introduce some more vocabulary. We
say that a terminal path is a maximal (not necessarily directed) simple path in D with
endpoints in {s, t1, . . . , tK}, where maximal means that it is not extendable at either of
its endpoints. A (not necessarily directed) cycle or a terminal path is called an augment-
ing structure.

We use dmax := maxi=1,...,K di (dmin := mini=1,...,K di) to denote the maximum
(minimum) demand satisfied by f init. For a natural number �, we define r�

f (a) := f(a)
mod dmax

2� , for a ∈ A. A flow is called q-integral for some q ∈ R
+, if the flow value on

each arc is an integral multiple of q. It is well known that any single source multicom-
modity flow that is q-integral can be decomposed into flows on paths with flow value q.

The definition f(a) :=
∑

i:a∈Pi
fi, for all a ∈ A, enables us to build the sum f +g of

two flows f and g arcwise, even if one or both flows are unsplittable and given pathwise.
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2.2 The Algorithm

In the following we shortly sketch the idea of the algorithm first and give a more de-
tailed characterization of it later on: We want to round each demand to the two nearest
(upper and lower) values of the form dmax/2�, for some � ∈ N, and then send these
rounded demands unsplittably. A convex combination of the final unsplittable flows
(with rounded demands) will yield our original flow. The largest value we need to con-
sider for � is

L :=
⌈

log
dmax

dmin

⌉

,

since dmax/2L is the largest fraction dmax/2� (� ∈ N) that is at most dmin. (Thus,
dmax/2L is the smallest demand obtained from rounding all demands to (dmax/2�)-
integrality, for some � ∈ N).

We start by making the input flow (dmax/2L)-integral. This is done by augmenting
flow on cycles and terminal paths. The particular augmenting structure and the incre-
ment of flow are chosen such that after augmentation the flow on at least one additional
arc is (dmax/2L)-integral. Augmentation on a cycle does not change the demands,
whereas augmentations on terminal paths yield changes of demands to (dmax/2L)-
integrality. We always augment in both directions of an augmenting structure and thus
obtain two new flows in each step such that the “parent” flow is a convex combination
of the two. Depending on the direction in which flow is augmented on a path, demands
are rounded up or down. (See Figure 1 for an illustration of the algorithm.) Considering
the two direct descendants of a “parent” flow, which result from a change of flow in
either direction of an augmenting structure, we simply construct a binary tree of flows
in which the descendants of a flow f can be used to form a convex combination of f .
The leaves of this tree finally form the desired convex combination of unsplittable flows
for the root flow f init.

When a flow is (dmax/2L)-integral, demands of value dmax/2L can be satisfied un-
splittably. For this reason, we want to prevent such demands and corresponding flow
carrying paths from further changes. Thus, for each sink ti with demand dmax/2L, we
decrease the current flow along a corresponding flow carrying s-ti-path by dmax/2L.
These paths with the flow values are stored for all subsequent flows. After the decre-
ment, all demands are at least dmax/2L−1 and we turn to make the (remaining) flow
(dmax/2L−1)-integral. We proceed in this manner until the (remaining) flow is dmax-
integral. Then all (remaining) demands equal dmax and are served unsplittably.

For the sake of simple presentation and analysis of the algorithm, we give a recursive
description of it in Algorithm 1. The initial call to start the recursive algorithm is given
by DECOMP(D,f init,∅,1) where f init is the single source multicommodity flow in the
digraph D that we want to write as a convex combination of unsplittable flows. The
third parameter is a set of paths with corresponding flow values. If (P, φ) is in this set,
it means that all subsequent flows route φ units of flow along path P . The last parameter
indicates the weight of the flow that is to be decomposed. For the initial flow this weight
equals 1.

A call of DECOMP(D,f init,∅,1) effects the following: In each step of the recursion,
it first updates the input flow f by iteratively deleting demands dmax/2�, for � ∈ N,
if f is (dmax/2�)-integral. The related flow carrying paths are added to the current
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Fig. 1. Steps of the algorithm to 5-integrality. We start with the flow in the upper left corner
and read from left to right first. Since dmax/2L equals 5, we need to make the flow 5-integral.
The dashed arcs indicate the augmenting structure that is used. Since we augment flow in either
direction of an augmenting structure, each non-5-integral flow produces two new flows that are
separated from their “parents” by a vertical line. We consider the first flow. If we use the indicated
augmenting structure clockwise, we may augment by 3. Then the arc with flow value 2 becomes
5-integral. Using the augmenting structure counterclockwise, we may augment by 1. Then the
unit of flow on the arc with flow value 1 recedes. The number below each flow indicates its
weight in the convex combination.

unsplittable flow given by P . Afterwards it decomposes the (remaining) flow f into a
convex combination of two new flows f1 and f2 that result from a single augmentation
in both directions of a suitable augmenting structure. Further steps of the recursion
decompose f1 and f2 into convex combinations of unsplittable flows.

The augmentation itself works as follows. Let us assume that the flow f that remains
after the update is (dmax/2�)- but not (dmax/2�−1)-integral, for some � ∈ {1, . . . , L}.
Then we consider the subgraph D̃ of D that consists of all arcs a ∈ A whose flow
values f(a) are not (dmax/2�−1)-integral. Starting from an arbitrary arc we follow an
undirected path (in either direction) until there is no more incident arc or we get to a
node which has already been visited. The first criterion results in a terminal path, the
second one in a cycle. (We prove this later on in Lemma 2.) For the resulting augmenting
structure C we augment by the minimum δ of gaps between flow values and the next
lower multiples of dmax/2�−1 for arcs that are used by C in backward direction and of
gaps between flow values and the next upper multiples of dmax/2�−1 for arcs that are
used by C in forward direction. Defining C− as the backward arcs in C and C+ as the
forward arcs in C we can write δ as follows.

δ = min{ min
a∈C−

r�−1
f (a), min

a∈C+

dmax

2�−1 − r�−1
f (a)}
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Algorithm 1. DECOMP(D,f ,P ,w)
Input: A digraph D = (V, A), a single source multicommodity flow f in D with source s,

a set P of paths from s to pairwise distinct nodes t in D with corresponding flow
values, and a positive weight w ∈ (0, 1]. The maximum (minimum) demand, that f
satisfies, is dmax (dmin).

Output: A set of unsplittable flows with weights that sum up to w yielding a conic
combination of w(f + fP), where fP denotes the flow that is given by P .

for i =
⌈
log dmax

dmin

⌉
downto 0 do

if f is (dmax/2i)-integral then
for each sink t having demand d = dmax/2i in f do

Determine an arbitrary flow carrying s-t-path P in D.
Set f(a) := f(a) − d for all a ∈ P .
Set P ′ := P ∪ {(P, d)}.

end
end

end
if f ≡ 0 then

return (P ′, w).
end

Set � := min{min{j ∈ N|f is (dmax/2j)-integral},
⌈
log dmax

dmin

⌉
+ 1}.

Let C ⊆ A be an augmenting structure with r�−1
f (a) �= 0 ∀ a ∈ C.

Set C+ := {a ∈ C | C traverses a in forward direction},
C− := {a ∈ C | C traverses a in backward direction}.

Set δ1 := min{ min
a∈C−

r�−1
f (a), min

a∈C+

dmax

2�−1 − r�−1
f (a)},

δ2 := min{ min
a∈C+

r�−1
f (a), min

a∈C−
dmax

2�−1 − r�−1
f (a)}.

For a ∈ A \ C set f1(a) := f(a) and f2(a) := f(a).
For a ∈ C+ set f1(a) := f(a) + δ1 and f2(a) := f(a) − δ2.
For a ∈ C− set f1(a) := f(a) − δ1 and f2(a) := f(a) + δ2.
Set w1 := δ2

δ1+δ2
w and w2 := δ1

δ1+δ2
w.

return DECOMP(D,f1,P ′,w1) ∪ DECOMP(D,f2,P ′,w2).

Now let f1 and f2 be the flows resulting from augmenting along C and its “counter-
part”, i.e., C in the opposite direction. Let δ1 and δ2 be the corresponding augmentation
values. Then the weight of fi (for i = 1, 2) is given by the weight of f multiplied with
δ3−i/(δ1 + δ2).

3 Analysis of the Algorithm

In Section 3.1 we show that the flows and weights returned by DECOMP(D,f init,∅,1)
yield a convex combination for f init. Further, the produced flows are unsplittable and
all its demands are of the form dmax/2�, for some � ∈ {0, . . . , 	log(dmax/dmin)
}. To
prove Theorem 1 we have to show as well that, on each arc a ∈ A, the final flows send
at most the initial flow f init(a) plus an additive dmax. This is done in Section 3.2.
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3.1 Correctness of the Algorithm

It is easy to see that the following lemma is true. A detailed proof is omitted due to
space limitations.

Lemma 1. For each DECOMP(D,f ,P ,w) that is triggered by DECOMP(D,f init,∅,1)
it holds that

1. f is a single source multicommodity flow in D,
2. P is a set of paths from the source of f to pairwise distinct nodes t in D with

corresponding flow values, and
3. w ∈ (0, 1].

Lemma 1 shows that the algorithm is well-defined. The following lemma is necessary
to prove that our algorithm terminates. It follows immediately from flow conservation.

Lemma 2. If a flow f in D is not (dmax/2�)-integral, for some � ∈ N, then there exists
an augmenting structure C ⊆ A with r�

f (a) �= 0, for all a ∈ C.

The definition of δ1 and δ2 and the augmentation rule imply that if f is not decreased
in the for-loop of DECOMP(D,f ,P ,w), the flows f1 and f2 are “more integral” than f .

Lemma 3. For any flow f that is augmented in Algorithm 1 and its corresponding
value � as defined in the algorithm, it holds that f1 and f2 each have at least one more
arc than f whose flow value is (dmax/2�−1)-integral.

Before we turn to proving that the flows/weights returned by DECOMP(D,f ,P ,w)
yield a conic combination of wf , we show that the procedure indeed terminates and
outputs unsplittable flows whose demands are of the form dmax/2�, for some � ∈
{0, . . . , 	log(dmax/dmin)
}.

Corollary 1. DECOMP(D,f ,P ,w) terminates. The output is a set of unsplittable flows
whose demands are of the form dmax/2�, for some � ∈ {0, . . . , 	log(dmax/dmin)
}.

Proof. We proved that the flows f1 and f2 resulting from DECOMP(D,f ,P ,w) have
fewer positive demands than f or are “more integral”. The first property eventually
results in a decrement of the input flow to the zero flow. In every recursive call of
Algorithm 1 in which the number of positive demands is not decreased for the respective
input, the flow value on at least one of its arcs changes to a “higher” integrality. After
at most |A| steps we therefore change from (dmax/2�)-integrality to (dmax/2�−1)-
integrality for some � ∈ {1, . . . , L} (or respectively from the initial state to (dmax/2L)-
integrality). At this point demands of value (dmax/2�−1) and corresponding flow are
deleted in the for-loop. If no such demands exist, we go to “higher” integralities and
delete demands at the latest when the flow is dmax-integral. Therefore, at some point
all demands are deleted and the algorithm terminates.

It follows from the preceding analysis that all paths in the final P ′ connect the source
in f with pairwise distinct sinks. Thus, P ′ yields an unsplittable flow. It follows directly
from the specification of the algorithm that all demands served by P ′ are of the form
dmax/2�, for some � ∈ {0, . . . , 	log(dmax/dmin)
}.
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In the following we use fP to denote the flow that is given by some set P of paths with
corresponding flow values. We prove the following helpful lemma in order to show that
DECOMP(D,f ,P ,w) returns the specified output.

Lemma 4. Consider DECOMP(D,f ,P ,w). It holds that

w(f + fP) = w1(f1 + fP′) + w2(f2 + fP′) (2)

and w1 + w2 = w.

Proof. The second part of the lemma follows immediately from the definition of w1
and w2. Equation (2) can be proven as follows. For all arcs a ∈ A that are not in the
augmenting structure C that leads from f to f1 and f2, it holds that f1(a) = f2(a) =
f(a) − (fP′(a) − fP(a)). Since w1 + w2 = w, equation (2) follows immediately.

Now consider an arc a ∈ C+. It holds that f1(a) = f(a) − (fP′(a) − fP(a)) + δ1
and f2(a) = f(a) − (fP′(a) − fP(a)) − δ2. Using w1 + w2 = w, it follows that
w1f1(a)+w2f2(a) = wf(a)+wfP (a)−w1fP′(a)−w2fP′(a). The proof is analogous
for a ∈ C−.

The following corollary demonstrates that the output of DECOMP(D,f ,P ,w) is correct.
With this result we are finished proving the correctness of the algorithm as described
in Section 2. To prove our main result we still need to show that all unsplittable flows
that are returned by DECOMP(D,f init,∅,1) have congestion at most 2. This is done in
Theorem 2 in Section 3.2.

Corollary 2. The flows and weights returned by DECOMP(D,f ,P ,w) yield a conic
combination of w(f + fP) whose weights sum up to w.

The proof of Corollary 2 uses induction on the depth of recursion and Lemma 4. It is
omitted due to space limitations. The next corollary follows immediately.

Corollary 3. The flows and weights returned by DECOMP(D,f init,∅,1) yield a convex
combination of f .

3.2 Upper Bound on the Congestion

Together with the algorithm from Section 2 and its analysis in Section 3.1 the following
theorem is the last component to prove Theorem 1.

Theorem 2. For a single source multicommodity flow f init in D = (V, A) and any arc
a ∈ A, it holds that the flow along a in any flow produced by DECOMP(D,f init,∅,1)
exceeds f init(a) by at most an additive dmax.

Proof. Consider the progression of the input flow while DECOMP(D,f init,∅,1) is run-
ning. Let f0 be a flow that occurs on the way to (dmax/2L)-integrality of the input flow.
Further, let P0 be the current unsplittable flow while f0 is considered in the algorithm.

By the choice of δ1 and δ2, it holds for all a ∈ A that

f0(a) + fP0(a) ≤ f init(a) +
dmax

2L
−

(

f init(a) mod
dmax

2L

)

, (3)
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because once the flow on a is (dmax/2L)-integral, i.e., rounded to at most the next
multiple of dmax/2L, it is not changed again on the way to (dmax/2L)-integrality.

After (dmax/2L)-integrality was reached, the input flow is iteratively augmented to
(dmax/2L−�)-integrality for gradually increasing � ∈ {1, . . . , L}. Let f � be a flow that
occurs while DECOMP(D,f init,∅,1) is running and that is (dmax/2L−�)-integral, but
not (dmax/2L−�−1)-integral. Further, let f �−1 be any ancestor of f �, i.e., any of the
flows that (indirectly) caused the creation of f �, that is (dmax/2L−�+1)-integral. Again
let P� and P�−1 be the corresponding unsplittable flows.

In analogy with (3), it follows from the choice of δ1 and δ2 that for all a ∈ A

f �(a) + fP�(a) ≤ f �−1(a) + fP�−1(a) +
dmax

2L−�
− dmax

2L−�+1 .

We can prove an analogous equation if some integrality step is omitted, i.e., if there
is no ancestor of f � that is (dmax/2L−�+1)-integral. Let �′ be the largest integer that
is smaller than � and for which an ancestor of f � exists that is (dmax/2L−�′

)-integral.
Then it holds that f �(a) + fP�(a) ≤ f �′

(a) + fP�′ (a) + dmax/2L−� − dmax/2L−�′
.

We obtain iteratively, for all � ∈ {0, . . . , L}, that

f �(a) + fP�(a) ≤ f init(a) +
dmax

2L−�
−

(

f init(a) mod
dmax

2L

)

. (4)

Now consider the point when the flow f is changed to f ′ ≡ 0 in the for-loop. Let P
and P ′ be the corresponding unsplittable flows. Then P ′ is one of the output flows of
the algorithm. Since dmax is the maximum demand in f , it follows that f is dmax-
integral. With (4) we have fP′(a) = f(a) + fP(a) ≤ f init(a) + dmax − (f init(a)
mod dmax

2L ) ≤ f init(a) + dmax.
Note that it even holds, for all a ∈ A, that fP′(a) < f init(a) + dmax. To obtain

this result, we have to regard that f0(a) + fP0(a) ≤ f init(a), if f init(a) is (dmax/2L)-
integral.

If we assume f init to be feasible, the next result follows immediately.

Corollary 4. If a single source multicommodity flow f init in D = (V, A) obeys arc
capacities u : A → R

+ and the balance condition is met, then all flows produced by
DECOMP(D,f init,∅,1) have congestion at most 2.

We close this section with an example showing that our result is tight (see also [4] for
similar results).

Lemma 5. There exists a network and a feasible fractional single source multicom-
modity flow f init such that in each convex combination of unsplittable flows forming
f init there is at least one flow with congestion arbitrarily close to 2.

Proof. Consider a network with source s, sinks t1, t2 with demands 1 for both com-
modities, and one additional node v. The arcs in the network with their initial flow
values are (s, v) with f init((s, v)) = 1 + ε, (s, t2) with f init((s, t2)) = 1 − ε, (v, t1)
with f init((v, t1)) = 1, and (v, t2) with f init((v, t2)) = ε. The capacity of arc a is the
maximum of f init(a) and 1. ε is an arbitrary positive number smaller than 1.
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Consider arc (s, v). Obviously we have to route commodity 1 on it in each unsplit-
table flow that participates in a convex combination forming f init. But there must also
be at least one unsplittable flow that routes commodity 2 on this arc. Thus, we obtain a
flow value of 2 on it and a congestion of 2/(1 + ε).

4 Some Preliminary Computational Results

We have shown that it is possible to write any (splittable) single source multicommodity
flow f init as a convex combination of unsplittable flows obeying condition (1). The de-
mands satisfied by the unsplittable flows that we construct for this convex combination
slightly differ from the ones in the original flow.

Using our algorithm, we want to empirically confirm Conjecture 2. In principle,
we would like to do the following: Consider all unsplittable flows computed by the
algorithm; turn them into unsplittable flows satisfying the original demands di, i =
1, . . . , K , by simply routing exactly di units of flow along the chosen s-ti-paths (in-
stead of the rounded demand values); omit all unsplittable flows which, after this mod-
ification, no longer obey condition (1) (notice that this can easily happen already for
simple examples); check whether f init is contained in the convex hull of the remaining
unsplittable flows.

The main problem with this approach is the huge size of the binary tree computed by
our algorithm. Already for relatively small instances the algorithm does not terminate
in reasonable time due to the exponential growth of the computed binary tree. It is
therefore not realistic to try to compute all unsplittable flows corresponding to leaf
nodes of that tree. Instead, we have to thin out the tree and only compute a subset of
leafs of reasonable size. Of course, this subset should still have the property that f init is
contained in the convex hull of unsplittable flows given by the subset.

More precisely, we proceed as follows. We start to compute the binary tree in
breadth-first manner. When we arrive at a layer of the tree containing “too many” nodes,
we omit some of them and only maintain a subset of “reasonable size”. By construction
the flow f init at the root node is a convex combination of the flows corresponding to the
nodes of the tree in any fixed layer. It follows from Carathéodory’s theorem that f init

can be written as a convex combination of a subset containing at most |A| + 1 flows. It
is therefore possible to keep the width of the tree bounded by O(|A|) and still maintain
the property that f init is a convex combination of the flows in any fixed layer. In our
implementation, we simply use CPLEX to find suitable subsets of flows when we arrive
at a layer of the tree that contains “too many” nodes. Since the depth of the tree is poly-
nomially bounded, we can even find a representation of f init as a convex combination
of unsplittable flows in polynomial time and thus strengthen Theorem 1 as follows.

Theorem 3. A convex combination as described in Theorem 1 can be obtained in poly-
nomial time.

For the purpose of our empirical study it is not advisable to reduce the width of each
layer of the tree as far as possible (i.e., to width |A| + 1). This decreases our chance
to find sufficiently many “good” unsplittable flows in the end that contain f init in their
convex hull. Therefore the challenge is to decide for each layer of the tree which flows
to keep and which to omit in order to keep the width of the tree small. We have ex-
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perimented with several different strategies but have not found the ideal strategy yet.
However, for most instances that we consider our choice of flows is suitable in the
sense that the resulting unsplittable flows meet the congestion requirement.

For the empirical tests we use 14 test instances that were also considered by Du
and Kolliopoulos [5] for their empirical evaluation of approximation algorithms. The
instances come from the following generators: noigen, satgen, rangen, and genrmf. A
complete description of every generator can be found in [5]. We have tested different
ways to choose the flows that we keep in our convex combinations. So far, for half of the
14 instances we were able to compute an appropriate set of unsplittable flows of additive
congestion at most dmax. For another three instances the multiplicative congestion of
the unsplittable flows does not exceed 2, while for the remaining four instances we have
not found an appropriate set of unsplittable flows yet. We are currently still working on
finding better heuristics to choose the flows to be kept in each layer of the tree.
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