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The Freeze-Tag Problem:
How to Wake Up a Swarm of Robots1

Esther M. Arkin,2 Michael A. Bender,3 Sándor P. Fekete,4

Joseph S. B. Mitchell,2 and Martin Skutella5

Abstract. An optimization problem that naturally arises in the study of swarm robotics is the Freeze-Tag
Problem (FTP) of how to awaken a set of “asleep” robots, by having an awakened robot move to their locations.
Once a robot is awake, it can assist in awakening other slumbering robots. The objective is to have all robots
awake as early as possible. While the FTP bears some resemblance to problems from areas in combinato-
rial optimization such as routing, broadcasting, scheduling, and covering, its algorithmic characteristics are
surprisingly different.

We consider both scenarios on graphs and in geometric environments. In graphs, robots sleep at vertices
and there is a length function on the edges. Awake robots travel along edges, with time depending on edge
length. For most scenarios, we consider the offline version of the problem, in which each awake robot knows
the position of all other robots. We prove that the problem is NP-hard, even for the special case of star graphs.
We also establish hardness of approximation, showing that it is NP-hard to obtain an approximation factor
better than 5

3 , even for graphs of bounded degree.
These lower bounds are complemented with several positive algorithmic results, including:

• We show that the natural greedy strategy on star graphs has a tight worst-case performance of 7
3 and give

a polynomial-time approximation scheme (PTAS) for star graphs.
• We give a simple O(log !)-competitive online algorithm for graphs with maximum degree ! and locally

bounded edge weights.
• We give a PTAS, running in nearly linear time, for geometrically embedded instances.
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1. Introduction. The following problem naturally arises in the study of swarm robo-
tics. Consider a set of n robots, modeled as points in some metric space (e.g., vertices of
an edge-weighted graph). Initially, there is one awake or active robot and all other robots
are asleep, that is, in a stand-by mode. Our objective is to “wake up” all of the robots as
quickly as possible. In order for an active robot to awaken a sleeping robot, the awake
robot must travel to the location of the slumbering robot. Once awake, this new robot is
available to assist in rousing other robots. The objective is to minimize the makespan,
that is, the time when the last robot awakens.

This awakening problem is reminiscent of the children’s game of “freeze-tag”, in
which the person who is “it” tags other players to “freeze” them. A player remains
“frozen” until an unfrozen player (who is not “it”) rescues the frozen player by tagging
him and thus unfreezing him. Our problem arises when there are a large number n of
frozen players, and one (not “it”) unfrozen player, whose goal it is to unfreeze the rest
of the players as quickly as possible. (We do not take into consideration the effect of the
person who is “it”, who is likely running around and re-freezing the players that become
defrosted!) As soon as a player becomes unfrozen, he is available to assist in helping
other frozen players, so there is a cascading effect. Due to the similarity with this child’s
game, we dub our problem the Freeze-Tag Problem (FTP).

Other applications of the FTP arise in the context of distributing data (or some other
commodity), where physical proximity is required for transmittal. Proximity may be
required because wireless communication is too costly in terms of bandwidth or because
there is too much of a security risk. Solutions to the FTP determine how to propagate
the data to the entire set of participants in the most efficient manner.

In this paper we introduce and present algorithmic results for the FTP, a problem
that arises naturally as a hybrid of problems from the areas of broadcasting, routing,
scheduling, and network design. We focus on the offline version of the problem, in which
each awake robot knows the position of all other robots, and is able to coordinate its
moves with the other robots. The FTP is a network design problem because the optimal
schedule is determined by a spanning binary tree of minimum depth in a (complete)
weighted graph. As in broadcasting problems, the goal is to disseminate information
in a network. The FTP has elements of optimal routing, because robots must travel to
awaken others or to pass off information. The FTP can even be thought of as a parallel
version of the traveling salesmen problem, in which salesmen are posted in each city.
Finally, the FTP has elements of scheduling (where the number of processors increases
over time), and scheduling techniques (e.g., use of min-sum criteria) are often relevant.
Finally we note that given the practical motivation of the problem (e.g., in robotics), there
is interest in considering online versions, where each robot can only see its immediate
neighborhood in the graph.

Related Work. There is an abundance of prior work on the dissemination of data in
a graph. Most closely related to the FTP are the minimum broadcast time problem, the
multicast problem, and the related minimum gossip time problem. See [23] for a survey;
see [8] and [30] for approximation results. However, the proximity required in the FTP
leads to significant differences: while the broadcast problem can be solved in polynomial
time in tree networks, the FTP turns out to be NP-hard on the seemingly easy class of
weighted stars.
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In the field of robotics, several related algorithmic problems have been studied for
controlling swarms of robots to perform various tasks, including environment exploration
[1], [2], [11], [21], [27], [38], [40], robot formation [10], [33], [34], searching [39], and
recruitment [37]. Ant behaviors have inspired algorithms for multi-agent problems such
as searching and covering; see, e.g., [37]–[38]. Multi-robot formation in continuous
and grid environments has been studied recently by Sugihara, Suzuki, Yamashita, and
Dumitrescu; see [15], [33], and [34]. The objective is for distributed robots to form
shapes such as circles of a given diameter, lines, etc. without using global control.
Teambots, developed by Balch [7] in Java, is a popular general-purpose multi-robot
simulator used in studying swarms of robots. Hsiang et al. [25] and their video [26]
deal with the distributed, online problem of dispersing a swarm of robots in an unknown
environment.

Gage [18]–[20] has proposed the development of command and control tools for
arbitrarily large swarms of microrobots. He originally posed to us the problem of how to
“turn on” a large swarm of robots efficiently; this question is modeled here as the FTP.

Another related problem is to consider variants where all robots are mobile, but they
still have to meet in order to distribute important information. The two-robot scenario
with initial positions unknown to both players is the problem of rendezvous search that
has received quite a bit of attention, see [4] and [31] and the relatively recent book by
Alpern and Gal [3] for an overview.

In subsequent work on the FTP, Sztainberg et al. [35] have analyzed and imple-
mented heuristics for the FTP. They showed that the greedy strategy gives a tight ap-
proximation bound of "(

√
log n) for the case of points in the plane and, more generally,

"((log n)1−1/d) for points in d dimensions. They also presented experimental results
on classes of randomly generated data, as well as on data sets from the TSPLIB reposi-
tory [32].

Arkin et al. [6] gave an O(1)-approximation algorithm for the FTP in unweighted
graphs, in which there is one asleep robot at each node, and they showed that this version
of the FTP is NP-hard. They generalized to the case of multiple robots at each node; for
unweighted edges, they obtained a "(

√
log n) approximation, and for weighted edges,

they obtained an O((L/d) log n + 1)-approximation algorithm, where L is the length of
the longest edge and d is the diameter of the graph.

More recently, Könemann et al. [28] gave an O(
√

log n)-approximation algorithm
for the general FTP, in the context of the bounded-degree minimum diameter spanning
tree problem. Thus, the authors answer in the affirmative an important open question
from [5], [32], and [35]. In contrast to the results from [28], our paper gives tighter
approximation bounds but for particular versions of the FTP.

Intuition. An algorithmic dilemma of the FTP is the following: A robot must decide
whether or not to awaken a small nearby cluster to obtain a modest number of helpers
quickly or whether to awaken a distant but populous cluster to obtain many helpers, but
after a longer delay. This dilemma is compounded because clusters may have uneven
densities so that clusters may be within clusters. Even in the simplest cases, packing
and partitioning problems are embedded in the FTP; thus the FTP on stars is NP-hard
because of inherent partitioning problems. What makes the FTP particularly intriguing is
that while it is fairly straightforward to obtain an algorithm that is O(log n)-competitive
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for the FTP with locally bounded edge weights, it is highly nontrivial to obtain an o(log n)

approximation bound for general metric spaces, or even on special graphs such as trees.
Some of our results are specific to star metrics, which arise as an important tool in

obtaining approximation algorithms in more general metric spaces, as shown, e.g., in
[9], [12], and [29]. (See our conference version [5] for further results on a generalization
called ultrametrics.) We also study a geometric variant of the problem in which the
robots are located at points of a geometric space and travel times are given by geometric
distances.

1.1. Summary of Results. This paper presents the following results:

• We prove that the FTP is NP-hard, even for the case of star graphs with an equal
number of robots at each vertex (Section 2.3). Moreover, there exists a polynomial-
time approximation scheme (PTAS) for this case (Section 2.4). We analyze the greedy
heuristic, establishing a tight performance bound of 7

3 (Section 2.2). We show an
O(1)-approximation algorithm for more general star graphs that can have clusters of
robots at the end of each spoke (Section 2.5).

• We give a simple linear-time online algorithm that is O(log !)-competitive for the
case of general weighted graphs of maximum degree ! that have “locally bounded”
edge weights, meaning that the ratio of the largest to the smallest edge weight among
edges incident to a vertex is bounded (Section 3.1). On the other hand, we show for
the offline problem that finding a solution within an approximation factor less than 5

3
is NP-hard, even for graphs of maximum degree 5 (Section 3.2).

• We give a PTAS for geometric instances of the FTP in any fixed dimension, with
distances given by an L p metric. Our algorithm runs in near-linear time, O(n log n +
2poly(1/ε)), with the nonpolynomial dependence on ε showing up only as an additive
term in the time complexity (Section 4).

See Table 1 for an overview of results for the FTP.

1.2. Preliminaries. Let R = {v0, v1, . . . , vn−1} ⊂ D be a set of n robots in a domain
D. We assume that the robot at v0 is the source robot, which is initially awake; all
other robots are initially asleep. Unless stated otherwise (in Section 3.1), we consider
the offline version of the problem, in which each awake robot is aware of the position
of all other robots, and is able to coordinate its moves with those of all the others. We
let d(u, v) indicate the distance between two points, u, v ∈ D. We study two cases,
depending on the nature of the domain D:

• The space D is specified by a graph G = (V, E), with nonnegative edge weights.
The robots vi correspond to a subset of the vertices, R ⊆ V , possibly with several
robots at a single node. In the special case in which G is a star, the induced metric is
a centroid metric.

• The space D is a d-dimensional geometric space with distances measured according
to an L p metric. We concentrate on Euclidean spaces, but our results apply more
generally.

A solution to the FTP can be described by a wake-up tree T which is a directed binary
tree, rooted at v0, spanning all robots R. For any robot r , its wake-up path is the unique
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Table 1. Overview of results for different variants of the freeze-tag problem.∗

Version Variant Complexity Approx. Factor LB for Factor

General graphs Weighted NPc (Sec. 2.3) O(
√

log n) [28] 5
3 (Sec. 3.2)

Unweighted NPc [35] O(
√

log n) [35] Open

Trees Weighted NPc (Sec. 2.3) O(
√

log n) [28] Open

Unweighted NPc (Sec. 2.3) O(
√

log n) [35] Open

Ultrametrics Weighted NPc (Sec. 2.3) 2O(
√

log log n) [5] Open
Stars Weighted, ρ(v) ≡ c, NPc (Sec. 2.3) 7

3 (Sec. 2.2) 7
3 (Sec. 2.2)

greedy
Stars Weighted, ρ(v) ≡ c NPc (Sec. 2.3) 1 + ε (Sec. 2.4) n/a

Weighted, ρ(v) NPc (Sec. 2.3) 14 (Sec. 2.5) Open (Conj. 18)
arbitrary

Unweighted, ρ(v) P (Sec. 2) n/a n/a

Geometric L p distances in (d Open (Conj. 28) 1 + ε (Sec. 4.3) n/a

Online Locally bounded n/a O(log !) (Sec. 3.1) %(log !) (Sec. 3.1)
weights

∗“LB” indicates a lower bound; for stars, ρ denotes the number of robots at each leaf; ! is the maximum
degree of the graph.

path in this tree that connects v0 to r . If a robot r is awakened by robot r ′, then the two
children of robot r in this tree are the robots awakened next by r and r ′, respectively. Our
objective is to determine an optimal wake-up tree, T ∗, that minimizes the depth, that is
the length of the longest (directed) path from v0 to a leaf (point of R). We also refer to
the depth as the makespan of a wake-up tree. We let t∗ denote the optimal makespan
(the depth of T ∗). Thus, the FTP can also be succinctly stated as a graph optimization
problem: In a complete weighted graph G (the vertices correspond to robots and edge
weights represent distances between robots), find a binary spanning tree of minimum
depth that is rooted at a given vertex v0 (the initially awake robot).

We say that a wake-up strategy is rational if (1) each awake robot claims and travels
to an asleep unclaimed robot (if one exists) at the moment that the robot awakens; (2) a
robot performs no extraneous movement, that is, if no asleep unclaimed robot exists, an
awakened robot without a target does not move.

The following proposition enables us to concentrate on rational strategies:

PROPOSITION 1. Any solution to the FTP can be transformed into a rational solution
without increasing the makespan.

We conclude the Introduction by noting that one readily obtains an O(log n)-approx-
imation for the FTP.

PROPOSITION 2. Any rational strategy for the FTP achieves an approximation ratio of
O(log n).

PROOF. We divide the execution into phases. Phase 1 begins at time 0 and ends when
the original robot first awakens another robot. At the end of Phase 1 there are two awake
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robots. Let ni denote the total number of robots awake at the end of Phase i . Phase i , for
i = 2, 3, . . . , begins at the moment Phase i − 1 ends, when there are ni−1 awake robots,
and the phase ends at the first moment that each of these ni−1 robots has awakened
another robot (i.e., at the instant when the last of these ni−1 robots reaches its target).
Thus, with each phase the number of awake robots at least doubles (ni ≥ 2ni−1), except
possibly the last phase. Thus, there are at most +log2 n, phases. The maximum distance
traveled by any robot during a phase is diam(D). The claim follows by noting that a
lower bound on the optimal makespan, t∗, is given by diam(D)/2 (or, in fact, by the
maximum distance from the source v0 to any other point of D).

2. Star Graphs. We consider the FTP on weighted stars, also called centroid metrics.
In the general case the lengths of the spokes and the number of robots at the end of the
spokes vary.

We begin with the simplest case, in which all edges of the star have the same length,
and the awake robot is at the central node v0. We start by showing that the natural greedy
algorithm is optimal. The main idea is to awaken the robots in the most populous leaf. In
any rational strategy, however, all awake robots return to the root simultaneously. Thus,
the optimal algorithm has to break ties: Assume that the robots are indexed by positive
integer numbers. The robot with the smallest index claims a leaf with the most robots, the
robot with the second smallest index claims a still unclaimed leaf with the most robots,
and so forth. Then all robots travel to their targeted leaf.

We obtain the following lemma:

LEMMA 3. The greedy algorithm for awakening all the robots in a star with all edges
of the same length is optimal.

PROOF. The proof is by an exchange argument. By Proposition 1 we consider rational
optimal strategies. At each stage of the algorithm, a robot always chooses to awaken a
branch with the most robots at the end.

Suppose for the sake of contradiction that we have the particular optimal schedule
whose prefix is greedy for the longest amount of time. Consider the first step when the
algorithm is not greedy. That is, a robot chooses branch e1, when there is a branch e2

with more robots. Instead, we could swap e1 and e2. Now the robot awakens branch e2,
but the “extra” robots remain idle until the time that branch e2 would be awakened; then
a robot awakens branch e1 and the extra robots idle on branch e2 are activated. Thus, we
have a new optimal solution with an even longer greedy prefix, and thus we have shown
a contradiction.

The rest of Section 2 considers stars in which edge lengths vary. Varying edge lengths
already make the problem NP-hard, even if the same number of sleeping robots are
located at each leaf. The FTP on stars nicely illustrates an important distinction between
the FTP and broadcasting problems [30], which can be solved to optimality in polynomial
time for the (more complicated) case of trees.

2.1. Star Graphs with the Same Number of Robots on Each Leaf. In Sections 2.2–2.4
we assume that an equal number q of robots are at each leaf node of a star graph (centroid
metric). The general case is discussed in Section 2.5.
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We say that a robot has visited an edge and its leaf, if it has been sleeping there or
traveled there. We use the following observation, which follows from another simple
exchange argument.

LEMMA 4. For any instance of the FTP on stars, where there is an equal number of
robots at each leaf vertex, there exists an optimal solution such that the lengths of the
edges along any root-to-leaf path in the awakening tree are nondecreasing.

PROOF. The proof is by an exchange argument. We consider rational strategies. Suppose
for the sake of contradiction that no optimal solution has our desired property (i.e., that all
root-to-leaf paths in the awakening tree have edges lengths that are nondecreasing over
time). Consider the optimal solution, such that this nondecreasing property is obeyed for
the longest possible amount of time, and consider the first edge e1 in the awakening tree
disobeying this property. That is, a descendant edge e2 of edge e1 in the awakening tree
is shorter than edge e1. (We can modify edge lengths by a vanishingly small amount so
that there are no ties.)

Instead, we could swap e1 and e2 so that the q robots awakened after branch e2 do the
job of the q robots awakened after branch e1 and vice versa. Consider all nodes in the
original awakening tree that are descendants of branch e1 but not e2 after the swap, these
nodes are reached earlier. Now consider all nodes that are descendants of both branches
e1 and e2; these nodes are reached at the same time before and after the swap. Therefore,
we have transformed this optimal solution into another optimal solution whose root-to-
leaf paths have nondecreasing edge lengths for an even longer amount of time. Thus, we
obtain a contradiction.

2.2. Performance of the Greedy Algorithm Shortest-Edge-First. Now we analyze the
natural greedy algorithm Shortest-Edge-First (SEF). When an (awake) robot arrives at
the root v0, it chooses the shortest (unawakened and unclaimed) edge to awaken next.
Interestingly, this natural greedy algorithm is not optimal.

The simplest example showing that SEF is suboptimal is a star with four branches
b1, . . . , b4 of lengths 1, 1, 1, and 100, where one asleep robot is at each leaf. The optimal
solution has makespan 102: the first robot awakens branch b1 then b4, while the robot in
b1 awakens b2 and then b3. On the other hand, the greedy algorithm has makespan 104:
first b1 is awakened, then b2 and b3 at the same time, and finally b4.

More generally, we have the following lemma (Figure 1):

v
0

3k

k

1

2  −1k

2k

Fig. 1. Example demonstrating that Shortest-Edge-First (SEF) is at best a 7
3 -approximation.
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LEMMA 5. There is a lower bound of 7
3 on the worst-case approximation factor of the

greedy algorithm.

PROOF. Consider a 2k+1-edge example with one asleep robot at each leaf. There are
2k − 1 edges of length 1, 2k edges of length k, and one edge of length 3k. The greedy
algorithm first awakens all robots at short edges. Thus, at time 2k, exactly 2k robots meet
at the root, and then they each go to a (different) edge of length k. Then, at time 3k, one
robot has to travel back to the root and is sent down to the last sleeping robot at the edge
of length 3k, where it arrives at time 7k.

On the other hand, an optimal solution completes no later than at time 3k + 4: this
can be achieved by having one robot travel down the longest edge at time 2, and another
robot travel down an edge of length k at time 4, effectively awakening all short edges
while those two long edges are traversed. At time 2k + 4 all short edges and one edge
of length k have been awakened and 2k robots have traveled back to the root (one
robot is still traveling down the edge of length 3k and then arrives at time 3k + 2). We
can thus use 2k − 1 of them to awaken the remaining edges of length k by the time
3k + 4. Therefore, for large k the ratio of the greedy solution and the optimal solution
tends to 7

3 .

As it turns out, this example is the worst case for the greedy algorithm.

THEOREM 6. For the FTP on stars with the same number of robots at each leaf, the
performance guarantee of the greedy algorithm is 7

3 , and this bound is tight.

In order to prove Theorem 6, we first show the following theorem, which is of inde-
pendent interest. We define the completion time of a robot to be the earliest time when
the robot is awake and resting thereafter, i.e., no longer in motion. Note that because our
strategies are rational, once a robot rests it never moves again.

THEOREM 7. Consider the greedy algorithm SEF on a star for which all leaves have
the same number of robots; SEF minimizes the average completion time of all robots.

PROOF. The proof is based on an exchange argument. Consider an arbitrary solution
minimizing the average completion time. Assume that at some point in time a robot enters
an edge e1 that has a length larger than that of a shortest available edge e2. Therefore, e2

is chosen at a later point in time. There are three cases:

• Case 1: In the tree corresponding to the solution, e2 lies in the subtree below e1. An
exchange of the two edges decreases the average completion time, contradicting the
optimality of the solution under consideration. (This exchange is feasible because both
edges have the same number of robots at their ends.)

For i = 1, 2, let ni denote the number of edges in the subtree Ti that is formed by ei

and its descendants.

• Case 2: Subtree T1 is larger than T2, that is, n1 > n2. Then exchanging the two edges
does not increase the average completion time.
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• Case 3: Subtree T1 is smaller than or equal to T2, that is, n1 ≤ n2. Then exchanging the
two subtrees T1 and T2 within the whole tree does not increase the average completion
time.

By iterating this exchange argument for all three cases, we finally arrive at the greedy
solution, which is therefore optimal with respect to the average completion time.

Theorem 7 allows us to proceed.

PROOF OF THEOREM 6. Let m be the number of edges in the star and let q be the number
of sleeping robots at each leaf. In particular, an instance contains n = 1 + m · q robots.

Because the average completion time is always a lower bound on the maximum
completion time, it follows from Theorem 7 that the average completion time C̄ of the
greedy solution is a lower bound on the optimal makespan.

We consider rational optimal strategies. Because a robot only moves if it will later
awaken another robot, all robots terminate at leaves. Moreover, we can assume that for
all but one leaf, either all q + 1 robots leave the leaf after awakening, or they all stay
put. A simple exchange argument proves this observation.

Thus, some leaves have q +1 robots ending there, some leaves have no robots ending
there, and a single leaf may have some robots that end there and some that travel to other
leaves. In particular, let p := .n/(q + 1)/ be the number of leaves with q + 1 robots
ending at them. Exactly p(q + 1) robots end at these leaves. Therefore, the remaining
n − p(q + 1) < q + 1 robots end at the single leaf for which (possibly) some but not all
robots depart to awaken other branches.

We assume that the edges ei , i = 1, 2, . . . , m, are indexed in order of nondecreasing
lengths &(ei ). The SEF strategy therefore awakens the edges in this order. Because p
leaves have q + 1 robots ending at them (the leaves on edges em−p+1, em−p+2, . . . , em),
the last robot to awaken anyone is one of the robots from leaf at em−p. This last robot r
awakens edge em , at which point the algorithm terminates.

Let T denote the time when robot r departs from the leaf of edge em−p in order to
travel back to the root and then to the end of edge em . The makespan of the greedy
solution is

T + &(em−p) + &(em).(1)

By construction, T is a lower bound on the completion time of each robot in the greedy
solution because no robot rests until after time T . Thus, we obtain the following lower
bounds on the makespan t∗:

T ≤ C̄ ≤ t∗ and &(em) ≤ t∗.

It remains to be shown that &(em−p) ≤ t∗/3. At the end of the optimal solution there
are p leaves with q +1 robots. Therefore, there must be an edge ei with i ∈ {m − p, m −
p+1, . . . , m} and less than q+1 robots at its end, because |{m− p, m− p+1, . . . , m}| =
p + 1. Without loss of generality, one robot must have traveled down this edge in order
to unfreeze the q robots at its end and then traveled back to the root in order to travel
down another edge ej . Lemma 4 yields &(ej ) ≥ &(ei ), so that the value of any solution
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is at least

2 · &(ei ) + &(ej ) ≥ 3 · &(em−p).

Thus, t∗ ≥ 3 · &(em−p), implying that the makespan of the greedy solution is at most
t∗ + (t∗/3) + t∗ = 7t∗/3, completing the proof.

We conclude our discussion of SEF by noting a result that will be needed for the proof
of Theorem 14.

COROLLARY 8. The makespan of the greedy solution is at most t∗+2&max where &max :=
maxi &(ei ).

PROOF. This follows from (1) because T is a lower bound on t∗.

2.3. NP-Hardness. We saw in the previous section that the greedy algorithm may not
find an optimal solution. Here we show that it is unlikely that any other polynomial
algorithm can always find an optimum.

THEOREM 9. The FTP is strongly NP-hard, even for the special case of weighted stars
with one (asleep) robot at each leaf.

PROOF. Our reduction is from NUMERICAL 3-DIMENSIONAL MATCHING (N3DM) [22]:

Instance: Disjoint sets W , X , and Y , each containing n elements, a size ai ∈ Z+ for each
element i ∈ W , a size bj ∈ Z+ for each element j ∈ X , a size ck ∈ Z+ for each element
k ∈ Y , such that

∑

i∈W ai +
∑

j∈X bj +
∑

k∈Y ck = d n for a target number d ∈ Z+.

Question: Can W ∪ X ∪ Y be partitioned into n disjoint sets S1, S2, . . . , Sn , such that
each Sh contains exactly one element from each of W , X , Y and such that for 1 ≤ h ≤ n,
aih + bjh + ckh = d?

See Figure 2 for the overall idea of the reduction. For technical reasons we assume
without loss of generality that the size of each element from W ∪ X ∪ Y is at most d.
Moreover, we can assume without loss of generality that n = 2K for some K ∈ N—the
number of elements in W , X , and Y can be increased to the nearest power of 2 by adding
elements of size d − 2 to W and elements of size 1 to X and Y ; notice that this does not
affect the value “yes” or “no” of the instance.

Let ε be a sufficiently small number (ε < 1/(2K ) suffices), and let L be sufficiently
large, e.g., L := 15d . Consider a designated root node with an awake robot, and attach
the following edges to this root:

• n − 1 edges of length ε; E denotes the robots at these leaves, along with the robot
at v0.

• n edges of length αi := ai/2 − εK + d, i = 1, . . . , n; A denotes the robots at these
“A-leaves”.

• n edges of length αi := L − ai − 2d, for i = 1, . . . , n; A denotes the robots at these
“A-leaves”.
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Fig. 2. NP-hardness of Freeze-Tag for stars: In any good solution, a robot awakening one of the robots in set
C must have visited the sets A and B precisely once. This means that there is a cheap solution for this class
of FTP instances iff the elements of the sets A, B, C can be grouped such that αih + βjh + γkh = d.

• n edges of length βj := bj/2 + 2d, for j = 1, . . . , n; B denotes the robots at these
“B-leaves”.

• 2n edges, two each of length γk := L − 7d + ck , for k = 1, . . . , n; C denotes the set
of robots at these “C-leaves”.

We claim that there is a schedule to awaken all robots within time L , if and only if
there is a feasible solution to the N3DM instance.

It is straightforward to see that the “if” part holds: Let S1, S2, . . . , Sn be a feasible
solution to the N3DM instance. Using a binary tree on the set E (a “greedy cascade on
E”), we can bring all n robots in E to the root at time 2εK = 2ε log n. These n robots
are sent to the A-leaves. Now there are 2n robots available, two each will get back to
the root at time ai + 2d , i = 1, . . . , n. One of each pair is sent down the edge of length
αi , so that the whole set A gets awakened just in time L . The remaining n robots (one
for each ai , call this robot Ai ) get sent to wake up the robots of set B, such that Aih is
assigned to an edge of length βjh , if aih and bjh belong to the same set Sh . This gets two
robots for each h (say, A(1)

ih
and A(2)

ih
) back to the root at time aih + bjh + 6d. Send those

two robots down the two edges of length γkh . Because aih + bjh + ckh = d, all robots in
C are awake at time L .

To see that a feasible schedule implies a feasible solution of the N3DM instance, first
observe that no robot in F = A ∪ C can wake up any other robot, as the corresponding
edges are longer than L/2. Moreover, the same argument implies that no two robots in
F can be awakened by the same robot. Because the total number of robots is precisely
2|F | = 6n, we conclude that each robot in E ∪ A ∪ B must wake up a different robot
in F .

Clearly, no robot in B can wake up a robot in A by the deadline L . Thus, the robots
in A are awakened by a set of n robots Ã ⊂ E ∪ A. Notice that a robot in Ã can neither
visit a B-leaf nor two A-leaves and still meet the deadline.

The 2n robots in C must be awakened by the 2n robots in B ∪ (E ∪ A)\ Ã. Because
none of them has enough time to visit two B-leaves, each must visit exactly one B-leaf
and then, by Lemma 4, travel immediately to a C-leaf. We can assume without loss of



204 E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B. Mitchell, and M. Skutella

generality (by a simple exchange argument) that each pair of robots that has visited the
same B-leaf is assigned to a pair of C-leaves at the same distance.

As explained above, each robot in Ã can visit at most one A-leaf; the same is true for
all robots in (E ∪ A)\ Ã, because each must visit one B-leaf and one C-leaf afterwards.
Because there are 2n robots in E ∪ A and also 2n visits to A-leafs, each robot in E ∪ A
must visit exactly one A-leaf.

We next argue that, without loss of generality, a feasible solution uses a greedy cascade
in the beginning to bring all n robots in E to the root at time 2εK . As described above,
the greedy cascade guarantees that, later, each pair of robots returning from an A-leaf
at distance αi arrives at the center node at time ai + 2d. On the other hand, such a pair
cannot arrive before time 2αi = ai + 2d − 2εK > ai + 2d − 1. Because the deadline
L as well as all remaining travel times to A-leaves or B and C-leaves are integral, the
claim follows.

A simple exchange argument yields that, without loss of generality, the robots in A
are awakened by the robots in A, i.e., Ã = A. Thus, each robot in E travels to one A-leaf,
then to a B-leaf and finally to a C-leaf. The time at which a robot in E who has visited
edges of length αi and βj arrives at a C-leaf at distance γk is L − d + ai + bj + ck .
Therefore, a schedule that awakens all robots by time L implies a partition S1, . . . , Sn

with aih + bjh + ckh = d for all h.

As the problem 3-PARTITION is strongly NP-complete, it is straightforward to convert
the weighted stars in the construction into unweighted trees by replacing weighted edge
by an unweighted path.

COROLLARY 10. The FTP is NP-hard, even for the special case of unweighted trees
with one (asleep) robot at each leaf.

2.4. PTAS. We give a PTAS for the FTP on weighted stars with one awake robot at the
central node, v0, and an equal number q of sleeping robots at each leaf. The underlying
basic idea is to partition the set of edges into “short” and “long” edges. The lengths
of the long edges are rounded such that only a constant number of different lengths
remains. The approximate positions of the long edges in an optimal solution can then be
determined by complete enumeration. Finally, the short edges are “filled in” by a variant
of the greedy algorithm discussed in Section 2.2. During each step we may lose a factor
of 1 + O(ε), such that the resulting algorithm is a (1 + O(ε))-approximation algorithm,
so we get a PTAS.

Similar techniques have been applied for other classes of problems before, e.g., in
the construction of approximation schemes for machine scheduling problems (see, for
example, [24]). However, the new challenge for the problem at hand is to cope with the
awakened robots at short edges whose number can increase geometrically over time.

Let T ≤ t∗ be a lower bound on the makespan, t∗, of an optimal solution. For our
purpose, we can set T to 3

7 times the makespan of the greedy solution, which can be
determined in polynomial time. For a fixed constant ε > 0, we partition the set of edges
E into two subsets

S := {e ∈ E | &(e) ≤ εT } and L := {e ∈ E | &(e) > εT }.
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We call the edges in S short and the edges in L long. We modify the given instance by
rounding up the length of each long edge to the nearest multiple of ε2T .

LEMMA 11. The optimal makespan of the rounded instance is at most (1 + O(ε))t∗.

PROOF. Consider the awakening tree corresponding to an optimal solution of the origi-
nal instance. On any root-to-leaf path in the awakening tree, there can be at most O(1/ε)

long edges. (This is because T ≤ t∗ ≤ 7
3 T , and long edges have length at least εT .) In

the rounding step we increase the length of a long edge by at most ε2T . Therefore the
length of any path, and thus the completion time of any robot in the solution given by
the tree, is increased by at most O(ε) · T . Because T is bounded by T ≤ t∗ ≤ 7

3 T , the
claim follows.

Any solution to the rounded instance with makespan t induces a solution to the original
instance with makespan at most t . Therefore, it suffices to construct a (1 + O(ε))-
approximate solution to the rounded instance. In the following we only work on the
rounded instance and refer to it as instance I .

LEMMA 12. There exists a (1 + ε2)-approximate solution (which is possibly not a
rational strategy) to instance I that meets the requirement of Lemma 4, such that for
each long edge the point in time that it is entered by a robot (its “start time”) is a multiple
of ε2T .

PROOF. An optimal solution to instance I can be modified to meet the requirement of
the lemma as follows. Because the schedule obeys the structure from Lemma 4, any
root-to-leaf path in the awakening tree first visits all short edges before all long edges.
Whenever a robot wants to enter a long edge, it has to wait until the next multiple of ε2T
in time. Because the lengths of long edges are multiples of ε2T all subsequent long edges
are entered at times that are multiples of ε2T . Therefore this modification increases the
makespan of the solution by at most ε2T .

In the remainder of the proof we consider an optimal solution to instance I meeting
the requirements of Lemmas 4 and 12. The makespan of this solution is denoted by t∗.
Notice that both the number of different lengths of long edges and the number of possible
start times are in O(1/ε2). The positions of long edges in an optimal solution can be
described by specifying for each possible start time and each edge length the number of
edges of this length that are started at that time. Because each such number is bounded
by the total number of edges n, there are at most nO(1/ε4) possibilities, which can be
enumerated in polynomial time.

This enumerative argument allows us to assume that we have guessed the correct
positions of all long edges in an optimal solution. Again, we can assume by Lemma 4
that any root-to-leaf path in the awakening tree first visits all short edges before all
long edges. Therefore, the long edges are grouped together in subtrees. We must fill in
the short edges near the root to connect the root of the awakening trees to the subtrees
consisting of long edges. Given the start times S(e) of the long edges e ∈ L , we group



206 E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B. Mitchell, and M. Skutella

them into subtrees as follows. One by one, in order of nondecreasing start times, we
consider the long edges. If an edge e has not been assigned to a subtree yet, we declare
it the root of a new subtree. If there are long edges e′ with S(e′) = S(e) + 2&(e) that
have not been assigned to a subtree yet, we assign at most q + 1 of them as children to
the edge e.

Let p be the number of resulting subtrees and denote the start times of the root edges
by S1, . . . , Sp, indexed in nondecreasing order. Notice that, although the partition of
long edges into subtrees is in general not uniquely determined by the vector of start
times (S(e))e∈L , the number of subtrees p and the start times S1, . . . , Sp are uniquely
determined.

It remains to fill in all short edges. This can be done by the following variant of the
greedy algorithm: We set Sp+1 := ∞ and i := 1 in the beginning. Assume that a robot,
coming from a short edge, gets to the central node at time t .

• If t ≥ Si + 2εT , then send the robot into the i th subtree and set i := i + 1.
• Else, if there are still short edges to be visited, then send the robot down the shortest

of those edges.
• Else, if i ≤ p, then send the robot into the i th subtree and set i := i + 1.
• Else stop.

LEMMA 13. The above generalized greedy procedure yields a feasible solution to in-
stance I whose makespan is at most t∗ + 4εT ≤ (1 + 4ε)t∗.

PROOF. We first argue that the solution computed by the generalized greedy procedure
is feasible, i.e., all robots are awakened. We thus have to show the following: When a
robot is sent into the i th subtree then either all short edges have been visited or there is at
least one other robot traveling along a short edge (which will take care of the remaining
subtrees and/or short edges).

Assume by contradiction that this condition is violated for some i ∈ {1, . . . , p}.
Let t denote the point in time when the generalized greedy procedure sends the last
robot traveling on short edges into the i th subtree. We consider a (partial) solution to a
modified instance I ′ which is obtained by replacing the first i −1 subtrees in the solution
computed by the generalized greedy procedure until time t by subtrees consisting of new
short edges. These new edges and subtrees are chosen such that the resulting solution
until time t has the SEF property, i.e., it is a (partial) greedy solution.

To be more precise, the construction of the modified instance I ′ and solution can
be done as follows: Whenever the generalized greedy procedure sends a robot into one
of the first i − 1 subtrees, we replace the first edge of this subtree in the solution to
the modified instance I ′ by a new edge whose length equals the length of the shortest
currently available edge. Moreover, whenever a robot belonging to the modified subtree
arrives at the center node before time t , we add a new short edge to the modified instance I ′

whose length equals the length of the shortest currently available edge and assign the
robot to it.

Let k be the number of awake robots in this greedy solution for the modified instance I ′

at time t . Notice that all k robots belong to one of the modified subtrees.
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The optimal solution to instance I until time t ′ := t − 2εT induces a solution σ to
the modified instance I ′ until time t ′ by again replacing the first i − 1 subtrees of long
edges by the corresponding subtrees of short edges.

We claim that there are at least k + 1 awake robots in σ at time t ′. Notice that the first
i − 1 subtrees are started at least 2εT time units earlier than in the greedy solution (by
construction of the generalized greedy procedure). Thus, the number of awake robots in
these subtrees at time t ′ is at least k. Moreover, because the optimal solution awakens
all robots, there must be at least one additional awake robot at time t ′ (taking care of the
remaining edges).

However, in order to get k + 1 awake robots, +k/q, leaves must have been visited.
Consider the +k/q, shortest edges of the modified instance I ′. It follows from the discus-
sion in the last paragraph that it takes at most t ′ time units to visit all of these edges. On
the other hand, the makespan of the greedy solution is larger than t because the number
of awake robots in the greedy solution at time t is only k. Because we only consider
short edges of length at most εT and because t − t ′ = 2εT , this is a contradiction to
Corollary 8.

So far we have shown that the solution computed by the generalized greedy procedure
visits all leaves. It remains to show that its makespan is at most t∗ + 4εT .

Notice that the length of the time interval between two visits of a robot traveling on
short edges to the central node is at most 2εT . Therefore, a robot is sent into the i th
subtree before time Si + 4εT , for i = 1, . . . , p. As a consequence, the robots at each
long edge are awake before time t∗ + 4εT .

Finally, the same argument as in the feasibility proof above shows that all robots at
short edges are awake at time t := t∗ + 2εT . This completes the proof.

We summarize:

THEOREM 14. There exists a polynomial-time approximation scheme for the FTP on
(weighted) stars with the same number of robots at each leaf.

2.5. Any Number of Robots at Each Leaf. We give a constant-factor approximation
algorithm for the FTP on general stars (centroid metric), where edge lengths may vary
and leaves may have different numbers of asleep robots. Interestingly, we obtain this
O(1)-approximation algorithm by merging (interleaving) two natural algorithms, each
of which may perform poorly:

• The Shortest Edge First (SEF) strategy, where an awake robot at v0 considers the set
of shortest edges leading to asleep robots, and chooses one with a maximum number
of asleep robots.

• The Repeated Doubling (RD) strategy, where the edge lengths traversed repeatedly
(roughly) double in size, and, in each length class, edges are selected by a decreasing
number of asleep robots. (A formal definition of the RD strategy is given later.)

Each of these algorithms is only a "(log n)-approximation, but their combination leads
to an O(1)-approximation.

We first consider the SEF strategy.
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Fig. 3. Example in which SEF yields a solution of makespan "(log n), while the optimal is O(1).

LEMMA 15. The SEF strategy leads to a "(log n)-approximation.

PROOF. Consider a tree having one edge of length 1 + ε that leads to a leaf with n − 1
robots, and n − 1 edges, each of length 1, with one robot at each of the leaves; see
Figure 3. The SEF strategy has makespan "(log n), whereas an optimal strategy has
makespan O(1). Thus, SEF is an %(log n) approximation algorithm. By Proposition 2,
any rational strategy is an O(log n) approximation algorithm.

Next we consider the RD strategy. A robot at v0 faces the following dilemma: should
the robot choose a short edge leading to a small number of robots (which can be awakened
quickly) or a long edge leading to many robots (but which takes longer to awaken)? There
are examples that justify both decisions, and where a wrong decision can be catastrophic.
See Figure 4.

We begin our analysis by assuming that all branches have lengths that are powers of 2.
This assumption is justified because we can take an arbitrary problem and stretch all the
edges by at most a factor of 2. Now any optimal solution for the original problem becomes
a solution to this stretched problem, in which the makespan is increased by at most a
factor of 2. Thus, a k-approximation to the stretched problem is a 2k-approximation to
the original problem.
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log n
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v
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Fig. 4. Example in which RD yields a solution of "(log2 n), while the optimum is O(log n).
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Thus, we have reduced the problem on general stars to the problem on stars whose
edge lengths are powers of 2. We partition the edges into length classes. Within each
length class, it is clear which edge is the most desirable to awaken: the one housing
the most robots. However, how can we choose which length class the robot should visit
first? Suppose that an optimal algorithm chooses an edge of length 2 j at some point in
time. We can visit edges of lengths 1, 2, 4, 8, . . . , 2 j and only increase the makespan by
a factor of 3. That is, we use repeated doubling to “hedge our bets” about what is the best
path to take next. However, if the right choice to make is to awaken robots in a nearby
length class, then we may suffer by sending robots on an RD trajectory to long edges.

In summary, the RD algorithm is as follows. When a robot wakes up, it awakens
the most desirable edge in length class 1, 2, 4, 8, . . .. When the robot runs out of length
classes, it starts the RD process anew.

The RD strategy may have poor performance:

LEMMA 16. The RD strategy yields a "(log n)-approximation.

PROOF. Consider a star having n/2 edges of length 1 and n/2 edges of length log n,
with a single robot at each leaf. Refer to Figure 4. The optimal solution has makespan
"(log n)—first the robots awaken all the short branches (in time "(log n)), and then n/2
robots awaken the long branches (again in time "(log n)). The RD strategy, on the other
hand, has makespan "(log2 n). Thus, the RD strategy is an %(log n) approximation. By
Proposition 2, any rational strategy is an O(log n) approximation algorithm, establishing
our bound.

We now merge these two previous strategies to obtain what we call the Tag-Team
algorithm: When a robot is first awakened, it awakens one edge in each length class
1, 2, 4, 8, . . . . Before each doubling step, the robot awakens the shortest edge that it can
find. When the robot runs out of length classes, it starts the RD process anew. Naturally,
the robot skips any length class no longer containing edges.

THEOREM 17. The Tag-Team algorithm gives a 14-approximation for the FTP on cen-
troid metrics (general stars).

PROOF. We begin by restricting ourselves to the special case in which all edge lengths
are powers of 2; because any general instance can be transformed to this special case,
while at most doubling the edge lengths, this restriction results in at most doubling the
cost of a solution.

Consider an optimal solution given by a wake-up tree T ∗. We can assume without
loss of generality that an edge is awakened before all other edges in the same length
class with a smaller number of robots. Moreover, if there are several edges with the
same number of robots in a length class, we break ties and assume that the Tag-Team
algorithm visits these edges in the same order as the optimal solution does.

We show by induction that if in the optimal awakening tree T ∗ an edge e is awakened
at time t , then the Tag-Team algorithm awakens this edge e at or before time 7t .
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Suppose that in the optimal awakening tree T ∗ at time t a robot r awakens the robots
r1, r2, . . . , rk at the end of an edge e, where e has length &(e). Consider the next edge that
each of the robots r1, r2, . . . , rk awakens in the optimal awakening tree T ∗. Specifically,
suppose that in T ∗, robot ri travels to an edge ei of length &(ei ). That is, in T ∗ at time
t + &(e) + &(ei ), robot ri awakens the robots at the end of edge ei .

Now we consider when these robots are awakened in the Tag-Team algorithm. By
induction, suppose that robot r was awakened at or before time 7t . In the Tag-Team algo-
rithm each of the awakened robots r1, r2, . . . , rk performs an RD trajectory, ultimately
awakening the edge in the appropriate length class. The worst case is when the edge
taken in the SEF branches has the same length as the edge taken in the RD branches.
Thus, two edges of length 2 j are traversed (for j = 1, 2, . . .), one during an RD step and
one during an SEF step, and each edge is traversed in both directions. Therefore, either
ri awakens ei by time

7t + &(e) + 2 · 2 · (1 + 2 + 4 + . . . + &(ei )/2) + 2&(ei ) + &(ei ) ≤ 7t + &(e) + 7&(ei )

or edge e′
i was already awakened. That is, even without knowing the edge class where

ri should go directly, it gets there eventually. However, what about the original robot r ,
which continues its RD trajectory to larger edges when in T ∗ robot r visits a smaller
edge? Robot r plays tag-team awakening at least one robot on the smallest edge possible,
and this new robot performs r ’s duties. Thus, this robot in time ≤ 7t + &(e) + 7&(ei )

awakens the edge class that r would awaken in T ∗.

At this point it is still open how this approximation factor can be improved. In fact,
we conjecture that there is a (1 + ε)-approximation:

CONJECTURE 18. There is a PTAS for the FTP on weighted stars with not necessarily
the same number of robots at each leaf.

3. General Graphs. Now we discuss the FTP on general graphs G = (V, E) with
nonnegative edge weights &(e). We let δ(v) denote the degree of v in G.

3.1. A Competitive Online Algorithm. As Theorem 9 illustrates, even the presence of
a single vertex v with a high degree causes the problem to be NP-hard, showing that the
resulting choices may be difficult to resolve. This makes it plausible that the complete
absence of high-degree nodes could make the problem more tractable. As we will see
later, this is not the case: Even for graphs of maximum degree 5, finding a solution within
5/3 of the optimum is NP-hard.

However, it is not hard to see that a sufficient number, r(vi ), of robots at each vertex
vi yields an easy problem:

LEMMA 19. Suppose r(v0) ≥ δ(v0) for the source node v0, and r(vi ) ≥ δ(vi ) − 2 at
any other node vi in G. Then the FTP can be solved by breadth-first search.

This observation is based on the simple fact that any node in a breadth-first search
(BFS) tree has minimal possible distance from the root, making the depth of this tree a
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general lower bound on the makespan of a wake-up tree. If r(v0) ≥ δ(v0) and r(vi ) ≥
δ(vi ) − 2 for any vi 2= v0, we have sufficiently many robots available to use a BFS tree
as the wake-up tree, and the claim follows.

As we noted in the Introduction, the online version of the FTP is of interest in some
potential applications. Using the fact that BFS uses only local information, we obtain
some simple online results for the FTP, as we now describe. We let

!G := max
{

δ(v0)

r(v0)
,
δ(vi ) − 2

r(vi )
, i = 1, . . . , n − 1

}

.

For an edge-weighted graph G and any node v of G, we let ρv denote the maximum ratio
of weights for two edges incident on v; i.e., ρv ≥ 1 is the ratio of the maximum edge
weight among edges incident on v to the minimum edge weight among edges incident
on v. We say that G has locally bounded edge weights if there exists a constant, C , such
that ρv ≤ C for all v in G.

THEOREM 20. Let G be an edge-weighted graph with locally bounded edge weights.
Then there is a linear-time online algorithm for the FTP on G that guarantees a com-
petitive ratio of O(log !G).

PROOF. The idea is to simulate a BFS at each node: At any vertex vi , use the robots at
vi to awaken all robots at neighboring nodes prior to sending robots to awaken robots
at nodes that neighbor the neighboring nodes of vi . This is readily achieved with a
binary wake-up tree of unweighted depth O(log(δ(v0)/r(v0))) for the root v0, and
O(log((δ(vi ) − 2)/(r(vi )))) for any other vertex vi , as the vertex used to enter vi does
not need to be awakened. Thus, with the assumption of locally bounded edge weights,
the time needed to do this awakening is O(log(δ(v0)/r(v0))) (or O(log((δ(vi ) − 2)/

(r(vi ))))) times the weight of a minimum-weight edge incident on v0 (or vi ). Thus, each
robot is awakened by time O(log !G) times the length of the minimum-weight path
from the root to the node where the robot originally sleeps. This implies the claim.

There is an %(log !) lower bound on the competitive ratio of any online algorithm,
as the following example shows. Specifically, v0 has k neighbors, each at distance 1
from v0 and each having exactly one sleeping robot. One of these neighbors of v0 has
adjacent to it a tree with diameter ε, having a population of at least k sleeping robots.
An online algorithm has no knowledge of which neighbor of v0 has the adjacent tree of
many sleeping robots; an adversary can make this neighbor be the last one awakened
by the algorithm. An optimal offline strategy awakens this neighbor first, then awakens
the neighboring tree of many robots, which then return to v0 and awaken the rest of v0’s
neighbors, in total time O(1). The online strategy takes time %(log !).

3.2. Hardness of Approximation. As it turns out, there is no realistic hope for a PTAS
on general graphs of bounded degree, even if we go beyond strictly local, i.e., online,
procedures:

THEOREM 21. It is NP-hard to approximate the FTP on general weighted graphs within
a factor less than 5

3 , even for the case of !G = 4 and one robot at each node.
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Fig. 5. NP-hardness of 5
3 -approximation of Freeze Tag in general graphs.

PROOF. The reduction is from 3SAT. Without loss of generality, we assume that we
have n = 2K variables. For technical reasons, we add n clauses of size 2 of the form “x
or not x”, one for each variable.

This instance will be mapped to an FTP instance on a weighted graph of bounded
degree with one robot per vertex, such that we have a solution of makespan 3

2 +O(ε log n)

if there is a satisfying truth assignment, and a makespan of at least 5
2 if there is no such

truth assignment. By choosing ε = o(log n), this implies that approximating the resulting
class of FTP instances within a factor of less than 5

3 requires finding a satisfying truth
assignment, hence the claim.

We now give details of the construction. See Figure 5. From the root, build a binary
tree of depth ε log(n/2), resulting in two awake robots at each of the n/2 preliminary
leaves, after time ε log(n/2).

Next group the n variables in an arbitrary way to n/2 pairs, and assign a pair to
each preliminary leaf. Each pair of variables is represented by four more vertices, two
corresponding to “true”, two corresponding to “false”. All get connected to the respective
preliminary leaf, using an edge of “intermediate” length 1

2 . The two vertices for the same
variable get connected to each other, using an edge of “long” length 1.

If c(x) is the number of clauses in which some literal x occurs, attach a small binary
tree of height O(ε) to allow c(x) + 1 awake robots at cost O(ε) when the literal node is
reached. (This does not affect the overall !.)

Finally, add one vertex per clause (including the artificial ones stated above.) Using
an edge of length 1, connect each literal vertex to the vertices representing the clauses
in which the literal occurs.
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Now a truth assignment induces a wake-up tree of makespan 3
2 + O(ε log n). After

going through the initial binary tree, we have n awake robots at the preliminary leaves.
For each variable, pick the node corresponding to the literal in the given truth assignment.
Use c(x) of the robots close to this literal to wake up all corresponding clause nodes,
and the remaining robot to wake up the counterpart x of x .

Conversely, consider a solution of makespan 3
2 + O(ε log n), and a wake-up path

from the root to a robot at a clause vertex. Clearly, such a path must contain at least one
long edge of length 1, and an odd number of edges of intermediate length 1

2 . Assume
that all such paths contain precisely one edge of length 1, and one of length 1

2 . Consider
all the auxiliary clauses of type (xi ∨ xi ) and their wake-up paths from the root. There
are n of these paths, and n robots within distance O(ε log n) from the root. By the time
1
2 + O(ε log n), for each auxiliary clause, one awake robot must be within distance
1 + O(ε log n). This means that at time 1

2 + O(ε log n), for each of the n variables
precisely one of the n robots close to the root must have moved to either vertex xi or to
vertex xi , but not both. This means that the path of robots induces a truth assignment for
the variable. Furthermore, at time 1

2 + O(ε log n) there must be one awake robot within
distance 1 of each clause vertex; therefore, all clauses are satisfied by the induced truth
assignment.

This means that there cannot be a solution of makespan 3
2 + O(ε log n), if there is

no satisfying truth assignment. Furthermore, if there is no solution with only one short
and one intermediate edge on each wake-up path to a clause vertex, any such path in an
optimal solution must have at least two long edges and one intermediate edge, or at least
one long edge and three intermediate edges. This means that if there is no satisfying
truth assignment, an optimal solution must have makespan at least 5

2 + %(ε log n).
This concludes the proof.

4. Freeze-Tag in Geometric Spaces. We now assume that the domain D = (d and
that the distance, d(pi , pj ), between the points pi , pj ∈ P is the Euclidean distance (or
any L p metric). In this section we begin by showing a constant-factor approximation.
We then introduce the notion of “pseudo-balanced” awakening trees. Finally, we show
how these two ideas are combined to yield an efficient PTAS for the geometric FTP.

4.1. Constant-Factor Approximation Algorithm

THEOREM 22. There is an O(1)-approximation algorithm, with running time O(n log n),
for the geometric FTP in any fixed dimension d. The algorithm yields a wake-up schedule
with makespan O(diam(R)), where diam(R) denotes the diameter of the point set R (see
Figure 6).

PROOF. For each of the points v ∈ R, we consider K sectors defined by rays emanating
from the points at angles 0, 2π/K , 2(2π/K ), 3(2π/K ), . . . . Let uj (v) denote the point
(if any) of R in the j th sector that is closest to v; if there are no points of R in the j th
sector of v, then uj (v) is undefined. We can compute the uj (v) points, for all j and all
v ∈ R, in total time O(K n log n), using standard Voronoi diagram-based methods [13].
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Fig. 6. An O(1)-approximation algorithm for the geometric FTP in any fixed dimension d. The algorithm
generates a wake-up schedule with makespan O(diam(R)). When a robot at point p first awakens, it awakens
the nearest asleep robot in each of K sectors, in order of increasing distance from the point p.

We sort the points uj (v) by distance from v; let these points be u1, u2, . . . , uK ′ , in
sorted order by distance from v. The wake-up strategy we employ is as follows: Once the
robot at v is unfrozen, it follows the path v, u1, u2, . . . , uK ′ , awakening the nearest robot
in each of the K ′ ≤ K nonempty sectors about it. (Of course, some of these robots may
have already been awakened before it gets to their (initial) positions. This potentially
saves it the effort of going to all of these nearby neighbors, allowing for some possible
further improvement in our constant factor.)

We now analyze the performance of this algorithm. Let G K = (R, EK ) be the graph
that links each point v to the points uj that are its nearest neighbors in the K sectors
about v. Such a graph G K is known as a "-graph, for " = 2π/K , and is known to be
a t-spanner for values of K ≥ 9 (e.g., see [16]). This means that distances in the graph
G K approximate to within a constant factor the Euclidean lengths of the edges in the
complete graph G on R.

Assume that the robot at point v& is the last one to be unfrozen by our algorithm.
What is the path length of the “signal” (the unfreezing tag) in getting from v0 to v&?
We know that if some point v is reached by the signal by distance t , then any neighbor,
uj (v), of v in the graph G K is reached by distance ≤ t + ξ , where ξ is the length of the
path v, u1, u2, . . . , uj ; thus, ξ ≤ (2 j − 1) · d(v, uj ) ≤ (2K − 1) · d(v, uj ). Thus, the
signal will reach v& within a distance of at most (2K − 1) times the distance from v0 to
v& in G K . For constant K ≥ 9, distances in G K approximate distances in the Euclidean
plane, up to a constant depending on K . This implies that the signal gets to v& within
distance O(d(v0, v&)); because d(s, p&) is a lower bound on the optimal makespan, t∗,
we have shown that we have an O(1)-approximation.

4.2. Pseudo-Balanced Awakening Trees. We show how to transform an arbitrary awak-
ening tree T into an awakening tree Tb whose makespan is only marginally longer, and
where no root-to-leaf path travels through too many edges. This transformation is critical
for the PTAS that follows in the next subsection.

We say that a wake-up tree is pseudo-balanced if each root-to-leaf path in the tree
has O(log2 n) nodes. We have the following theorem:
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ξ

Subpaths along awakening path

t

Fig. 7. The awakening tree is partitioned into heavy paths, each of which is partitioned into subpaths of length ξ .

THEOREM 23. Suppose there exists an awakening tree, T , having makespan t . Then,
for any µ > 0, there exists a pseudo-balanced awakening tree, Tb, of makespan tb ≤
(1 + µ)t .

PROOF. First we perform a heavy-path decomposition (e.g., see [36]) of the tree T . For
each node v, let d(v) be the number of descendants. Consider a node u with children
v1, . . . , vk . The edge (u, vi ) is heavy if vi has more descendants than any other child of
u; i.e., i = arg maxj d(vj ). If (u, vj ) is a light (nonheavy) edge, then at most half of u’s
descendants are vj ’s descendants; that is, d(vj ) ≤ d(u)/2. Thus, in any root-to-leaf path
in T there are at most log n light edges. Also, heavy edges form a collection of disjoint
paths (because there is one heavy edge from a node to one of its children). We say that
a heavy path π ′ is a child of heavy path π if one end node of π ′ is the child of a node
in π . The heavy-path decomposition forms a balanced tree of heavy paths, because any
root-to-leaf walk in T visits at most log n light edges, and therefore at most log n heavy
paths.

We use these heavy paths to refine the description of the wake-up tree. See Figure 7.
We can assume that in T each heavy path is awakened by one robot, the robot that
awakens the head of the heavy path (node closest to v0) and that no robot awakens more
than one heavy path. In this way, a heavy-path decomposition of T corresponds to an
awakening schedule with one robot per path.

Because T has makespan t , each heavy path has length at most t . We divide the heavy
path into subpaths of length ξ = µt/(2 log n). Note that on any root-to-leaf path in T ,
we visit at most O((1 + 1/µ) log n) different subpaths. In the original wake-up tree, all
nodes in one length ξ subpath are awakened by a single robot. Thus, by construction, a
robot δ units from the beginning of the subpath is awakened δ units after the beginning
(head) of the subpath. In our modified solution the robots in a length ξ subpath share in
the collective awakening of all the robots in the subpath.

We guarantee that we can begin awakening one subpath ξ time units after we began
awakening the previous subpath. We further guarantee that all of the robots are awake
and back in their original asleep positions by 2ξ time units after the first robot in the
subpath is originally awakened. Thus, a robot δ units from the beginning of the subpath
is only guaranteed to be awake 2ξ units after the robot at the beginning of the subpath is
awakened, which could entail a total delay of 2ξ over the original awakening.
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r1 r2 r3

ξ/3
ξ

Fig. 8. Robot r1 awakens the subproblem (r1, r3) by first awakening r2, the last robot (if any) before distance
ξ/3. Robot r2 is then in charge of awakening (r1, r2) before returning to its original position. Robot r1 then
awakens (r2, r3).

We awaken a subpath as follows; see Figure 8. We consider the subpath to be oriented
from “left” (the head, closest to source v0) to “right”. The first robot r1, at the left
end of the subpath, travels along the subpath until the last (asleep) robot, r2, before
position ξ/3, if such a robot r2 exists. If robot r2 exists, then r2 is sent leftwards with the
responsibility to awaken all asleep robots in the interval (r1, r2), and this subproblem
is solved recursively; thus, r2 is responsible for initiating the awakening of all robots in
the interval (r1, r2), and all robots must return to their initial positions. If no robot r2 is
encountered by r1 before position ξ/3, then we use r1 to solve recursively the subproblem
(ξ/3, ξ).

We continue the strategy until a subproblem’s length drops below ξ/log n and then
resort to a different wake-up strategy. The responsible robot, r , goes to the median robot
of the subproblem and awakens it, and continues in its same direction. The robot it just
awakened goes in the opposite direction and recursively does the same thing, heading
for the median in its subproblem, etc. Because a segment has at most n robots in it, this
strategy takes time at most log n · ξ/log n.

Consider a heavy path composed of subpaths of length ξ . Consider any robot at
position δ along the heavy path. The original wake-up tree will awaken this robot δ units
after the first robot of the heavy path. The new solution may awaken this robot as much
as δ +2ξ time units after the first robot of the heavy path; one additive delay of ξ is from
the first phase of the awakening and the second additive delay of ξ is from the second
phase of the awakening.

Because there are at most log n heavy paths on any root-to-leaf walk and there is an
accumulated delay of at most 2ξ per heavy path, the total delay on any root-to-leaf path
is at most 2ξ log n. Because ξ = µt/ 2 log n, the accumulated delay in the makespan is
at most µt .

On any root-to-leaf path in T there are at most O(log n) subpaths. Each of these sub-
paths in our new wake-up tree is transformed into a wake-up subtree of height O(log n).
Thus, on any root-to-leaf path in the new wake-up tree there are at most O(log2 n) nodes,
and therefore our wake-up tree is pseudo-balanced.

4.3. PTAS. We give a (1 + ε)-approximation algorithm (PTAS) for the Euclidean (or
L p) FTP in any fixed dimension. Our algorithm runs in nearly linear time, O(2poly(1/ε) +
n log n). It is important to note that the exponential dependence on 1/ε appears additively
in our time bound, not multiplying n log n.

We divide the plane into a constant number of square tiles or pixels. Specifically, we
rescale the coordinates of the n input points (robots), R, so that they lie in the unit square,
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0v

P

Fig. 9. PTAS for geometric instances. Rescale so that all robots lie in a unit square. Look at the m-by-m grid
of pixels, where m = O(1/ε). Consider an enumeration over a special class of wake-up trees on a set P of
representative points, one per occupied pixel.

and we subdivide the square into an m-by-m grid of pixels, each of side length 1/m. (We
will select m to be O(1/ε).) We say that a pixel is empty if it contains no robots. (See
Figure 9.)

Our algorithm is based on approximately optimizing over a restricted set of solutions,
namely those for which all of the robots within a pixel are awakened before any robot
leaves that pixel. Note that by Theorem 22, once one robot in a pixel has been awakened,
all of the robots in the pixel can be awakened within additional time O(1/m), because
this is the diameter of the pixel.

We now describe the algorithm. We select an arbitrary representative point in each
nonempty pixel. We pretend that all robots in the pixel are at this point, and we enumerate
over all possible wake-up trees on the set, P , of representative points. (If there are r robots
in a given pixel, then we only enumerate wake-up trees whose corresponding out-degree
at that pixel is at most min{m2 − 1, r + 1}.) Because there are only a constant number of
such trees (at most 2O(m2 log m), because |P| ≤ m2), this operation takes time 2O(m2 log m),
which is a constant independent of n. Recall that a wake-up tree is pseudo-balanced if
each root-to-leaf path in the tree has O(log2 m) nodes. Among those wake-up trees for
P that are pseudo-balanced, we select one, T ∗

b (P), of minimum makespan, t∗
b (P). We

convert T ∗
b (P) into a wake-up tree for all of the input points R by replacing each p ∈ P

with an O(1)-approximate wake-up tree for points of R within p’s pixel, according
to Theorem 22. This step takes total time O(n log n). The total running time of the
algorithm is therefore O(2O(m2 log m)+n log n). Correctness is established in the following
lemmas.

LEMMA 24. There is a choice of representative points P such that the makespan of an
optimal wake-up tree of P is at most t∗(R).
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PROOF. For each pixel, we select the representative point to be the location of the first
robot that is awakened in an optimal solution, T ∗(R), for the set of all robots. Then, for
this choice of P , the spanning subtree of P within T ∗(R) defines a feasible wake-up
tree for P of makespan no greater than that of T ∗(R) (namely, t∗ = t∗(R)).

LEMMA 25. For any two choices, P and P ′, of the set of representative points, we have
t∗
b (P) ≤ t∗

b (P ′) + O((log2 m)/m).

PROOF. Pixels have size O(1/m) and there are at most O(log2 m) awakenings in each
root-to-leaf path of a pseudo-balanced tree; thus, any additional wake-up cost is bounded
by O((log2 m)/m).

A similar proof yields:

LEMMA 26. For any pseudo-balanced wake-up tree of P , there exists a wake-up tree,
T (R), with makespan t (R) ≤ tb(P) + O((log2 m)/m).

In summary we have the following result:

THEOREM 27. There is a PTAS, with running time O(2O(m2 log m) + n log n), for the
geometric FTP in any fixed dimension d.

PROOF. The time bound was already discussed. The approximation factor is computed
as follows. By the lemmas above, the makespan, t , of the wake-up tree we compute
obeys

t ≤ t∗
b (P) + O((log2 m)/m)

≤ t∗
b (P ′) + 2 · O((log2 m)/m)

≤ tb(P ′) + O((log2 m)/m)

≤ (1 + µ)t∗ + O((log2 m)/m)

≤ t∗(1 + µ + (C log2 m)/m)

≤ t∗(1 + ε),

for appropriate choices of µ and m, depending on ε. (We also used the fact that t∗ ≥
diam(R) ≥ 1.)

At this point the complexity of the FTP for geometric distances in (d has been
unsettled for several years. In fact, this issue is the topic of Problem #35 on the well-known
list [14] known as “The Open Problems Project”. We have the following conjecture.

CONJECTURE 28. The FTP is NP-hard for Euclidean or Manhattan distances in the
plane.
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5. Conclusion. We have introduced the FTP. We have given a number of algorithmic
results for various scenarios. For the case of star graphs, we have shown NP-hardness,
and analyzed approximation algorithms, in particular for the case of an identical number
of robots at each leaf, for which we have given a simple 7

3 greedy algorithm, and a more
complicated PTAS. We have also shown the existence of constant-factor approximation
methods for general star scenarios, and a 5

3 bound on the approximation ratio in general
weighted graphs, even for bounded degree and one robot at each node. Furthermore, we
have studied the FTP in geometric spaces, where we showed the existence of constant-
factor approximation algorithms, including a PTAS.

Obviously, there is a considerable number of open problems that deserve further
study:

1. Is there a lower bound on the approximability of the FTP on tree metrics?
2. Is there an o(log n)-approximation algorithm for the FTP in general weighted graphs?
3. Is the FTP in low-dimensional geometric spaces NP-hard?
4. Is there a PTAS for the FTP in trees with different numbers of robots at each leaf?
5. Is there an o(log n)- (or, ideally, an O(1)-) approximation algorithm for the FTP for

points in a polygon, where distances are measured according to the length of a shortest
path in the polygon? Such an algorithm would apply also to the FTP in general trees.

6. Can our results be extended to the case of several sources?
7. In a geometric scenario, how does the problem change if a robot only has to get

“close” to another robot (say, within distance 1) in order to unfreeze it?

It is also of interest to consider more game-theoretic aspects related to freeze tag, like
considering algorithmic issues arising from the full game of freeze-tag in the presence of
an adversary. This is somewhat related to the Competing Salesman Problem [17], where
two salesmen travel in a graph and try to visit vertices before the opponent does.

As described in the Introduction, there are many other related questions, and we do
expect many more interesting results arising from this research.
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