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Abstract

In this note, we collect basic results of the theory of large deviations.
Missing proofs can be found in the monograph [1].

1 Introduction

We start by recalling the following computation which was done in the course
Wahrscheinlichkeitstheorie I (and which is also done in the course Versicherungs-

mathematik).
Assume that X, X;, X5, ... are i.i.d real-valued random variables on a proba-

bility space (2, F,P) and x € R, A > 0. Then, by Markov’s inequality,
IP’( ZXi > nx) < exp{—Anz} (E(ele))n =exp{—n(Az — A(N\))},
i=1

where A(A) := log Eexp{\X}.
Defining /() := supy>o{Ar — A()\)}, we therefore get

P(i){i > n:t:) < exp{—nl(z)},

which often turns out to be a good bound.



2 Cramer’s theorem for real-valued random vari-
ables

Definition 2.1.  a) Let X be a real-valued random variable. The function A :
R — (—o00, 00| defined by

A(N) = log Be**

is called cumulant generating function or logarithmic moment generating
function. Let Dy := {\ : A(\) < c0}.

b) A*: R — [0, o] defined by

A*(z) :=sup{A\z — A(N\)}

AR
is called Fenchel-Legendre transform of A. Let Dy« := {\ : A*(\) < oo}

In the following we will often use the convenient abbreviation

A*(F) := inf A*(z)

zeF

for a subset /' C R (with the usual convention that the infimum of the empty set
is +00).

Lemma 2.2. a) A is convex.
b) A* is convex.

c) A* is lower semi-continuous, i. e. {v € FE : N*(z) < a} is closed for every
acR

d) If Dy = {0}, then we have A\* = 0.

e) If A(\) < oo for some A > 0, then we have EX < oo (but possibly EX =
—00).

f) If EX < oo (but possibly EX = —o0), then we have

A (z) :==sup{\x — A(\)}, z > EX

A>0

and N* is nondecreasing on [EX, 00).
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g) E|X| < oo implies A*(EX) = 0.
h) inf,cg A*(x) = 0.
i) A is differentiable in the interior of Dy with derivative

1

M= Setm)

E(Xe™).

Further, N'(n) = y implies N*(y) = ny — A(n).
Proof. [1] O
Examples 2.3. a) £(X) = Poisson(f), # > 0. Then

AN (z)=—x+ 0+ xlog (%), x> 0.

b) L£(X) = Bernoulli(p), 0 < p < 1. Then

1 —
A*(q:):xlogf—i—(l—:c)logl x’ 0<z<I.
p

¢) L(X) = Exp(f), 6 > 0. Then

A (z) = 0x — 1 —log(fx), = >0.

d) L(X)=N(0,0?),0 > 0. Then

In all cases A*(x) is oo for all other values of x.
Now we are ready to formulate and prove Cramér’s Theorem.

Theorem 2.4. Let X1, Xo,... be a sequence of independent and identically dis-
tributed real-valued random variables and let ., == L (% S Xi) ,n € N
Then the sequence { i, }nen satisfies the following properties.

a) limsup,,_,., = log i, (F) < —A*(F) for every closed set F C R.

b) liminf,_, % log 1, (G) > —A*(G) for every open set G C R.
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¢) For a closed set F C R we even have j,(F) < 2exp{—nA\*(F)} for
every n € N and for a closed interval F' of R we even have ji,(F) <
exp{—nA*(F)} for every n € N.

Proof. Obviously c) implies a), so it suffices to prove c¢) and b). We always assume
that X is a random variable with law p 1= p;.

¢) The assertions are clearly true in case F' = (), so we assume that F is closed
and nonempty. The assertions are also clear in case A*(F) = inf,ep A*(z) =
0, so we assume A*(F') > 0. It follows from Lemma 2.2d) that there exists
some A # 0 such that A(\) < oco. Assume that A\ > 0 (the case A < 0 is
treated analogously). Lemma 2.2e) shows that EX < oo. For A > 0 and
r € R we get:

pn([z,00)) = P {% ZX > 96}

< exp(—Anx)E (eXp ()\Zn:)(]))

_ e—n()\:r:—A()\)).

Since EX < oo, Lemma 2.2f) shows that for x > EX we have

tn ([, 00)) < e A (@), (D

Case 1: E|X| < oo (i. e. EX > —o0). Since A*(F) > 0, Lemma 2.2g)
implies EX € F*. Let (z_, x ) be the largest interval in F'® which contains
[EX. Since F'is nonempty, at least one of the numbers z_, x is finite. If
x4 1s finite, then z, € F" and

1(F 1 [24,50)) < pia([4.,00)) < exp{—nA"(24)} < exp{—nA*(F)}.
If x_ > —oo,then z_ € F and
a(FO(=00,2_]) < ptn(—00,2_]) < exp{—nA"(2_)} < exp{—nA"(F)}.

Hence p,(F) < 2exp{—nA*(F)}. In case F' is an interval either z_ =
—00 Of T4 = 0.



b)

Case 2: EX = —oo. Lemma 2.2f) shows that the function z — A*(x) is
nondecreasing and Lemma 2.2h) implies that lim,_, ., A*(z) = 0. Since
A*(F) > 0 and F # (), there exists some z; € R such that F' C [z, 0)
and x;, € F. Now (1) implies

fin(F) < pin([ 4, 00)) < exp{—nA"(z4)} < exp{—nA"(F)}.
This proves part c).

Below we will show, that for every § > 0 (and every law ) we have

lim inf % log 11,,((—6,0)) > inf A(X) (= —A*(0)). (2)

n—00 AER

Assume this holds and let z € R and Y := X — 2. Then we have
Ay(\) = logEe™ = —Az + A())
and
Ay (z) =sup{dz — Ay (N\)} =sup{ Az + Az — AN} = A"(z + x).
Using (2), this implies that for any € R and § > 0, we have

1 1
lim inf — log yin ((x — 8,2 + 6)) = liminf —log u)((—6,0))

n—oo M n—oo M

> —AL(0) = —A*(2).

If G = (), then assertion b) is obvious. So assume that G is open and
nonempty and x € G. Then we have (z — 0,z + 0) C G for some § > 0
and hence

1 1
lim inf - log 1, (G) > lim inf - log un((x — 0,24 0)) > —A*(x),
n—oo

n—oo

and — since z € G was arbitrary — we have

lim inf S log 11, (G) > — inf A*(z).

n—oo N zeG

It remains to show (2).

Case 1: ;((—00,0)) > 0, u((0,00)) > 0 and p has compact support.
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Since i has compact support, there exists some a > 0 such that j([—a, a]) =
1. Further, A(X) < |Aa < oo for every A € R. For the rest of the proof, see
[1].

Case 2: u((—00,0)) > 0, u((0,00)) > 0 and p has unbounded support.
Let M be so large that both 1([—M, 0)) and p((0, M]) are strictly positive.
Below we will let M tend to infinity. Define the probability measure v on
the Borel sets of R by

(AN M, )
VA== AT )

Clearly v satisfies the assumptions of Case 1. Defining v, in analogy to f,
and letting A, denote the logarithmic moment generating function associ-
ated to v and defining

NMM:m[Mwww,
we get
:UJH((_(S? 5)) > Vn((_57 5)):“([_M7 MDn
and

lim inf 1 log p1,,((—=6,60)) > liminf 1 log v, ((—9,6)) + log pu([—M, M])
n n

> Ay (A) +log u([—M, M) = AMD ().

It suffices to prove

I := lim inf AM()\) > inf A(N). (3)

M—o00 AeER AER
Since M + infycg AM)()) is nondecreasing, the sets
A AM O <17}

are nonempty, compact and decreasing in M, so the intersection of all these
sets is nonempty. If \j is in the intersection, then

A(Xg) = lim_ AMD () < T

This finishes Case 2.



Case 3: Either ((—00,0)) = 0 or 1((0,00)) = 0. In this case, A — A(N)
is either nonincreasing or nondecreasing and infycg A(\) = log u({0}).

Therefore
fn((=0,6)) > pa({0}) = (u({0}))",
and hence

108 1,((~5,8)) > Tog p({0)) = inf ().

This proves (2) and hence Cramer’s theorem.

3 Basic concepts of the theory of large deviations

In the following £ denotes a topological space and £ the Borel sets of E.

Definition 3.1. [ : £ — [0, 0o is called a rate function, in case I is lower semi-
continuous (i. e. {z € E : I(z) < a} is closed for every o > 0). [ is called a
good rate function if — in addition — {x € E : I(z) < a} is compact for every
a > 0.

Again we will use the abbreviation /(G) := inf{I(x); x € G} for any subset
G of E.

Definition 3.2. Let {1, } ,en be a family of probability measures on (£, £) and let
I be arate function. {/, }nen is said to satisfy a large deviation principle (LDP)
with rate function I, if

a) liminf, % log 1, (G) > —1(G) for every open set G
b) limsup, ., = log u,(F) < —I(F) for every closed set F'.

{1in }nen is said to satisfy a weak large deviation principle with rate function I, if
a) holds and b) holds with “closed” replaced by “compact”.

Remark 3.3. Cramér’s Theorem says that the sequence of the laws p, of the
average of n 1. i. d. random variables satisfies an LDP with rate function A*. A*
may or may not be a good rate function (depending on the law of the X).



Remark 3.4. If the topological space E is Hausdorff, then every compact set is
closed and hence a Borel set. If £ is not Hausdorff, then a compact set need not
be Borel and that causes a problem when formulating a weak LDP. One way out
is to replace “compact” by “compact and closed”. Further below, we will assume
that £ is Hausdorff and therefore this will not be a problem for us.

Remark 3.5. Why do we require that a rate function / be lower semi-continuous?
Well, assume that [ is any function (not necessarily lower semi-continuous) from
E to [—o0, oo] such that { ., },en satisfies a (weak) large deviation principle with
function /. For z € F, define
I(z):= sup I(G).
z€G, G open

Then I(z) < I(x), since inf e I(y) < I(z) for every open set G containing
x. Further, if G is an open set containing , then I(z) > I(G) which implies
I(G) > I(G), so we have I(G) = I(G) for every open set G containing .
Therefore {1, }nen satisfies a (weak) large deviation principle with function I as
well. Furthermore I is lower semi-continuous: fix o € R; we show that {z €
E : I(z) > o} isopen. Let z € E satisfy I(z) = 8 > a. By definition
of I there exists an open set G containing = such that /(G) > « and therefore
I(G) > a showing that I is a rate function. I is called the lower semi-continuous
regularization of I.

Remark 3.6. Suppose {1, }nen satisfies an LDP with rate functions I and I'. Is
it then true that I = I, i. e. is the rate function uniquely determined by {1, }nen?
For any “reasonable” topological space E this is true. It is more than enough to
assume that £ is a metric space. So, let us suppose that £ is a metric space and
{1tn }nen satisfies a weak LDP with rate function /. Fix € E. Then for any open
set G containing = we have

1
—I(z) < —I(G) < lim infglog tn(G). 4)

On the other hand, for any € > 0 we find an open set (G; containing = such that
I(Gy) > I(x) — ¢ since [ is lower semi-continuous. Since E is a metric space
we can find another open set G, containing x such that G (the closure of G5) is
contained in GG;. Therefore

_ 1 _
—I(x) > —I(Gy)—e >limsup - log pin(Ga) — ¢

n—o0

1
> limsup — log i, (G2) — €.

n—oo 1



Since ¢ > 0 was arbitrary this shows — together with (4) for G = G5 — that I(x)
is uniquely determined by the family {/, }nen. The argument goes through for
topological spaces which are regular (see [1]).

The example below shows that uniqueness does not hold on every topological
space.

Example 3.7. Let E := {a,b} and let T = {0, {a}, E} be a topology on E,
(E,T) is called Sierpinski space. Observe that (E,T) is not a Hausdorff space.
Let p, := J, be a unit point mass at a for every n. Then {u,},en satifies a
LDP with (good) rate function I for any function I : E' — [0, co] which satisfies
I(b) = 0,1.e. I(a) can be chosen arbitrarily in [0, co].

From now on we will assume that the space (F,7T ) is Hausdorff. This guar-
antees in particular that every compact set is closed and hence measurable.

Theorem 3.8. (Contraction Principle) Let (Ey, T1) and (Es, T3) be (Hausdorff)
topological spaces and let T' : Ey — FE5 be continuous. Further assume that
{tin}nen satisfies an LDP with good rate function I, on (F1,Ty). Define I :
Ey — [0, 00] by

L(y) :=inf{L(x): z € By, T(x) =y}.
Then {y,, o T~ '},cn satisfies an LDP with good rate function I.

Proof. We first check that I is a good rate function. Let o > 0. Then

{y: Ly) <af=T{z: L(z) < a});

“D” is clear and “C” follows since [; is good, which implies that the infimum in
the definition of I, is attained whenever I5(y) < oo. Since the continuous map 7’
maps compact subsets of F; to compact subsets of Fj, it follows that /5 is a good
rate function (we don’t need to check lower semi-continuity since we assumed F,
to be Hausdorff).

Observe that for any A C [E,, we have

;Ielfx L) = zeil“l}f(A) hi(@).

Since T is continuous, 7~ (A) is open (resp. closed) if A is open (resp. closed).
Therefore the LDP for {y,, o T~'},cn follows as a consequence of the LDP for

{/Ln}neN' O]



Remark 3.9. If /; is a rate function but not a good one, then /5 as defined in the
previous theorem need not even be a rate function. As an example, take £y =
Ey =R, I; =0and T'(x) = exp(z).

Definition 3.10. {1, },cn is called exponentially tight, if for every 0 < o < o0
there exists a compact set /{, such that

1
lim sup — log ., (K5) < —av.
n

n—o0

Remark 3.11. If {1, },en is exponentially tight and E is Polish, then {1, },en is
tight. To see this, pick 0 < ¢ < 1 and define o := —loge. By assumption there
exists a compact set K such that

1
lim sup — log p, (K¢) < —av = loge,
n

n—o0

so there exists some nq such that for all n > ng we have
pn(K€) < exp{—an} =" < e.

Since £ is Polish, a single probability measure (and hence every finite set of
probability measures) is always tight and therefore the family {1, } ey is tight.

Lemma 3.12. Assume that {ji, }nen is exponentially tight and that I is a rate
function.

a) If
1
lim sup — log , (F) < —I(F)
n

n—o0

for every compact set F', then the same is true for every closed set F' (this is
even true without the assumption that I is a rate function).

b) If
lim infl log 1, (G) > —1(QG)
n

n—o0

for every open set G, then I is a good rate function.

So: If {jin }nen is exponentially tight and satisfies a weak LDP with rate function
I, then { i, }nen even satisfies an LDP and I is good.
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Proof.

b)

a) Let F' be a closed set in F and « := inf,cp I(x). First assume that
a < 0o. Let K, be as in the definition of exponential tightness. Clearly

FNK,CFC{l>a}

and
fn(F) < pn(F' N Ko) + pn(KG).

Hence

1 1
limsup — log iy (F) < limsup —log (2max {an(F (1 Ko, i (K5)}

n—0o0 n n—oo

1 1
= limsup max {— log 1, (F' N K,), —log un(K;)}
n n

n—oo
< —a=-—1 .
s me= e
If a = o0, then replace o by M in the above arguments and then let M —
00.

Fix a > 0. Let K, be as in the definition of exponential tightness. Then K
is open and

1
— i < liminf = ey« _
mlergg I(z) < hggg}f " log pn(K5) < —a
and therefore {/ < a} C K,. Since {I < a} is closed by assumption (/
is a rate function) and every closed subset of a compact set is compact (this

holds on any topological space), we see that [ is a good rate function.
O

The following proposition is a partial converse of the previous lemma.

Proposition 3.13. Let E be a locally compact Hausdorff space and assume that
{1in }nen satisfies an LDP with good rate function I. Then { i, }nen is exponen-
tially tight.

Proof. Fix o > 0. Then the set {x € E : I(z) < a} is compact (since [ is
good). By local compactness every z € E has a compact neighborhood. We cover
{z € E': I(z) < a} by the family of interiors of all these compact neighborhoods
forallz € {x € E : I(z) < a}. By compactness there exists a finite subcover and
the union of the corresponding compact neighborhoods is itself compact (finite
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unions of compact sets are always compact). Let K denote this compact set.
Then
{reE:I(z)<a}Cint(K) C K

and hence
KeCcc(K°)c{x e E: I(x) > a},

where int(A) and cl(A) denote the interior and the closure of a set A. We get

1 1
limsup — log 1, (K¢) < limsup — log p, (cl(K°))
n

n—00 n—oo N

< — inf I(z) < —a.
z€ECl(K*®)

4 Sanov’s theorem

Our goal in this section is to prove Sanov’s Theorem, which states an LDP for the
empirical distribution of a sequence of i. i. d. random variables. The rate function
turns out to be the well-known relative entropy (with respect to the joint law of
the random variables). In this section we always assume that £' is a Polish space
with complete metric p. We denote the set of all probability measures on (£, &)
by M, (FE). We will need a topology on M, (E).

Proposition 4.1. Define d : M;(E) x M;(E) — R by
d(p,v) := inf{d > 0: u(F) < v(F°) + § for all closed sets F C E},

where F° .= {x € E : p(x,F) < 0}. Then d is a metric (the Lévy metric) on
M, (E). With this metric M, (E) is a Polish space. Furthermore convergence
with respect to this metric is the same as weak convergence.

In the following, X, X5, ... will denote an E-valued sequence of i. i. d. ran-
dom variables with law .

Proposition 4.2.

1 n
n = — OX.(w) — Imost ly.
fin (W) n; Xi(w) — i almost surely.
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Proof. Let f : E — R be a bounded measurable function. By the strong law of
large numbers, we have

/f )i (w, dx) = Zf ) = Ef(Xy) = /f .8 (5)

In particular this holds for any bounded and continuous function. Unfortunately
we cannot deduce immediately that y,,(w, .) converges to p weakly almost surely
because the exceptional sets of measure zero depend on the function f. Therefore
we will show the following:

n— oo

P (lim inf p, (w, G) > p(G) for all open sets G) =1, (6)

from which the assertion follows by the Portmanteau Theorem (WT II). Let G, Go, . . .

be a countable base of the topology of F, i. e. a countable family of open sets such
that any open set is the union of a subfamily of the GG;. We can and will assume
that the family is closed with respect to taking finite unions. By (5) we have

P ( lim g1, (w, Gy) = p(Gy) for all 2) ~ 1

n—oo

Let A :={w: pn(w,G;) = u(G;) forall i € N}. Then P(A) = 1. Any open set
G can be written as a union G = U2 G, . Then for any w € A we have

Mn(wa G) = Hn (wu U?:le‘k) > Hn, (w7 U;CV:IGik) — M (U;cvzlGik)

and hence
liminf pu, (w, G) = pu(G).
n—oo
This shows (6) and the proposition is proved. [

Let p,, be defined as in the previous proposition and denote the law of the
M (E)-valued random variable i, by L,, (L,, is a probability measure on M (E)).

Lemma 4.3. {L,},cn is exponentially tight.

Proof. {u} is tight, since E' is Polish. Hence there exist compact subsets I'; C
E, | € Nsuch that z (T¢) < e~ (¢! — 1). Now define

1
K' = {I/IV(F[)Zl—Z} and
Kp = N2 K L=23,..
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Now it is not hard to see, that the set K, is tight and closed and therefore — by
Prochorov’s Theorem — compact and that

1
limsup — log L,, (K§) < —L

n—oo TN
showing that { L, } ,cn is exponentially tight. For details, see [1]. O

Definition 4.4. Let y1, v € M;(FE). Then

' — dv
H(v|p) = [ flog fdu ifv <<‘uandf_dw
o0 otherwise.

is called relative entropy (or Kullback-Leibler distance) of v relative to p.
Remark 4.5. e H(u|u) =0 forevery u € My(FE).
e In general H(v|u) # H(ulv).

e H(v|p) >0, since —in case v < p1 —

dv dv
H(v|p) = /(@bga) dp
dv dv
> —dp 1 —du =0

by Jensen’s inequality applied to the convex function z +— z log x on [0, 00).

H(v|p) = sup (/ fdy—log/efdu)
E E
= sup </ fdu—log/efdu),
fECH(E) E E

where the first supremum is taken over all measurable functions f : E — R such
that |, 5 e/dp < oo and )  fdv is defined and where Cy(E) denotes the set of
bounded continuous real-valued functions on E.

Lemma 4.6.

Proof. We will see in the proof, that the first equality is even true in an arbitrary
measurable space (F, E).
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Step 1: We prove “>" in the first inequality. There is nothing to prove in case v is
not absolutely continuous with respect to y, so we assume v < pu. Let f : £ — R
be measurable such that [ e/dy < oo and [ fdv > —oo (there is nothing to prove
if [ fdv = —o0). Since [e/du > 0, the formula

dpg(z) = mdﬂ(ﬂf)

defines a probability measure which is equivalent to p (i. €. pf << prand p << py).
Since v < p we have

dv dv dv
H(v|p) = /<@log@> du—/(log@) dv

where we have used that g—; = le’f (%f w- and hence v-almost surely (WT II, 1.46).

Step 2: We prove “<” in the first inequality. In case v < u we define f := log j—;.

Then
H(l/|u):/fdu—log/efdu
E E

so we have equality in this case. It remains to show “<” in case v is not absolutely
continuous with respect to u. Take a set A € £ such that v(A) > 0, but u(A) = 0.
Define fy(x) :== M14(z), M € N. Then H(v|u) = [, fdv —log [, e/du =
Mv(A) — oo as M — oo. This completes Step 2.

Step 3: We prove the second inequality. Clearly we have “>” (we take the supre-
mum over a smaller set of functions on the right hand side of the equality), so it
only remains to show “<” (see [1]). [

Corollary 4.7. For every p € My (E), H(.|11) is a rate function.
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Proof. We already showed that H(.|x) is nonnegative. To show that H(.|u) is
lower semi-continuous, fix o > 0. Then

{v:Hv|p) <a} = ﬂ {1/ : /fdu < log/ efd,u+oz}
FECH(E) E
1s an intersection of closed sets and hence closed. O]
Now we formulate Sanov’s Theorem.

Theorem 4.8. (Sanov) Let X1, Xo, ... be an E-valued sequence of i. i. d. random
variables with law p. Define pi, == £ 3" 6x,, n € Nand L,, := L(p,). Then
the sequence { L, },en satisfies an LDP with good rate function H(.|p).

Proof. We know from the previous corollary that H(.|u) is a rate function and
from Lemma 4.3 that {L,, } ,cn is exponentially tight. It remains to verify proper-
ties a) and b) in Lemma 3.12 for {L,, },,en (see [1]). O
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