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Abstract

In this note, we collect basic results of the theory of large deviations.
Missing proofs can be found in the monograph [1].

1 Introduction
We start by recalling the following computation which was done in the course
Wahrscheinlichkeitstheorie I (and which is also done in the course Versicherungs-
mathematik).

Assume that X, X1, X2, ... are i.i.d real-valued random variables on a proba-
bility space (Ω,F ,P) and x ∈ R, λ > 0. Then, by Markov’s inequality,

P
( n∑
i=1

Xi ≥ nx
)
≤ exp{−λnx}

(
E
(
eλX1

))n
= exp{−n(λx− Λ(λ))},

where Λ(λ) := logE exp{λX}.
Defining I(x) := supλ≥0{λx− Λ(λ)}, we therefore get

P
( n∑
i=1

Xi ≥ nx
)
≤ exp{−nI(x)},

which often turns out to be a good bound.
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2 Cramer’s theorem for real-valued random vari-
ables

Definition 2.1. a) Let X be a real-valued random variable. The function Λ :
R→ (−∞,∞] defined by

Λ(λ) := logEeλX

is called cumulant generating function or logarithmic moment generating
function. Let DΛ := {λ : Λ(λ) <∞}.

b) Λ∗ : R→ [0,∞] defined by

Λ∗(x) := sup
λ∈R
{λx− Λ(λ)}

is called Fenchel-Legendre transform of Λ. Let DΛ∗ := {λ : Λ∗(λ) <∞}.

In the following we will often use the convenient abbreviation

Λ∗(F ) := inf
x∈F

Λ∗(x)

for a subset F ⊆ R (with the usual convention that the infimum of the empty set
is +∞).

Lemma 2.2. a) Λ is convex.

b) Λ∗ is convex.

c) Λ∗ is lower semi-continuous, i. e. {x ∈ E : Λ∗(x) ≤ α} is closed for every
α ∈ R.

d) If DΛ = {0}, then we have Λ∗ ≡ 0.

e) If Λ(λ) < ∞ for some λ > 0, then we have EX < ∞ (but possibly EX =
−∞).

f) If EX <∞ (but possibly EX = −∞), then we have

Λ∗(x) := sup
λ≥0
{λx− Λ(λ)}, x ≥ EX

and Λ∗ is nondecreasing on [EX,∞).
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g) E|X| <∞ implies Λ∗(EX) = 0.

h) infx∈R Λ∗(x) = 0.

i) Λ is differentiable in the interior of DΛ with derivative

Λ′(η) =
1

E exp(ηX)
E(XeηX).

Further, Λ′(η) = y implies Λ∗(y) = ηy − Λ(η).

Proof. [1]

Examples 2.3. a) L(X) = Poisson(θ), θ > 0. Then

Λ∗(x) = −x+ θ + x log
(x
θ

)
, x ≥ 0.

b) L(X) = Bernoulli(p), 0 < p < 1. Then

Λ∗(x) = x log
x

p
+ (1− x) log

1− x
1− p

, 0 ≤ x ≤ 1.

c) L(X) = Exp(θ), θ > 0. Then

Λ∗(x) = θx− 1− log(θx), x ≥ 0.

d) L(X) = N (0, σ2), σ > 0. Then

Λ∗(x) =
x2

2σ2
, x ∈ R.

In all cases Λ∗(x) is∞ for all other values of x.

Now we are ready to formulate and prove Cramér’s Theorem.

Theorem 2.4. Let X1, X2, . . . be a sequence of independent and identically dis-
tributed real-valued random variables and let µn := L

(
1
n

∑n
i=1Xi

)
, n ∈ N.

Then the sequence {µn}n∈N satisfies the following properties.

a) lim supn→∞
1
n

log µn(F ) ≤ −Λ∗(F ) for every closed set F ⊆ R.

b) lim infn→∞
1
n

log µn(G) ≥ −Λ∗(G) for every open set G ⊆ R.
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c) For a closed set F ⊆ R we even have µn(F ) ≤ 2 exp{−nΛ∗(F )} for
every n ∈ N and for a closed interval F of R we even have µn(F ) ≤
exp{−nΛ∗(F )} for every n ∈ N.

Proof. Obviously c) implies a), so it suffices to prove c) and b). We always assume
that X is a random variable with law µ := µ1.

c) The assertions are clearly true in case F = ∅, so we assume that F is closed
and nonempty. The assertions are also clear in case Λ∗(F ) = infx∈F Λ∗(x) =
0, so we assume Λ∗(F ) > 0. It follows from Lemma 2.2d) that there exists
some λ̄ 6= 0 such that Λ(λ̄) < ∞. Assume that λ̄ > 0 (the case λ̄ < 0 is
treated analogously). Lemma 2.2e) shows that EX < ∞. For λ ≥ 0 and
x ∈ R we get:

µn([x,∞)) = P

{
1

n

n∑
i=1

Xi ≥ x

}

= P

{
exp

(
λ

n∑
i=1

Xi

)
≥ exp (λnx)

}

≤ exp (−λnx)E

(
exp

(
λ

n∑
i=1

Xi

))
= e−n(λx−Λ(λ)).

Since EX <∞, Lemma 2.2f) shows that for x ≥ EX we have

µn([x,∞)) ≤ e−nΛ∗(x). (1)

Case 1: E|X| < ∞ (i. e. EX > −∞). Since Λ∗(F ) > 0, Lemma 2.2g)
implies EX ∈ F c. Let (x−, x+) be the largest interval in F c which contains
EX . Since F is nonempty, at least one of the numbers x−, x+ is finite. If
x+ is finite, then x+ ∈ F and

µn(F ∩ [x+,∞)) ≤ µn([x+,∞)) ≤ exp{−nΛ∗(x+)} ≤ exp{−nΛ∗(F )}.

If x− > −∞, then x− ∈ F and

µn(F∩(−∞, x−]) ≤ µn(−∞, x−]) ≤ exp{−nΛ∗(x−)} ≤ exp{−nΛ∗(F )}.

Hence µn(F ) ≤ 2 exp{−nΛ∗(F )}. In case F is an interval either x− =
−∞ or x+ =∞.
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Case 2: EX = −∞. Lemma 2.2f) shows that the function x 7→ Λ∗(x) is
nondecreasing and Lemma 2.2h) implies that limx→−∞ Λ∗(x) = 0. Since
Λ∗(F ) > 0 and F 6= ∅, there exists some x+ ∈ R such that F ⊆ [x+,∞)
and x+ ∈ F . Now (1) implies

µn(F ) ≤ µn([x+,∞)) ≤ exp{−nΛ∗(x+)} ≤ exp{−nΛ∗(F )}.

This proves part c).

b) Below we will show, that for every δ > 0 (and every law µ) we have

lim inf
n→∞

1

n
log µn((−δ, δ)) ≥ inf

λ∈R
Λ(λ) (= −Λ∗(0)) . (2)

Assume this holds and let x ∈ R and Y := X − x. Then we have

ΛY (λ) = logEeλY = −λx+ Λ(λ)

and

Λ∗Y (z) = sup {λz − ΛY (λ)} = sup {λz + λx− Λ(λ)} = Λ∗(z + x).

Using (2), this implies that for any x ∈ R and δ > 0, we have

lim inf
n→∞

1

n
log µn((x− δ, x+ δ)) = lim inf

n→∞

1

n
log µ(Y )

n ((−δ, δ))

≥ −Λ∗Y (0) = −Λ∗(x).

If G = ∅, then assertion b) is obvious. So assume that G is open and
nonempty and x ∈ G. Then we have (x − δ, x + δ) ⊂ G for some δ > 0
and hence

lim inf
n→∞

1

n
log µn(G) ≥ lim inf

n→∞

1

n
log µn((x− δ, x+ δ)) ≥ −Λ∗(x),

and – since x ∈ G was arbitrary – we have

lim inf
n→∞

1

n
log µn(G) ≥ − inf

x∈G
Λ∗(x).

It remains to show (2).

Case 1: µ((−∞, 0)) > 0, µ((0,∞)) > 0 and µ has compact support.
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Since µ has compact support, there exists some a > 0 such that µ([−a, a]) =
1. Further, Λ(λ) ≤ |λ|a <∞ for every λ ∈ R. For the rest of the proof, see
[1].

Case 2: µ((−∞, 0)) > 0, µ((0,∞)) > 0 and µ has unbounded support.
Let M be so large that both µ([−M, 0)) and µ((0,M ]) are strictly positive.
Below we will let M tend to infinity. Define the probability measure ν on
the Borel sets of R by

ν(A) :=
µ(A ∩ [−M,M ])

µ([−M,M ])
.

Clearly ν satisfies the assumptions of Case 1. Defining νn in analogy to µn
and letting ΛM denote the logarithmic moment generating function associ-
ated to ν and defining

Λ(M)(λ) := log

∫ M

−M
eλydµ(y),

we get
µn((−δ, δ)) ≥ νn((−δ, δ))µ([−M,M ])n

and

lim inf
1

n
log µn((−δ, δ)) ≥ lim inf

1

n
log νn((−δ, δ)) + log µ([−M,M ])

≥ ΛM(λ) + log µ([−M,M ]) = Λ(M)(λ).

It suffices to prove

I∗ := lim
M→∞

inf
λ∈R

Λ(M)(λ) ≥ inf
λ∈R

Λ(λ). (3)

Since M 7→ infλ∈R Λ(M)(λ) is nondecreasing, the sets

{λ : Λ(M)(λ) ≤ I∗}

are nonempty, compact and decreasing in M , so the intersection of all these
sets is nonempty. If λ0 is in the intersection, then

Λ(λ0) = lim
M→∞

Λ(M)(λ0) ≤ I∗.

This finishes Case 2.
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Case 3: Either µ((−∞, 0)) = 0 or µ((0,∞)) = 0. In this case, λ 7→ Λ(λ)
is either nonincreasing or nondecreasing and infλ∈R Λ(λ) = log µ({0}).
Therefore

µn((−δ, δ)) ≥ µn({0}) = (µ({0}))n ,

and hence
1

n
log µn((−δ, δ)) ≥ log µ({0}) = inf

λ∈R
Λ(λ).

This proves (2) and hence Cramer’s theorem.

3 Basic concepts of the theory of large deviations
In the following E denotes a topological space and E the Borel sets of E.

Definition 3.1. I : E → [0,∞] is called a rate function, in case I is lower semi-
continuous (i. e. {x ∈ E : I(x) ≤ α} is closed for every α ≥ 0). I is called a
good rate function if – in addition – {x ∈ E : I(x) ≤ α} is compact for every
α ≥ 0.

Again we will use the abbreviation I(G) := inf{I(x); x ∈ G} for any subset
G of E.

Definition 3.2. Let {µn}n∈N be a family of probability measures on (E, E) and let
I be a rate function. {µn}n∈N is said to satisfy a large deviation principle (LDP)
with rate function I , if

a) lim infn→∞
1
n

log µn(G) ≥ −I(G) for every open set G

b) lim supn→∞
1
n

log µn(F ) ≤ −I(F ) for every closed set F .

{µn}n∈N is said to satisfy a weak large deviation principle with rate function I , if
a) holds and b) holds with “closed” replaced by “compact”.

Remark 3.3. Cramér’s Theorem says that the sequence of the laws µn of the
average of n i. i. d. random variables satisfies an LDP with rate function Λ∗. Λ∗

may or may not be a good rate function (depending on the law of the Xi).
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Remark 3.4. If the topological space E is Hausdorff, then every compact set is
closed and hence a Borel set. If E is not Hausdorff, then a compact set need not
be Borel and that causes a problem when formulating a weak LDP. One way out
is to replace “compact” by “compact and closed”. Further below, we will assume
that E is Hausdorff and therefore this will not be a problem for us.

Remark 3.5. Why do we require that a rate function I be lower semi-continuous?
Well, assume that I is any function (not necessarily lower semi-continuous) from
E to [−∞,∞] such that {µn}n∈N satisfies a (weak) large deviation principle with
function I . For x ∈ E, define

Ĩ(x) := sup
x∈G,G open

I(G).

Then Ĩ(x) ≤ I(x), since infy∈G I(y) ≤ I(x) for every open set G containing
x. Further, if G is an open set containing x, then Ĩ(x) ≥ I(G) which implies
Ĩ(G) ≥ I(G), so we have Ĩ(G) = I(G) for every open set G containing x.
Therefore {µn}n∈N satisfies a (weak) large deviation principle with function Ĩ as
well. Furthermore Ĩ is lower semi-continuous: fix α ∈ R; we show that {x ∈
E : Ĩ(x) > α} is open. Let x ∈ E satisfy Ĩ(x) = β > α. By definition
of Ĩ there exists an open set G containing x such that I(G) > α and therefore
Ĩ(G) > α showing that Ĩ is a rate function. Ĩ is called the lower semi-continuous
regularization of I .

Remark 3.6. Suppose {µn}n∈N satisfies an LDP with rate functions I and I ′. Is
it then true that I = I ′, i. e. is the rate function uniquely determined by {µn}n∈N?
For any “reasonable” topological space E this is true. It is more than enough to
assume that E is a metric space. So, let us suppose that E is a metric space and
{µn}n∈N satisfies a weak LDP with rate function I . Fix x ∈ E. Then for any open
set G containing x we have

−I(x) ≤ −I(G) ≤ lim inf
n→∞

1

n
log µn(G). (4)

On the other hand, for any ε > 0 we find an open set G1 containing x such that
I(G1) > I(x) − ε since I is lower semi-continuous. Since E is a metric space
we can find another open set G2 containing x such that Ḡ2 (the closure of G2) is
contained in G1. Therefore

−I(x) ≥ −I(Ḡ2)− ε ≥ lim sup
n→∞

1

n
log µn(Ḡ2)− ε

≥ lim sup
n→∞

1

n
log µn(G2)− ε.
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Since ε > 0 was arbitrary this shows – together with (4) for G = G2 – that I(x)
is uniquely determined by the family {µn}n∈N. The argument goes through for
topological spaces which are regular (see [1]).

The example below shows that uniqueness does not hold on every topological
space.

Example 3.7. Let E := {a, b} and let T = {∅, {a}, E} be a topology on E,
(E, T ) is called Sierpinski space. Observe that (E, T ) is not a Hausdorff space.
Let µn := δa be a unit point mass at a for every n. Then {µn}n∈N satifies a
LDP with (good) rate function I for any function I : E → [0,∞] which satisfies
I(b) = 0, i. e. I(a) can be chosen arbitrarily in [0,∞].

From now on we will assume that the space (E, T ) is Hausdorff. This guar-
antees in particular that every compact set is closed and hence measurable.

Theorem 3.8. (Contraction Principle) Let (E1, T1) and (E2, T2) be (Hausdorff)
topological spaces and let T : E1 → E2 be continuous. Further assume that
{µn}n∈N satisfies an LDP with good rate function I1 on (E1, T1). Define I2 :
E2 → [0,∞] by

I2(y) := inf {I1(x) : x ∈ E1, T (x) = y} .

Then {µn ◦ T−1}n∈N satisfies an LDP with good rate function I2.

Proof. We first check that I2 is a good rate function. Let α ≥ 0. Then

{y : I2(y) ≤ α} = T ({x : I1(x) ≤ α});

“⊇” is clear and “⊆” follows since I1 is good, which implies that the infimum in
the definition of I2 is attained whenever I2(y) <∞. Since the continuous map T
maps compact subsets of E1 to compact subsets of E2, it follows that I2 is a good
rate function (we don’t need to check lower semi-continuity since we assumed E2

to be Hausdorff).
Observe that for any A ⊆ E2, we have

inf
y∈A

I2(y) = inf
x∈T−1(A)

I1(x).

Since T is continuous, T−1(A) is open (resp. closed) if A is open (resp. closed).
Therefore the LDP for {µn ◦ T−1}n∈N follows as a consequence of the LDP for
{µn}n∈N.
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Remark 3.9. If I1 is a rate function but not a good one, then I2 as defined in the
previous theorem need not even be a rate function. As an example, take E1 =
E2 = R, I1 ≡ 0 and T (x) = exp(x).

Definition 3.10. {µn}n∈N is called exponentially tight, if for every 0 < α < ∞
there exists a compact set Kα such that

lim sup
n→∞

1

n
log µn(Kc

α) < −α.

Remark 3.11. If {µn}n∈N is exponentially tight and E is Polish, then {µn}n∈N is
tight. To see this, pick 0 < ε < 1 and define α := − log ε. By assumption there
exists a compact set K such that

lim sup
n→∞

1

n
log µn(Kc) < −α = log ε,

so there exists some n0 such that for all n ≥ n0 we have

µn(Kc) < exp{−αn} = εn < ε.

Since E is Polish, a single probability measure (and hence every finite set of
probability measures) is always tight and therefore the family {µn}n∈N is tight.

Lemma 3.12. Assume that {µn}n∈N is exponentially tight and that I is a rate
function.

a) If

lim sup
n→∞

1

n
log µn(F ) ≤ −I(F )

for every compact set F , then the same is true for every closed set F (this is
even true without the assumption that I is a rate function).

b) If

lim inf
n→∞

1

n
log µn(G) ≥ −I(G)

for every open set G, then I is a good rate function.

So: If {µn}n∈N is exponentially tight and satisfies a weak LDP with rate function
I , then {µn}n∈N even satisfies an LDP and I is good.
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Proof. a) Let F be a closed set in E and α := infx∈F I(x). First assume that
α <∞. Let Kα be as in the definition of exponential tightness. Clearly

F ∩Kα ⊆ F ⊆ {I ≥ α}

and
µn(F ) ≤ µn(F ∩Kα) + µn(Kc

α).

Hence

lim sup
n→∞

1

n
log µn(F ) ≤ lim sup

n→∞

1

n
log (2 max {µn(F ∩Kα), µn(Kc

α)})

= lim sup
n→∞

max

{
1

n
log µn(F ∩Kα),

1

n
log µn(Kc

α)

}
≤ −α = − inf

x∈F
I(x).

If α = ∞, then replace α by M in the above arguments and then let M →
∞.

b) Fix α ≥ 0. Let Kα be as in the definition of exponential tightness. Then Kc
α

is open and

− inf
x∈Kc

α

I(x) ≤ lim inf
n→∞

1

n
log µn(Kc

α) < −α

and therefore {I ≤ α} ⊆ Kα. Since {I ≤ α} is closed by assumption (I
is a rate function) and every closed subset of a compact set is compact (this
holds on any topological space), we see that I is a good rate function.

The following proposition is a partial converse of the previous lemma.

Proposition 3.13. Let E be a locally compact Hausdorff space and assume that
{µn}n∈N satisfies an LDP with good rate function I . Then {µn}n∈N is exponen-
tially tight.

Proof. Fix α ≥ 0. Then the set {x ∈ E : I(x) ≤ α} is compact (since I is
good). By local compactness every x ∈ E has a compact neighborhood. We cover
{x ∈ E : I(x) ≤ α} by the family of interiors of all these compact neighborhoods
for all x ∈ {x ∈ E : I(x) ≤ α}. By compactness there exists a finite subcover and
the union of the corresponding compact neighborhoods is itself compact (finite
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unions of compact sets are always compact). Let K denote this compact set.
Then

{x ∈ E : I(x) ≤ α} ⊂ int(K) ⊂ K

and hence
Kc ⊂ cl(Kc) ⊂ {x ∈ E : I(x) > α},

where int(A) and cl(A) denote the interior and the closure of a set A. We get

lim sup
n→∞

1

n
log µn(Kc) ≤ lim sup

n→∞

1

n
log µn(cl(Kc))

≤ − inf
x∈cl(Kc)

I(x) ≤ −α.

4 Sanov’s theorem
Our goal in this section is to prove Sanov’s Theorem, which states an LDP for the
empirical distribution of a sequence of i. i. d. random variables. The rate function
turns out to be the well-known relative entropy (with respect to the joint law of
the random variables). In this section we always assume that E is a Polish space
with complete metric ρ. We denote the set of all probability measures on (E, E)
byM1(E). We will need a topology onM1(E).

Proposition 4.1. Define d :M1(E)×M1(E)→ R by

d(µ, ν) := inf{δ > 0 : µ(F ) ≤ ν(F δ) + δ for all closed sets F ⊆ E},

where F δ := {x ∈ E : ρ(x, F ) < δ}. Then d is a metric (the Lévy metric) on
M1(E). With this metric M1(E) is a Polish space. Furthermore convergence
with respect to this metric is the same as weak convergence.

In the following, X1, X2, . . . will denote an E-valued sequence of i. i. d. ran-
dom variables with law µ.

Proposition 4.2.

µn(ω) :=
1

n

n∑
i=1

δXi(ω) → µ almost surely.
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Proof. Let f : E → R be a bounded measurable function. By the strong law of
large numbers, we have∫

f(x)µn(ω, dx) =
1

n

n∑
i=1

f(Xi(ω))→ Ef(X1) =

∫
f(x)µ(dx) a. s. (5)

In particular this holds for any bounded and continuous function. Unfortunately
we cannot deduce immediately that µn(ω, .) converges to µ weakly almost surely
because the exceptional sets of measure zero depend on the function f . Therefore
we will show the following:

P
(

lim inf
n→∞

µn(ω,G) ≥ µ(G) for all open sets G
)

= 1, (6)

from which the assertion follows by the Portmanteau Theorem (WT II). LetG1, G2, . . .
be a countable base of the topology ofE, i. e. a countable family of open sets such
that any open set is the union of a subfamily of the Gi. We can and will assume
that the family is closed with respect to taking finite unions. By (5) we have

P
(

lim
n→∞

µn(ω,Gi) = µ(Gi) for all i
)

= 1.

Let A := {ω : µn(ω,Gi) → µ(Gi) for all i ∈ N}. Then P(A) = 1. Any open set
G can be written as a union G = ∪∞k=1Gik . Then for any ω ∈ A we have

µn(ω,G) = µn (ω,∪∞k=1Gik) ≥ µn
(
ω,∪Nk=1Gik

)
→ µ

(
∪Nk=1Gik

)
and hence

lim inf
n→∞

µn (ω,G) = µ(G).

This shows (6) and the proposition is proved.

Let µn be defined as in the previous proposition and denote the law of the
M1(E)-valued random variable µn byLn (Ln is a probability measure onM1(E)).

Lemma 4.3. {Ln}n∈N is exponentially tight.

Proof. {µ} is tight, since E is Polish. Hence there exist compact subsets Γl ⊆
E, l ∈ N such that µ (Γcl ) ≤ e−2l2(el − 1). Now define

K l :=

{
ν : ν (Γl) ≥ 1− 1

l

}
and

KL := ∩∞l=LK l, L = 2, 3, ...
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Now it is not hard to see, that the set KL is tight and closed and therefore – by
Prochorov’s Theorem – compact and that

lim sup
n→∞

1

n
logLn (Kc

L) ≤ −L

showing that {Ln}n∈N is exponentially tight. For details, see [1].

Definition 4.4. Let µ, ν ∈M1(E). Then

H(ν|µ) :=

{ ∫
E
f log fdµ if ν � µ and f = dν

dµ
,

∞ otherwise.

is called relative entropy (or Kullback-Leibler distance) of ν relative to µ.

Remark 4.5. • H(µ|µ) = 0 for every µ ∈M1(E).

• In general H(ν|µ) 6= H(µ|ν).

• H(ν|µ) ≥ 0, since – in case ν � µ –

H(ν|µ) =

∫ (
dν

dµ
log

dν

dµ

)
dµ

≥
∫

dν

dµ
dµ log

∫
dν

dµ
dµ = 0,

by Jensen’s inequality applied to the convex function x 7→ x log x on [0,∞).

Lemma 4.6.

H(ν|µ) = sup

(∫
E

fdν − log

∫
E

efdµ

)
= sup

f∈Cb(E)

(∫
E

fdν − log

∫
E

efdµ

)
,

where the first supremum is taken over all measurable functions f : E → R such
that

∫
E

efdµ < ∞ and
∫
E
fdν is defined and where Cb(E) denotes the set of

bounded continuous real-valued functions on E.

Proof. We will see in the proof, that the first equality is even true in an arbitrary
measurable space (E, E).
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Step 1: We prove “≥” in the first inequality. There is nothing to prove in case ν is
not absolutely continuous with respect to µ, so we assume ν � µ. Let f : E → R
be measurable such that

∫
efdµ <∞ and

∫
fdν > −∞ (there is nothing to prove

if
∫
fdν = −∞). Since

∫
efdµ > 0, the formula

dµf (x) :=
ef(x)∫
efdµ

dµ(x)

defines a probability measure which is equivalent to µ (i. e. µf � µ and µ� µf ).
Since ν � µ we have

H(ν|µ) =

∫ (
dν

dµ
log

dν

dµ

)
dµ =

∫ (
log

dν

dµ

)
dν

=

∫ (
log

dν

dµf

dµf
dµ

)
dν

=

∫
log

dν

dµf
dν +

∫
log

ef∫
efdµ

dν

= H(ν|µf ) +

∫
E

fdν − log

∫
E

efdµ

≥
∫
E

fdν − log

∫
E

efdµ,

where we have used that dν
dµ

= dν
dµf

dµf
dµ

µ- and hence ν-almost surely (WT II, 1.46).
Step 2: We prove “≤” in the first inequality. In case ν � µwe define f := log dν

dµ
.

Then
H(ν|µ) =

∫
E

fdν − log

∫
E

efdµ

so we have equality in this case. It remains to show “≤” in case ν is not absolutely
continuous with respect to µ. Take a set A ∈ E such that ν(A) > 0, but µ(A) = 0.
Define fM(x) := M1A(x), M ∈ N. Then H(ν|µ) =

∫
E
fdν − log

∫
E

efdµ =
Mν(A)→∞ as M →∞. This completes Step 2.
Step 3: We prove the second inequality. Clearly we have “≥” (we take the supre-
mum over a smaller set of functions on the right hand side of the equality), so it
only remains to show “≤” (see [1]).

Corollary 4.7. For every µ ∈M1(E), H(.|µ) is a rate function.
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Proof. We already showed that H(.|µ) is nonnegative. To show that H(.|µ) is
lower semi-continuous, fix α ≥ 0. Then

{ν : H(ν|µ) ≤ α} =
⋂

f∈Cb(E)

{
ν :

∫
fdν ≤ log

∫
E

efdµ+ α

}
is an intersection of closed sets and hence closed.

Now we formulate Sanov’s Theorem.

Theorem 4.8. (Sanov) LetX1, X2, . . . be anE-valued sequence of i. i. d. random
variables with law µ. Define µn := 1

n

∑n
i=1 δXi , n ∈ N and Ln := L(µn). Then

the sequence {Ln}n∈N satisfies an LDP with good rate function H(.|µ).

Proof. We know from the previous corollary that H(.|µ) is a rate function and
from Lemma 4.3 that {Ln}n∈N is exponentially tight. It remains to verify proper-
ties a) and b) in Lemma 3.12 for {Ln}n∈N (see [1]).
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