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Chapter 1

Girsanov’s Theorem

1.1 Preparation for Girsanov’s Theorem

Before stating the important Girsanov theorem we recall Lévy’s characterization of Brownian
motion and provide a proof of the statement (which we skipped in WTIII). We start with a
lemma (see Lemma 6.2.13 in [KS91]). Here, i is the complex number

√
−1.

Lemma 1.1. Let X,Y be Rd-valued random variables on (Ω,F ,P) and let G be a sub σ-algebra
of F . Assume that for each u ∈ Rd we have

E(exp{i〈u, Y 〉}|G) = E exp{i〈u,X〉} a.s.

Then the laws of X and Y coincide and Y and G are independent.

Proof. The first statement is clear since the characteristic function determines a probability mea-
sure uniquely. To see the second statement, we represent the conditional expectation via a regu-
lar conditional probability (see the chapter “Bedingte Erwartungen und Wahrscheinlichkeiten”
in WT1):

E(exp{i〈u, Y 〉}|G)(ω) =

∫
Rd

exp{i〈u, y〉}Q(ω,dy), a.s.

Since a characteristic function is continuous, we can assume that the exceptional set does not
depend on u ∈ Rd. The assumption in the lemma now shows that for almost all ω ∈ Ω, the
characteristic functions of Q(ω, .) and the law of X coincide and therefore, the conditional law
of Y given G and the law of X coincide for almost all ω ∈ Ω, so for each Borel set B ⊂ Rd, we
have P(Y ∈ B|G) = P(X ∈ B) which immediately implies that Y and G are independent.

Now we are ready to state Lévy’s characterization of Brownian motion.

Theorem 1.2. Let Mt = (M1
t , ...,M

d
t ) be a continuous Rd-valued local martingale starting at 0

on the filtered probability space (Ω,F ,F,P). If

〈M j ,Mk〉t = δjkt; j, k ∈ {1, ..., d},

then M is a d-dimensional F-Brownian motion.

1



2 Wahrscheinlichkeitstheorie IV

Proof. We basically follow [KS91], Theorem 3.3.16. We need to show that for 0 ≤ s < t, the
random vector Mt−Ms is independent of Fs and has distribution N (0, (t− s)I). Thanks to the
previous lemma it is enough to prove that for any u = (u1, ..., ud) ∈ Rd and 0 ≤ s ≤ t, we have

E
(

exp{i〈u,Mt −Ms〉}|Fs
)

= exp
{
− 1

2
|u|2(t− s)

}
.

Fix u ∈ Rd and s ≥ 0 and let f(x) := ei〈u,x〉, x ∈ Rd. Applying Itô’s formula to (the real and
imaginary part of) f , we get

ei〈u,Mt〉 = ei〈u,Ms〉 + i
d∑
j=1

uj

∫ t

s
ei〈u,Mv〉 dM j

v −
1

2

d∑
j=1

u2
j

∫ t

s
ei〈u,Mv〉 dv. (1.1.1)

By Burkholder’s inequality (Theorem 2.19 in WTIII) with p = 2, we have, using 〈M j〉t = t,

E sup
0≤s≤t

|M j
s | ≤ E sup

0≤s≤t
(M j

s )2 + 1 ≤ C2t+ 1 <∞

showing that M j is a martingale (Chapter 1 in WTIII) which is even square integrable.

Further, the real and imaginary parts of
∫ t

0 ei〈u,Mv〉 dM j
v are (square integrable) martingales

(since the integrand is bounded) and therefore

E
(∫ t

s
ei〈u,Xv〉 dM j

v

∣∣Fs) = 0 a.s.

For any A ∈ Fs, we get from (1.1.1)

E
(
ei〈u,Mt−Ms〉1A

)
= P(A)− 1

2
|u|2

∫ t

s
E
(
ei〈u,Mv−Ms〉1A

)
dv.

This integral equation for the function t 7→ E
(
ei〈u,Mt−Ms〉1A

)
(with s fixed and t ≥ s) has a

unique solution, namely

E
(
ei〈u,Mt−Ms〉1A

)
= P (A) exp{−1

2
|u|2(t− s)},

so the claim follows.

Remark 1.3. In WTIII we defined the stochastic integral with respect to a continuous local
martingale M for integrands f for which there exists a progressive process g which is square
integrable with respect to the Doleans measure µM such that ‖f − g‖M = 0, i.e. f and g are in
the same equivalence class in that space. We mention without proof (see e.g. [KS91]) the fact
that if the process t 7→ 〈M〉t is almost surely absolutely continuous, then this holds for every
adapted process f in L2(µM ). Note that absolute continuity of t 7→ 〈M〉t holds in particular if
M is Brownian motion.

Let (Ω,F ,F,P) be a filtered probability space satisfying the usual conditions and let W ={
Wt =

(
W

(1)
t , ...,W

(d)
t

)
, t ≥ 0

}
be a d-dimensional F-Brownian motion on that space. Let

X =
{
Xt =

(
X

(1)
t , ..., X

(d)
t

)
, t ≥ 0

}
be progressive (or just jointly measurable and adapted) and

satisfy

P
(∫ T

0
(X

(i)
t )2 dt <∞

)
= 1, 1 ≤ i ≤ d, 0 ≤ T <∞.
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Then, the process

Zt := exp
{ d∑
i=1

∫ t

0
X(i)
s dW (i)

s −
1

2

∫ t

0
|Xs|2 ds

}
(1.1.2)

is well-defined (here, |x| denotes the Euclidean norm of x ∈ Rd). WritingNt :=
∑d

i=1

∫ t
0 X

(i)
s dW

(i)
s ,

the formula becomes

Zt = exp
{
Nt −

1

2
〈N〉t

}
(1.1.3)

and Z is called stochastic exponential of N (even in cases where N is an arbitrary continuous
local martingale starting at 0), in short: Z = E(N). Further,

Zt = 1 +
d∑
i=1

∫ t

0
ZsX

(i)
s dW (i)

s

(
= 1 +

∫ t

0
Zs dNs

)
. (1.1.4)

This follows from Itô’s formula applied to (1.1.3). On the other hand, there is only one solution
Z of equation (1.1.4) (we will show this in class; hint: let Z and Z̃ be two solutions, define
Yt := Zt∧τ − Z̃t∧τ for a suitable stopping time τ and apply Burkholder-Davis-Gundy’s inequality
with p = 2).

Note that (1.1.4) shows that the process Z is a continuous local martingale with Z0 = 1.
We will see later that it is of great interest to find conditions under which Z is even a martingale
(in which case EZt = 1 for all t ≥ 0). It is not hard to see that a (rather strong) sufficient
condition for Z to be a martingale is that there exists a deterministic function L(t), t ≥ 0 such
that P(sups≤t |Xs| ≤ L(t)) = 1 for every t ≥ 0. A weaker condition is Novikov’s condition
which we will provide in Theorem 1.7. We will see in class that for Z as defined in (1.1.3), the
condition EZt = 1 for all t ≥ 0 is not only necessary but also sufficient for Z to be a martingale
(hint: a nonnegative local martingale is a supermartingale [use Fatou’s lemma for conditional
expectations] and a supermartingale is a martingale iff its expected value is constant). If Z is a
martingale, then we define, for each T ∈ [0,∞), a probability measure P̃T on (Ω, FT ) by

P̃T (A) := E
(
1AZT

)
, A ∈ FT .

Note that the probability measures P̃T and P|FT are mutually absolutely continuous with density
dP̃T /dP|FT = ZT .

In the following Girsanov theorem, we use the symbol FT to denote the restricted filtration
Ft, 0 ≤ t ≤ T . It should be clear what we mean by an FT -Brownian motion on (Ω,FT ,FT , P̃T ),
so we refrain from providing a precise definition.

Theorem 1.4 (Girsanov (1960)). Assume that Z defined by (1.1.2) is a martingale. Define

W̃
(i)
t := W

(i)
t −

∫ t

0
X(i)
s ds, i ∈ {1, ..., d}, t ≥ 0.

Then, for each fixed T ≥ 0, the process {W̃t}, t ∈ [0, T ] is an FT -Brownian motion on (Ω,FT ,FT , P̃T ).

For the proof we require two lemmas. We denote by ẼT the expectation with respect to P̃T .

Lemma 1.5. Let T > 0 and assume that Z is a martingale. If 0 ≤ s ≤ t ≤ T and Y is
real-valued Ft-measurable satisfying ẼT |Y | <∞, then

ẼT
(
Y |Fs

)
=

1

Zs
E
(
Y Zt|Fs

)
, a.s. w.r.t. P and P̃T .
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Proof. We have, for A ∈ Fs,

ẼT
(
1AY

)
= E

(
1AY ZT

)
= E

(
1AY E(ZT |Ft)

)
= E

(
1AY Zt

)
= E

(
1AE

(
Y Zt|Fs

))
and

ẼT
(

1A
1

Zs
E
(
Y Zt|Fs

))
= E

(
1A

1

Zs
E
(
Y Zt|Fs

)
ZT

)
= E

(
1A

1

Zs
E
(
Y Zt|Fs

)
Zs

)
= E

(
1AE

(
Y Zt|Fs

))
.

In the following proposition, we denote by Mloc,T the set of continuous local F-martingales
on [0, T ] with initial condition M0 = 0 with respect to the original measure P and by M̃loc,T the
corresponding set with P replaced by P̃T .

Proposition 1.6. Fix T > 0 and assume that Z defined as in (1.1.2) is a martingale and
M ∈Mloc,T . Then

M̃t := Mt −
d∑
i=1

∫ t

0
X(i)
s d〈M,W (i)〉s; 0 ≤ t ≤ T

is in M̃loc,T . If N ∈Mloc,T and

Ñt := Nt −
d∑
i=1

∫ t

0
X(i)
s d〈N,W (i)〉s; 0 ≤ t ≤ T,

then
〈M̃, Ñ〉t = 〈M,N〉t; 0 ≤ t ≤ T, a.s.

Proof. We first assume thatM andN are bounded martingales with bounded quadratic variation

and that Z and
∫ t

0

(
X

(i)
s

)2
ds are bounded in t and ω (the general case can then be shown by

stopping). Kunita-Watanabe’s inequality (WTIII, Proposition 2.8 a)) shows that∣∣∣ ∫ t

0
X(i)
s d〈M,W (i)〉s

∣∣∣2 ≤ 〈M〉t · ∫ t

0
(X(i)

s )2ds,

so M̃ is also bounded. The integration-by-parts formula (WTIII, Proposition 2.12) implies

ZtM̃t =

∫ t

0
Zs dMs +

d∑
i=1

∫ t

0
M̃sX

(i)
s Zs dW (i)

s ,

which is a martingale under P. Now Lemma 1.5 immediately implies that M̃ ∈ M̃loc,T .

The last claim in the statement of the proposition follows since M and M̃ (resp. N and Ñ)
differ only by a process of locally finite variation.

Proof of Theorem 1.4. We show that the process W̃ in the statement of the theorem satisfies
the assumptions of Theorem 1.2. Setting M = W (j) in the previous proposition, we see that
M̃ = W̃ (j) is in M̃loc,T . Setting N = W (k), we see that

〈W̃ (j), W̃ (k)〉 = 〈W (j),W (k)〉 = δj,kt; 0 ≤ t ≤ T, a.s.,

so the claim follows.
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1.2 Novikov’s Condition

Theorem 1.7. If N is a continuous local martingale with N0 = 0 such that

E exp
{1

2
〈N〉T

}
<∞, 0 ≤ T <∞,

then the process Z defined by (1.1.3) is a martingale. In particular, if X,W and Z are defined
as in (1.1.2) and

E
(

exp
{1

2

∫ T

0
|Xs|2 ds

})
<∞, 0 ≤ T <∞,

then Z is a martingale.

Proof. Following [Eb16] we prove the result only under the slightly stronger condition

E
(

exp
{p

2
〈N〉T

})
<∞, 0 ≤ T <∞,

for some p > 1. This simplifies the proof considerably. For the general case see [KS91] or [Bo18].

Since Z is a continuous local martingale, there exists a localizing sequence of stopping times
Tn, n ∈ N such that Tn → ∞ almost surely and t 7→ Zt∧Tn is a (continuous) martingale for
each n ∈ N. If, for each t ≥ 0, the sequence Zt∧Tn is uniformly integrable, then (by Satz 1.39 in
WT2) limn→∞ Zt∧Tn = Zt in L1 and therefore the martingale property of Zt∧Tn is inherited by
Z letting n→∞.

It remains to show that the sequence Zt∧Tn is uniformly integrable for each fixed t > 0. Let
c > 0 and define q > 1 such that 1

p + 1
q = 1. Then, using Hölder’s inequality, we get

E
(
Zt∧Tn1{Zt∧Tn≥c}

)
= E

(
exp

{
Nt∧Tn −

p

2
〈N〉t∧Tn

}
exp

{p− 1

2
〈N〉t∧Tn

}
1{Zt∧Tn≥c}

)
≤

(
E exp

{
pNt∧Tn −

p2

2
〈N〉t∧Tn

})1/p
·
(
E
(

exp
{
q
p− 1

2
〈N〉t∧Tn

}
1{Zt∧Tn≥c}

))1/q

≤
(
E
(

exp
{p

2
〈N〉t

}
1{Zt∧Tn≥c}

))1/q
.

To show uniform integrability we have to show that if we first take the supremum over all n ∈ N
and then the limit as c→∞, then this limit is 0. Lemma 1.38 in WT2 shows that it is actually
sufficient to take the lim supn→∞ instead of supn∈N (since N is countable). Observe that

lim sup
n→∞

E
(
Zt∧Tn1{Zt∧Tn≥c}

)
≤
(
E
(

exp
{p

2
〈N〉t

}
1{Zt≥c}

))1/q

by dominated convergence since exp
{p

2〈N〉t
}

is integrable and hence the limit as c → ∞ is 0,
so the proof is complete.

Remark 1.8. The previous theorem is known to be wrong if 1/2 is replaced by any number
p < 1/2 (see Remark 5.17 in [KS91]), even in case d = 1.
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1.3 Application: Brownian Motion with Drift

We show how Girsanov’s theorem can be employed to compute the density of the first passage
times for one-dimensional Brownian motion with drift.

For a one-dimensional Brownian motion W and b > 0 let τb := inf{t ≥ 0 : Wt = b} denote
the first passage time to level b. Note that P(τb ≤ t) = P

(
sup0≤s≤tWs ≥ b

)
. Note that we

computed the latter quantity in WT2 by applying Donsker’s invariance principle. It is therefore
easy to show that τb has the density

fb(t) =
b√

2πt3
exp

{
− b2

2t

}
; t > 0.

Can we also compute the density f
(µ)
b of τb for Brownian motion with drift µ? Indeed we can and

Girsanov’s theorem helps us doing this. Let µ 6= 0. Let d = 1 and define W̃t := Wt − tµ, t ≥ 0.
This corresponds to the choice Xs = µ in Girsanov’s theorem. Clearly, Novikov’s condition is
satisfied and hence Zt := exp

{
µWt − 1

2µ
2t
}

, t ≥ 0 is a martingale. Fix T > 0. By Girsanov’s

theorem W̃ is a Brownian motion on [0, T ] under P̃T and hence Wt = W̃t + µt, 0 ≤ t ≤ T is a
Brownian motion with drift µ under P̃T . Denoting by τb the first passage time of W to b, we
get for t ∈ [0, T ]

P̃T (τb ≤ t) =

∫
1τb≤td P̃T

=

∫
1τb≤tZTdP =

∫
1τb≤tZτbdP

= E
(
1τb≤t exp{µb− 1

2
µ2τb}

)
=

∫ t

0
exp{µb− 1

2
µ2s}fb(s) ds,

where we applied the optional sampling theorem for the continuous martingale Z. It follows
that the first passage time τb for Brownian motion with drift has a density given by

f
(µ)
b (s) = exp{µb− 1

2
µ2s}fb(s) =

b√
2πs3

exp
{
− (b− µs)2

2s

}
, s > 0.

Note that fb(µ) is a true density (i.e. has integral 1) iff µ > 0. If µ < 0, then the integral is
strictly smaller than 1 which is due to the fact that Brownian motion with drift µ < 0 has a
positive probability of never reaching level b > 0.



Chapter 2

Local Time

In this section we introduce the concept of local time of a real-valued continuous semimartingale
X. Is |X| a semimartingale? Itô’s formula can certainly not be applied, but we will see that the
answer is nevertheless yes.

To show this we define f(x) = |x|, x ∈ R, approximate f by smoother functions fn, apply
Itô’s fomula to fn(X) and then take the limit n→∞. Specifically, we choose fn ∈ C2(R,R) as
follows:

(i) fn(x) = |x| for |x| ≥ 1/n,

(ii) fn(x) = fn(−x), x ∈ R,

(iii) f ′′n(x) ≥ 0, x ∈ R.

Hence, fn converges to f uniformly and f ′n(x) converges to sgn(x) pointwise (we define sgn(x) = 1
if x > 0, sgn(x) = −1 if x < 0 and sgn(0) = 0). In addition

∫ 1
−1 f

′′
n(x) dx = 2 for all n. Itô’s

formula applied to fn yields

fn(Xt)− fn(X0) =

∫ t

0
f ′n(Xs) dXs +

1

2

∫ t

0
f ′′n(Xs) d〈X〉s. (2.0.1)

In order to see that the stochastic integral converges as n → ∞ we need the following lemma
(note that Lemma 2.16 in WT3 about ucp-convergence does not apply here). We formulate the
lemma in a way which meets our demands (but not more).

Lemma 2.1. Let Hn, n ∈ N be a sequence of uniformly bounded progressive processes, i.e. there
exists a number C ∈ R such that

∣∣Hn
t (ω)

∣∣ ≤ C for all t ≥ 0, n ∈ N and ω ∈ Ω and assume that
Ht(ω) := limn→∞H

n
t (ω) exists for all t ≥ 0 and ω ∈ Ω. Let Y be a continuous semimartingale

such that Y0 = 0. Then ∫ .

0
Hn
s dYs →

∫ .

0
Hs dYs ucp.

Proof. We follow Section 8.3 of [WW90]. Let Y = M + A be the unique decomposition of Y
such that M ∈M0

loc and A ∈ A0. Clearly we have (by dominated convergence)∫ .

0
Hn
s dAs →

∫ .

0
Hs dAs ucp,

7
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so it remains to show the claim in case Y = M . Let Tk := inf{t ≥ 0 : |Mt| + 〈M〉t ≥ k} ∧ k,
k ∈ N. The BDG inequality implies

E sup
t≤k

(∣∣∣ ∫ t

0
1[0,Tk](s)(H

n
s −Hs) dMs

∣∣∣2) ≤ C2E
(∫ k

0
1[0,Tk](s)(H

n
s −Hs)

2 d〈M〉s
)
→ 0, as n→∞

by dominated convergence. In particular we have, for fixed k ∈ N,∫ .

0
1[0,Tk]H

n
s dMs →

∫ .

0
1[0,Tk]Hs dMs ucp.

Letting k →∞ the claim follows since Tk →∞ almost surely (check this!).

Now we are able to pass to the limit in (2.0.1). The previous lemma shows that∫ .

0
f ′n(Xs) dXs →

∫ .

0
sgn(Xs) dXs ucp

(taking C = 1). Therefore, the second integral in (2.0.1) converges ucp to a process

Lt := lim
n→∞

1

2

∫ t

0
f ′′n(Xs) d〈X〉s = |Xt| − |X0| −

∫ t

0
sgn(Xs) dXs. (2.0.2)

The first equality shows that L ∈ A+. The second representation shows that the process L
does not depend on the particular choice of fn. L is called local time at 0 of the semimartingale
X (the reason for this will become clear in the next theorem). Note that we have shown the
following formula for f(x) = |x|:

f(Xt) = f(X0) +

∫ t

0
sgn(Xs) dXs + Lt,

showing that f(Xt) is indeed a continuous semimartingale.

Theorem 2.2. Let X be a continuous semimartingale with local time L given by (2.0.2). Then

Lt = lim
ε→0

1

2ε

∫ t

0
1|Xs|≤ε d〈X〉s

in probability. In particular, for an F-Brownian motion X = W ,

Lt = lim
ε→0

1

2ε
λ{s ≤ t : |Ws| ≤ ε},

where λ denotes Lebesgue measure on [0,∞).

Proof. The second claim clearly follows from the first since 〈W 〉s = s. To show the first claim
we choose fn in a particular way namely such that (in addition to the previous assumptions)

n1[
− 1
n+1

, 1
n+1

] ≤ f ′′n ≤ (n+ 1)1[
− 1
n
, 1
n

].
Then

n

2

∫ t

0
1
Xs∈
[
− 1
n+1

, 1
n+1

]d〈X〉s ≤ 1

2

∫ t

0
f ′′n(Xs) d〈X〉s ≤

n+ 1

2

∫ t

0
1
Xs∈
[
− 1
n
, 1
n

]d〈X〉s
which implies the first claim (check this! Note that Lt = limn→∞ ... implies Lt = limε→0 ... by
monotonicity).



Chapter 3

Weak Solutions and Martingale
Problems

3.1 Weak solutions of stochastic differential equations

We will basically follow the approach presented in [KS91]. Consider the following stochastic
differential equation

dXt = b(t,Xt) dt+
m∑
k=1

σk(t,Xt) dW k
t , (3.1.1)

where W 1, ...,Wm are independent Brownian motions and b and σ1, ..., σm are measurable func-
tions mapping [0,∞)× Rd to Rd.

We start with the definition of a weak solution of (3.1.1).

Definition 3.1. A weak solution of (3.1.1) is a tuple (X,W ), (Ω,F ,F,P), where

(i) (Ω,F ,F,P) is a FPS which satisfies the usual conditions,

(ii) X is a continuous, adapted Rd-valued process and W is an m-dimensional F-Brownian
motion,

(iii)
∫ t

0 |b(s,Xs)|+
∑m

k=1

∣∣σk(s,Xs)
∣∣2 ds <∞ almost surely for every t ≥ 0,

(iv)

Xt = X0 +

∫ t

0
b(s,Xs) ds+

m∑
k=1

∫ t

0
σk(s,Xs) dW k

s ; 0 ≤ t <∞

holds almost surely.

Remark 3.2. Occasionally, we fix T > 0 and consider weak solutions on the interval [0, T ]
instead of [0,∞). It should be clear what we mean by this, so we do not provide a formal
definition.

Note that it might well happen that a weak solution (X,W ) exists but that X is not adapted
to the augmented filtration generated by W (here “augmented” means the smallest filtration
which contains the filtration generated by W which satisfies the usual conditions). We will see
an example of this kind soon. Note that in WT3 we established a stronger form of solution to

9
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(3.1.1): we showed in Theorem 2.27 under appropriate assumptions (called (H)) that the sde has
a (unique) solution with initial condition x ∈ Rd on any FPS carrying an F-Brownian motion
W . In particular, we can choose the filtration F to be the augmented filtration generated by W .
Such a solution is called a strong solution. We will often allow the initial condition X0 = ξ to be
random. In this case ξ is F0-measurable and therefore independent of the filtration generated
by W . Then a process X on a given FPS (Ω,F ,F,P) with a given F-Brownian motion W and
a given F0-measurable ξ is called a strong solution, if (X,W ), (Ω,F ,F,P) is a weak solution
which is adapted to the augmented filtration generated by W and ξ and which satisfies the
initial condition X0 = ξ almost surely. By definition, every strong solution is a weak solution.
We will see that the converse is not true.

One may ask which of the two concepts of a solution is the more natural one. There is no
clear answer to this question. It depends on which kind of phenomenon one would like to model
by an sde. If we think of W as an input to a system and X as the output, then one can argue
that the output should be a function of the input and in this case strong solutions seem more
natural. On the other hand one can take a pragmatic viewpoint by saying that one just wants
to describe some random phenomenon via an sde and one does not care whether the solution is
a function of the input. In this case weak solutions are more appropriate.

After having defined the concept of a weak solution, we define what we mean by uniqueness
of solutions.

Definition 3.3. We say that pathwise uniqueness holds for (3.1.1) if, whenever (X,W ), (Ω,F ,F,P)
and (X̃,W ), (Ω,F , F̃,P) are two weak solutions on the same probability space (Ω,F ,P) (with
possibly different filtrations) such that P(X0 = X̃0) = 1, then the processes X and X̃ are
indistinguishable (i.e. P(Xt = X̃t; 0 ≤ t <∞) = 1).

Remark 3.4. Some authors define pathwise uniqueness slightly differently by assuming that
F and F̃ coincide. Formally, our definition is stronger (i.e. more restrictive). In fact, the two
definitions can be shown to be equivalent (see [IW89], Remark IV.1.3.).

Remark 3.5. The proof of Theorem 2.27 in WT3 shows that pathwise uniqueness holds under
the assumptions (H) stated there.

Definition 3.6. We say that uniqueness in law or weak uniqueness holds for (3.1.1) if, for any
two weak solutions (X,W ), (Ω,F ,F,P) and (X̃, W̃ ), (Ω̃, F̃ , F̃, P̃) with the same initial distribu-
tion (i.e. L(X0) = L(X̃0)) the processes X and X̃ have the same law.

The following classical example due to H. Tanaka shows that a weak solution may not be a
strong solution and that uniqueness in law does not imply pathwise uniqueness.

Example 3.7. Consider the one-dimensional sde

dXt = sign(Xt) dWt; 0 ≤ t <∞, (3.1.2)

where

sign(x) =

{
1; x > 0,
−1; x ≤ 0.

If (X,W ), (Ω,F ,F,P) is a weak solution, then

Bt :=

∫ t

0
sign(Xs) dWs
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is a continuous local F-martingale starting at 0 with quadratic variation 〈B〉t =
∫ t

0 sign2(Xs) ds =
t. Therefore, B is an F-Brownian motion by Lévy’s theorem. Note that Xt = X0 +Bt, t ≥ 0 and
that the process B is independent of F0. Since X0 is F0-measurable, B and X0 are independent,
so the law of X is uniquely determined by that of X0 and so weak uniqueness holds for (3.1.2).

Let us now show existence of a weak solution. Let X be an F-Brownian motion on some
FPS (Ω,F ,F,P) with F0-measurable initial condition X0 and define

Wt :=

∫ t

0
sign(Xs) dXs.

Then W is an F-Brownian motion by Lévy’s theorem and∫ t

0
sign(Xs) dWs =

∫ t

0
sign2(Xs) dXs = Xt −X0,

so (X,W ) is a weak solution!

Next we show that there is no pathwise uniqueness in case the initial condition is X0 = 0.
Let (X,W ), (Ω,F ,F,P) be the weak solution which we just constructed (with X0 = 0). Then
(−X,W ), (Ω,F ,F,P) is also a weak solution (in spite of the slight asymmetry in the definition
of the function sign)! Therefore, pathwise uniqueness does not hold for (3.1.2).

If (X,W ) is any weak solution of (3.1.2) with initial condition 0, then∫ t

0
sign(Xs) dXs =

∫ t

0
sign2(Xs) dWs = Wt,

so W is measurable with respect to the filtration generated by X. We will see in a few seconds
that X is not measurable with respect to the filtration generated by W , so X is not a strong
solution. Since any strong solution is a weak solution this shows that no strong solution of
(3.1.2) with initial condition 0 exists.

Since the process X is an F-Brownian motion (for some filtration F) it can be represented
as

|Xt| =
∫ t

0
sgn(Xs) dXs + Lt =

∫ t

0
sign(Xs) dXs + Lt = Wt + Lt,

by the results of the last chapter, where L is the local time of the semimartingale X at 0. The
second part of Theorem 2.2 shows that L is not only F-adapted but even adapted to the filtration
generated by |Xt|, t ≥ 0. Therefore the same holds true for W . Obviously, the filtration Gt,
t ≥ 0 generated by |X| is strictly smaller than that generated by X (the event {X1 > 0} is for
example contained σ(Xs, s ≤ 1) but not in G1).

3.2 Weak solutions via Girsanov’s theorem

The following proposition shows how Girsanov’s theorem can be used to show existence of a
weak solution to a certain class of stochastic differential equations.

Proposition 3.8. Fix T > 0 and consider the stochastic differential equation

dXt = b(t,Xt) dt+ dWt; 0 ≤ t ≤ T, (3.2.1)

where W is d-dimensional Brownian motion and b : [0, T ]× Rd → Rd is jointly measurable and
bounded. Then, for any x ∈ Rd, (3.2.1) has a weak solution with initial condition X0 = x almost
surely.
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Proof. Fix x ∈ Rd and let (Xt)t≥0 be a d-dimensional F-Brownian motion starting at x on some
FPS (Ω,F ,F,P). By Theorem 1.7, the process

Zt := exp
{ d∑
j=1

∫ t

0
bj(s,Xs) dX(j)

s −
1

2

∫ t

0
|b(s,Xs)|2 ds

}
, t ≥ 0

is a continuous martingale, so Girsanov’s theorem implies that under Q given by dQ/dP|FT =
ZT , the process

Wt := Xt − x−
∫ t

0
b(s,Xs) ds; 0 ≤ t ≤ T

is an FT -Brownian motion (starting at 0). Therefore,

Xt = x+

∫ t

0
b(s,Xs) ds+Wt; 0 ≤ t ≤ T,

and hence (X,W ), (Ω,FT ,FT , Q) is a weak solution of (3.2.1) with initial condition Q(X0 =
x) = 1.

Remark 3.9. The assumption that b is bounded is stronger than necessary but simplifies the
argument. For a more general result (which also allows the initial condition to be random),
see [KS91], Proposition 5.3.6 and the remark following that proposition. Uniqueness in law for
(3.2.1) is discussed in Proposition 5.3.10 in [KS91].

3.3 Martingale Problems

We continue to consider stochastic differential equations of the form

dXt = b(t,Xt) dt+
m∑
k=1

σk(t,Xt) dW k
t , (3.3.1)

with measurable coefficients as before. The d× d (symmetric and nonnegative definite) matrix

aij(t, x) :=
m∑
k=1

(σk(t, x))i(σk(t, x))j ; i, j ∈ {1, ..., d}

is called the diffusion matrix associated to (3.3.1). We denote by Ckc (Rd) the space of real-valued
k-times continuously differentiable functions on Rd with compact support, and C∞c (Rd) :=⋂
k∈NC

k
c (Rd). Then the following holds.

Proposition 3.10. Let (X,W ), (Ω,F ,F,P) be a weak solution of (3.3.1). Then for all f ∈
C2(Rd), the process

Mf
t := f(Xt)− f(X0)−

∫ t

0

( d∑
i=1

bi(s,Xs) ∂if(Xs) +
1

2

d∑
i,j=1

aij(s,Xs)∂
2
ijf(Xs)

)
ds

is a continuous local F-martingale with Mf
0 = 0. If b and σ1, ..., σk are locally bounded (in both

variables) and f ∈ C2
c (Rd), then Mf is a continuous L2-martingale.
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Proof. This is a straightforward application of Itô’s formula.

The idea of Stroock and Varadhan ([SV79]) was to characterize a weak solution as the
solution of a (local) martingale problem. Let

Sd := {A ∈ Rd×d : A is symmetric and nonnegative definite}

and let b : [0,∞) × Rd → Rd and a : [0,∞) × Rd → Sd be measurable. For t ≥ 0 we define the
second order differential operator At by

Atf(x) :=

d∑
i=1

bi(t, x) ∂if(x) +
1

2

d∑
i,j=1

aij(t, x)∂2
ijf(x)

= 〈b(t, x),∇f(x)〉+
1

2
trace

(
a(t, x)Hessf (x)

)
, f ∈ C2(Rd).

Definition 3.11. Let b and a be as above. A continuous Rd-valued stochastic process X =
(Xt)t≥0 on some probability space (Ω,F ,P) is called a solution to the local martingale problem
for (a, b) or for the associated family of operators (At)t≥0 if for each f ∈ C∞c (Rd), the process

Mf
t := f(Xt)− f(X0)−

∫ t

0
Asf(Xs) ds (3.3.2)

is a continuous local martingale with respect to the filtration generated by X. In short, we say
that X solves LMP(a, b). If X has initial distribution µ = PX−1

0 , then we say that X solves
LMP(a, b, µ). If (3.3.2) is a martingale for each f ∈ C∞c (Rd), then we say that X solves the
associated martingale problem and write MP(a, b) and MP(a, b, µ).

Finally, we say that the solution to LMP(a, b, µ) or MP(a, b, µ) is unique if for any two
solutions X and X̃ (on possibly different spaces) the laws of X and X̃ coincide.

Remark 3.12. If X solves LMP(a, b, µ), then we can transfer X to the following canonical set-
up: consider the probability space (Ω̃, F̃ , P̃) := (C([0,∞),Rd),B(C([0,∞),Rd)),L(X)), where
L(X) denotes the law of X and C([0,∞),Rd) is equipped with the usual topology (one can easily
find a complete metric which makes the space Polish). Define the canonical process πt(ω̃) := ω̃t,
t ≥ 0. Then π has the same law as X and therefore π also solves LMP(a, b, µ). In particular, we
can identify a solution X to LMP(a, b, µ) with the probability measure L(X) on the measurable
space (C([0,∞),Rd),B(C([0,∞),Rd))). Analogous statements hold for LMP(a, b), MP(a, b), and
MP(a, b, µ). Therefore, we will often use formulations like “Let P be a solution of LMP(a, b, µ)”
if P is the law of a solution of LMP(a, b, µ).

We know already from the previous proposition that weak solutions solve the correspond-
ing local martingale problem. Theorem 3.15 shows that the converse is also true. Before we
formulate that result, we provide a representation theorem due to Doob of an Rd-valued local
martingale as a stochastic integral with respect to a Brownian motion on a possibly enlarged
probability space. We will need that result in the proof of Theorem 3.15 but it is also of interest
otherwise.

Definition 3.13. If (Ω,F ,F,P) is a FPS and m ∈ N is fixed, then we define an m-extension
(Ω̃, F̃ , F̃, P̃) of (Ω,F ,F,P) as follows. Let W be an m-dimensional F̂-Brownian motion on a FPS
(Ω̂, F̂ , F̂, P̂ ) and define Ω̃ := Ω×Ω̂, F̌ := F⊗F̂ , F̌t := Ft⊗F̂t, P̌ := P⊗P̂. Let (Ω̃, F̃ , F̃, P̃) be the



14 Wahrscheinlichkeitstheorie IV

smallest FPS which contains (or extends) (Ω̃, F̂ , F̂, P̂) and which satisfies the usual conditions.
Define W̃t(ω̃) = W̃t(ω, ω̂) := Wt(ω̂), t ≥ 0. Note that W̃ is a F̃-Brownian motion. For any
adapted process A on (Ω,F ,F,P) we define Ãt(ω̃) = Ãt(ω, ω̂) := At(ω), t ≥ 0. Note that Ã is
F̃-adapted and Ã is F̃-progressive if A is F-progressive. We will drop the tildes whenever there
is no danger of confusion.

Theorem 3.14. Let M be a continuous Rd-valued local F-martingale with M0 = 0 on some
FPS (Ω,F ,F,P) such that

〈M i,M j〉t =

m∑
k=1

∫ t

0
V ik
s V jk

s ds, t ≥ 0 (3.3.3)

for progressive processes (V ik
t )t≥0, 1 ≤ i ≤ d, 1 ≤ k ≤ m. Then on any m-extension (Ω̃, F̃ , F̃, P̃)

there exists an Rm-valued F̃-Brownian motion B such that

M i
t =

m∑
k=1

∫ t

0
V ik
s dBk

s .

Proof. For each t ≥ 0 we regard Vt :=
(
V ik
t

)
i=1,...,d;k=1,...,m

as a linear map from Rm to Rd (or a

d ×m-matrix). Let Nt ⊆ Rm be its null space and Rt ⊆ Rd its range. Let V −1
t : Rt → N⊥t be

the (bijective) inverse of the restriction of Vt to N⊥t and denote the orthogonal projection from
a Euclidean space to a subspace U by πU . Let W be an m-dimensional Brownian motion as in
the previous definition (in particular W is independent of M) and define

Bt :=

∫ t

0
V −1
s πRs dMs +

∫ t

0
πNs dWs, t ≥ 0,

where we interpret V −1
s πRs as an m× d-matrix (or linear map from Rd to Rm). Note that the

integrands are progressive and the stochastic integrals are well-defined! Then the covariation
(matrix) of the continuous local martingale B is

d

dt
〈Bk, Bl〉 =

d∑
i,j=1

(
V −1
t πRt

)
ki

(
V −1
t πRt

)
kj

d

dt
〈M i,M j〉+

m∑
ν=1

(
πNt
)
kν

(
πNt
)
lν
.

Inserting (3.3.3) we obtain (in matrix notation with .T denoting the transpose)

d

dt
〈B〉t = V −1

t πRtVtV
T
t

(
V −1
t πRt

)T
+πNt

(
πNt
)T

= πN
⊥
t
(
πN
⊥
t
)T

+πNt
(
πNt
)T

= πN
⊥
t +πNt = Im.

Therefore, Lévy’s theorem shows that B is an m-dimensional Brownian motion. Further, using
the fact that Vsπ

Ns ≡ 0 and for N ∈M0
loc, 〈N〉 ≡ 0 implies N ≡ 0,∫ t

0
Vs dBs =

∫ t

0
VsV

−1
s πRs dMs +

∫ t

0
Vsπ

Ns dWs

=

∫ t

0
πRs dMs + 0

=

∫ t

0
πRs dMs +

∫ t

0
πR
⊥
s dMs = Mt,

so the proof is complete.
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Theorem 3.15. Let b : [0,∞) × Rd → Rd and a : [0,∞) × Rd → Sd be measurable. Suppose
that X is a solution to LMP(a, b) on some probability space (Ω,F ,P). Let m ∈ N and let
σ : [0,∞)×Rd → Rd×m be a measurable function such that a = σσT (note that such a function
always exist when m ≥ d). Let F be the complete filtration on (Ω,F ,P) generated by X. Then,
on any m-extension (Ω̃, F̃ , F̃, P̃) of the FPS (Ω,F ,F,P) there exists an Rm-valued F̃-Brownian
motion B such that (X,B), (Ω̃, F̃ , F̃, P̃) is a weak solution of (3.3.1).

Proof. Fix i ∈ {1, ..., d}. For each n ∈ N, choose f
(i)
n ∈ C∞c (Rd) with f

(i)
n (x) = xi for all

|x| ≤ n. For each n ∈ N, choose a localizing sequence (T
(n)
m )m∈N of stopping times for the

continuous local martingale
(
Mf

(i)
n
t

)
t≥0

. We can and will assume that T
(n+1)
1 ≥ T

(n)
n ∨ T (1)

n+1 for

all n ∈ N. Then
(
Mf

(i)
n

t∧T (n)
m

)
t≥0

is a martingale for every m,n ∈ N. Define the stopping time

τn := inf{t ≥ 0 : |Xt| ≥ n}. Then

Mf
(i)
n
t = X

(i)
t −X

(i)
0 −

∫ t

0
bi(s,Xs) ds, t ≤ τn.

Observe that Sn := τn ∧ T (n)
n is an increasing sequence of stopping times with Sn ↑ ∞ almost

surely and that

Mf
(i)
n

t∧Sn = X
(i)
t∧Sn −X

(i)
0 −

∫ t∧Sn

0
bi(s,Xs) ds

is a martingale for each n. Consequently,

M
(i)
t := X

(i)
t −X

(i)
0 −

∫ t

0
bi(s,Xs) ds (3.3.4)

is a continuous local martingale. This formula also shows that X is a continuous semimartingale.

Next, fix i, j ∈ {1, ..., d} and choose f
(i,j)
n ∈ C∞c (Rd) such that f

(i,j)
n (x) = xixj whenever

|x| ≤ n. As above, one can show that

M
(i,j)
t := X

(i)
t X

(j)
t −X

(i)
0 X

(j)
0 −

∫ t

0

(
X(i)
s bj(s,Xs) +X(j)

s bi(s,Xs) + aij(s,Xs)
)

ds

is a continuous local martingale. Integrating by parts and using (3.3.4), we obtain

M
(i,j)
t =

∫ t

0
X(i)
s dX(j)

s +

∫ t

0
X(j)
s dX(i)

s + 〈X(i), X(j)〉t

−
∫ t

0

(
X(i)
s bj(s,Xs) +X(j)

s bi(s,Xs) + aij(s,Xs)
)

ds

=

∫ t

0
X(i)
s dM (j)

s +

∫ t

0
X(j)
s dM (i)

s + 〈M (i),M (j)〉t −
∫ t

0
aij(s,Xs) ds.

Therefore, the process 〈M (i),M (j)〉t −
∫ t

0 aij(s,Xs) ds is a continuous local martingale starting
at 0 which is of locally finite variation, so Theorem 1.57 in WT3 implies that the process is 0
almost surely.

We have shown that the processes M (i) are continuous local martingales starting at 0 such
that 〈M (i),M (j)〉t =

∫ t
0 aij(s,Xs) ds. Therefore, the claim follows from Theorem 3.14.
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Remark 3.16. Note that the previous theorem establishes a one-to-one correspondence between
weak solutions and solutions of martingale problems (up to the non-unique choice of the matrix
σ when a is given). In particular: the sde (3.3.1) with coefficients b and σ has a weak solution if
and only if LMP(σσT , b) has a solution and we have weak uniqueness if and only LMP(σσT , b, µ)
has at most one solution P ∈ M1(C([0,∞),Rd)) for every µ ∈ M(Rd). Note that the law of a
weak solution depends on σ only via σσT . Note also that the local martingale formulation does
not say much about pathwise uniqueness. Indeed, for equation (3.1.2), we have σ(x) = sign(x)
and therefore a(x) = 1. We showed that weak uniqueness holds and that a weak solution exists
for any initial law µ. Therefore the associated LMP(1, 0, µ) has a unique solution (namely
standard Brownian motion with initial distribution µ). Note that for the particular square root
σ(x) = sign(x) of a = 1 pathwise uniqueness does not hold and we do not have a strong solution
(at least not if the initial condition is 0), while for the root σ̃(x) = 1 pathwise uniqueness holds
and we have a strong solution.

3.4 Martingale Problems: Existence of solutions

We already stated an existence result for the solution of a local martingale problem in case
a ≡ Id using Girsanov’s theorem. Our aim in this section is to prove a similar statement for
more general functions a. Before we formulate and prove an existence result for a solution of
LMP(a, b) we present a useful result about weak convergence (see [K02], Theorem 4.27) and
then a tightness criterion for probability measures on the space C([0,∞),Rd).

Proposition 3.17. Let E and Ẽ be metric spaces, let µ, µ1, ... ∈M1(E) such that µn ⇒ µ and
let f, f1, f2, ... : E → Ẽ be Borel-measurable mappings. Assume that there exists a set C ∈ B(E)
such that µ(C) = 1 and fn(xn)→ f(x) whenever xn → x ∈ C. Then µnf

−1
n ⇒ µf−1.

Remark 3.18. In WT2 we treated the special case in which all functions fn equal f and f is
continuous at µ-almost every point in E.

Proof of Proposition 3.17. Fix an open set G ⊂ Ẽ and let x ∈ f−1(G)∩C in case the set in non-
empty. Then there exists an open neighborhood N of x and some m ∈ N such that fk(x

′) ∈ G
for all k ≥ m and all x′ ∈ N . Thus, N ⊂

⋂
k≥m f

−1
k (G), and so

f−1(G) ∩ C ⊂
⋃
m

( ⋂
k≥m

f−1
k (G)

)◦
,

where A◦ denotes the interior of the set A. Using the Portmanteau theorem from WT2, we get

µ
(
f−1(G)

)
≤ µ

(⋃
m

( ⋂
k≥m

f−1
k (G)

)◦)
= sup

m
µ
(( ⋂

k≥m
f−1
k (G)

)◦)
≤ sup

m
lim inf
n→∞

µn

( ⋂
k≥m

f−1
k (G)

)
≤ lim inf

n→∞
µn

(
f−1
n (G)

)
.

Again using the Portmanteau theorem the claim follows.

Consider the space Cd := C([0,∞),Rd) equipped with the metric

ρ(f, g) :=
∞∑
k=1

2−k
(

max
x∈[0,k]

|f(x)− g(x)| ∧ 1
)
.
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It is easy to see that (Cd, ρ) is complete and separable (and hence Polish) and that a sequence
of elements of Cd converges with respect to ρ iff the sequence converges uniformly on every
compact subset of [0,∞). For t ≥ 0, define the projection maps πt : Cd → C([0, t],Rd) by
(πt(f))(s) := fs, s ∈ [0, t] and π̃t : Cd → Rd by π̃t(f) := ft. Clearly, πt and π̃t are continuous if
C([0, t],Rd) is equipped with the supremum norm. The Borel-σ-algebra B(Cd) on Cd coincides
with the σ-algebra B respectively B̃ generated by the maps πt, t ≥ 0 respectively π̃t, t ≥ 0: the
fact that continuous maps are measurable shows that B ⊂ B(Cd) and B̃ ⊂ B(Cd). It is easy
to see that B̃ ⊂ B. To see the inclusion B(Cd) ⊂ B̃ consider all sets of the form {g ∈ Cd :
supx∈[0,N ] |g(x)− f(x)| < ε}, where ε > 0, N ∈ N and f ∈ C. These sets are open and are in B̃
(cf. the second part of the proof of Lemma 4.28 in WT2) and every open set in Cd is a countable
union of countable intersections of such sets and thus in B̃. We define the modulus of continuity
of f ∈ Cd on [0, t] by wft (h) := sup{|fr − fs|; r, s ∈ [0, t], |r − s| ≤ h}, h > 0.

Proposition 3.19. The set Γ ⊂M1(Cd) is relatively compact (and hence tight) iff the following
two conditions hold:

(i) For each ε > 0 there exists a compact set Kε ⊂ Rd such that µ({f ∈ Cd : f0 ∈ Kε}) ≥ 1− ε
for every µ ∈ Γ.

(ii) For each T > 0, ε > 0 and δ > 0 there exists some h > 0 such that

µ
(
{f ∈ Cd : wfT (h) ≥ δ}

)
≤ ε for all µ ∈ Γ.

Proof. This follows easily from the Arzelà-Ascoli theorem. We will show the details in class.

We will use the following sufficient tightness criterion on Cd.

Proposition 3.20. Let Y i, i ∈ I be a family of Cd-valued random variables on possibly different
spaces (Ωi,Fi,Pi). A sufficient condition for tightness of Γ := {L(Y i), i ∈ I} is that the following
two conditions hold:

(i) For each ε > 0 there exists a compact set Kε ⊂ Rd such that Pi({Y i
0 ∈ Kε}) ≥ 1 − ε for

every i ∈ I.

(ii) For each T > 0 there exist aT , bT , cT > 0 such that

Ei
(
|Y i
t − Y i

s |aT
)
≤ cT |t− s|1+bT ; s, t ∈ [0, T ], i ∈ I.

Proof. Clearly (i) of Proposition 3.19 is the same as (i) of Proposition 3.20. To see that (ii) of
Proposition 3.19 holds, fix T > 0 and define Zit := Y i

tT , t ≥ 0. Then, for s, t ∈ [0, 1],

Ei
(
|Zit − Zis|aT

)
= Ei

(
|Y i
tT − Y i

sT |aT
)
≤ cTT 1+bT |t− s|1+bT .

Choose κT ∈ (0, bT /aT ). Then Kolmogorov’s continuity theorem as e.g. in Theorem 5.2 in the
WT3 Lecture notes implies

Pi
(
wY

i

T (h) ≥ δ
)

= Pi
(
wZ

i

1 (h/T ) ≥ δ
)
≤ 1

δaT
Ei
((
wZ

i

1 (h/T )
)aT ) ≤ 1

δaT
hκT aT ξT ,

for some ξT > 0 (which does not depend on i ∈ I nor on δ and h), so the claim follows from the
previous proposition.
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Theorem 3.21. Let a : Rd → Sd and b : Rd → Rd be bounded and continuous and let x ∈ Rd.
Then LMP(a, b, δx) has a solution.

Proof. The idea of the proof is to approximate the functions a and b by smoother functions
an and bn such that we know that LMP(an, bn, δx) has a solution Pn ∈ M1(Cd) and to show
that the sequence Pn, n ∈ N is tight. Since Cd is a Polish space, we know from Prohorov’s
theorem (WT2) that there exists a subsequence of Pn, n ∈ N which converges weakly to some
P ∈M1(Cd). Then it remains to show that P solves LMP(a, b, δx).

We choose bn : Rd → Rd such that bn ∈ C∞(Rd,Rd) and bn → b uniformly on Rd (it is clear
that such a sequence exists). To define an, we first choose a continuous map σ : Rd → Rd×d such
that a(x) = σ(x)σT (x) (note that σ is automatically bounded). Choose σn ∈ C∞(Rd,Rd×d)
such that σn → σ uniformly in Rd and define an := σnσ

T
n . Without loss of generality we can

assume that supx∈Rd
(
|bn(x)| + ‖an(x)‖) ≤ B < ∞ for some B ∈ R. Denote the k-th column

of σn by σnk. We saw in WT3 that a stochastic differential equation with bounded (in fact
linearly bounded is enough) and locally Lipschitz continuous coefficients bn, σn1, ..., σnd and
deterministic initial condition x ∈ Rd has a (unique) strong solution Xn defined on any FPS
(Ω,F ,F,P) which carries a d-dimensional Brownian motion W . Note that we can choose the
same space and the same Brownian motion for every n ∈ N. In particular, the equation has a
weak solution for each n ∈ N and thus LMP(an, bn, δx) has a solution Pn ∈M1(Cd), namely the
law of Xn. We show that Γ := {Pn}n∈N is tight by verifying the assumptions of Proposition
3.20. Condition (i) holds since Pn(f ∈ Cd : f(0) = x) = 1. To show (ii) in Proposition 3.20, fix
T > 0. Then, for 0 ≤ s < t ≤ T and p ≥ 2 and using Burkholder’s inequality, we have

E
(
|Xn

t −Xn
s |p
)

= E
(∣∣∣ ∫ t

s
bn(Xn

u ) du+
d∑

k=1

∫ t

s
σnk(X

n
u ) dW k

u

∣∣∣p)
≤ (d+ 1)p−1

(
E
(∣∣∣ ∫ t

s
bn(Xn

u ) du
∣∣∣p)+

d∑
k=1

E
(∣∣∣ ∫ t

s
σnk(X

n
u ) dW k

u

∣∣∣p))
≤ (d+ 1)p−1

(
Bp(t− s)p + Cpd

1+ p
2Bp/2(t− s)p/2

)
,

so choosing p > 2 Proposition 3.20 shows that the set Γ is tight. Prohorov’s theorem (WT2)
implies that there is some P ∈M1(Cd) and a subsequence of (Pn) which converges to P weakly.
Without loss of generality we assume that the sequences bn and an are such that Pn ⇒ P . Let
X be the canonical process on (Cd,B(Cd), P ). It remains to verify that X solves LMP(a, b, δx).
Since a and b are bounded this is the same as showing that X solves MP(a, b, δx) which is
equivalent to showing that for every 0 ≤ s < t < ∞, any f ∈ C∞c (Rd) and any bounded and
continuous function g : C([0, s],Rd)→ R

E
((
f(Xt)− f(Xs)−

∫ t

s
Arf(Xr) dr

)
g(Xu, u ∈ [0, s])

)
= 0 (3.4.1)

(by an application of the monotone class theorem), where E denotes the expectation with respect
to P . We fix s, t and f and write equation (3.4.1) as Eϕ(πt ◦X) = 0 where ϕ : C([0, t],Rd) →
R is bounded and continuous. We know that the corresponding equation Eϕn(πt ◦ Xn) =∫
Cd ϕn(πt(h)) dPn(h) = 0 holds where ϕn is defined like ϕ but with Ar replaced by Anr . Note that
ϕn → ϕ uniformly, so Proposition 3.17 implies Eϕ(X) = 0, so P (orX) solve (L)MP(a, b, δx).
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Remark 3.22. The previous theorem can be generalized considerably (see for example [K02]):
the functions a and b can be allowed to be time-dependent, random, and to depend also on the
past values of the solution process. Further, boundedness can be weakened to a linear growth
condition and δx can be replaced by an arbitrary µ ∈M1(Rd).

3.5 The Yamada-Watanabe results

In this section we will not always supply complete proofs. Before we state and prove the
Yamada-Watanabe theorem let us show that two weak solutions (Xj ,W j), (Ωj ,F j ,Fj ,Pj) of
equation (3.3.1) with the same given initial law L(Xj

0) = µ, j = 1, 2 can be defined on a common

probability space. For j = 1, 2 we define Y j
t := Xj

t−X
j
0 , t ≥ 0. Let Θ := Rd×Cm×Cd be equipped

with its Borel σ-algebra B(Θ) and let Pj ∈M1(Θ) be the law of the triple (Xj
0 ,W

j , Y j), j = 1, 2.
It may well be that P1 6= P2 (even if we have weak uniqueness (which we didn’t assume)!), but
we know that the projection of Pj on the first two coordinates is µ⊗W for both j = 1, 2 where
W is the law of an m-dimensional Brownian motion. Since we only have weak solutions, the
third coordinate of the canonical process on (Θ,B(Θ), Pj) will generally not be a function of the
first two, so the conditional law of the third coordinate given the first two will be non-trivial
(i.e. not a Dirac measure) in general. Since the space Θ is Polish the important theorem on
the existence of regular conditional distributions (e.g. Satz und Definition 8.19 in the Chapter
Bedingte Erwartungen und Wahrscheinlichkeiten of WT1 or [IW89], p.12-16) tells us that for
the σ-algebra G generated by the first two coordinates of the canonical process on (Θ,B(Θ), Pj),
there exists a Markov kernel Qj from (Θ,G) to (Θ,B(Θ)) such that Qj(θ,A) = Pj(A|G)(θ),
Pj-almost surely for every A ∈ B(Θ). Since Qj depends on the first two coordinates of θ only,
we write Qj((x,w), A) instead of Qj((x,w, y), A) for θ = (x,w, y) ∈ Θ.

The impatient reader may ask if this means that we have found a weak solution of our sde
on the probability space (Θ,B(Θ), Pj). Strictly speaking it doesn’t because we have not defined
a filtration on that space. Before taking care of these things we look for a single space carrying
both weak solutions. We choose the space Ω := Θ × Cd equipped with its Borel σ-algebra. We
define

P(dω) := Q1(x,w,dy1)Q2(x,w,dy2) dµ(x) dW(w),

where ω = (x,w, y1, y2) ∈ Ω. Let F be the P-completion of B(Ω) and let F be the augmented
filtration generated by the coordinates. By construction, the first three coordinates have law P1

and the first two together with the last one have law P2. It is not hard to show that these triples
correspond to the weak solutions of the original sde (but we will skip the proof; for example one
has to check that the second coordinate is really an F-Brownian motion).

Here is the first part of the Yamada-Watanabe theorem.

Theorem 3.23. Pathwise uniqueness implies uniqueness in law.

Proof. Consider two weak solutions (Xj ,W j), (Ωj ,F j ,Fj ,Pj) with given initial law L(Xj
0) = µ,

j = 1, 2 of equation (3.3.1) as above and construct the FPS (Ω,F ,F,P) as above. Pathwise
uniqueness implies that the sum of the first and third and the sum of the first and fourth
coordinate are indistinguishable, so P1 = P2 which implies (even more than) weak uniqueness.

Here is the second part of the Yamada-Watanabe theorem.
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Theorem 3.24. Weak existence and pathwise uniqueness imply strong existence.

Proof. The idea of the proof is simple: we take some weak solution (X1,W 1), (Ω1,F1,F1,P1)
and take another copy of it which we equip with indices 2 everywhere. Then perform the same
construction as above and denote Q := Q1 = Q2. Let ∆ := {(f, f) : f ∈ Cd} be the diagonal in
Cd×Cd. Since Cd is a Polish space ∆ is a measurable subset of Cd×Cd. By pathwise uniqueness,
we have Q((x,w), .) ⊗ Q((x,w), .)(∆) = 1 for almost all (x,w) which means that Q((x,w), .)
is a Dirac measure for almost all (x,w), but this means that the third coordininate y is a
(measurable) function F of (x,w) and so the process xt := x + yt, t ≥ 0 is a strong solution
with respect to the Brownian motion w. It is not hard to see that this implies that the original
process X1 can be written as the same function F applied to the pair (X1

0 ,W
1) showing that

X1 is also a strong solution.

3.6 Martingale Problems: Uniqueness of solutions and the strong
Markov property

This section is rather sketchy. We will state results without proofs (they can be found in [K02],
[KS91] or [SV79]).

Definition 3.25. A martingale problem (or an sde) is said to be well posed if for every initial
condition x ∈ Rd it admits a unique (weak) solution.

Until further notice we will now assume that the coefficients b and σ (or a) are time-
homogeneous. One remarkable result (see [K02], Theorem 21.11 or Theorem 4.20 in [KS91]
[under the additional assumption that a and b are locally bounded] for a precise formulation
and proof) is that well posedness of LMP(a, b) implies the strong Markov property of the induced
Markov family Px, x ∈ Rd in M1(Cd).

The proof of the following proposition can be found in [KS91], Proposition 4.27.

Proposition 3.26. Suppose that for every x ∈ Rd any two solutions P and P̃ of LMP(a, b, δx)
have the same marginal distribution, i.e. P̃ π̃−1

t = Pπ̃−1
t for all t ≥ 0. Then P = P̃ .

This proposition can be used to show uniqueness using PDE methods (see Section 5.4.E in
[KS91]).

A sufficient condition for uniqueness of LMP(a, b) is the following result of Stroock and
Varadhan.

Theorem 3.27. Let a be continuous and b be measurable and locally bounded. Assume that a
is uniformly elliptic in the following sense: there exists λ > 0 such that

〈a(x)ξ, ξ〉 =

d∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2, x, ξ ∈ Rd.

Then uniqueness of (L)MP(a, b) holds.

Remark 3.28. Note that the assumptions in the previous theorem do not guarantee existence
of a solution of LMP(a, b) (since solutions can blow up in finite time).



Chapter 4

Kunita-type Stochastic Differential
Equations and Stochastic Flows

4.1 Kunita-type stochastic differential equations

When we investigated stochastic differential equations so far, we fixed an initial condition x ∈ Rd
and studied solutions with this fixed initial condition. We did not study the joint distribution
of solutions starting at different initial conditions (except in a short section in WT3 where we
studied continuity of the solution with respect to the initial condition). If we think of many
light (non-interacting) particles on the surface of a fluid, then one can try to model their joint
motion by a single stochastic differential equation. We can, for example, consider all initial
conditions simultaneously. For such applications it seems unnatural to drive the equation just
by finitely many Brownian motions. It is more natural to assume that particles which are
far apart are driven by (almost) independent Brownian motions and this forces us to consider
stochastic differential equations driven by an infinite number of Brownian motions. This is not
a severe problem; one just has to be careful with infinite sums. As an alternative (suggested and
developed by Kunita in [Ku90]) one can introduce semimartingale fields F (t, x), t ≥ 0, x ∈ Rd
depending on the spatial parameter x which can be thought of as describing the local behaviour
of a solution if a particle happens to be at location x. Formally, an associated Kunita-type sde
is written as

dXt = F (dt,Xt). (4.1.1)

We will soon impose assumptions on the field F which guarantee that (4.1.1) does not only have
a unique strong solution for every fixed initial condition but that it even generates a stochastic
flow of homeomorphisms (which we will define shortly).

In the following we assume that all stochastic processes are defined on a common FPS
(Ω,F ,F,P) which satisfies the usual conditions. The following will be our minimal assumptions
on the local martingale part M of F in what follows:

Assumption 4.1. • M : [0,∞)× Rd × Ω→ R is (jointly) measurable,

• t 7→M(t, x, ω) is continuous for all x ∈ Rd and ω ∈ Ω,

• M(., x) ∈M0
loc for each fixed x ∈ Rd.

We will sketch the definition of a stochastic integral with respect to M which generalizes
the approach presented in WT3 but is largely analogous. For details see [Ku90], p.80ff. Let

21
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f : [0,∞) × Ω → Rd be a simple process, i.e. there exist ∆ = {0 = t0 < t1 < ...} such that
ti →∞ and Fti-measurable Rd-valued ξi, i = 0, 1, ... such that

ft(ω) = ξ0(ω)1{0}(t) +

∞∑
i=0

ξi(ω)1(ti,ti+1](t); t ≥ 0, ω ∈ Ω. (4.1.2)

For M as above we define the stochastic integral of a simple process f as follows:

Mt(f) :=
∞∑
i=0

(
M(t ∧ ti+1, ξi)−M(t ∧ ti, ξi)

)
. (4.1.3)

Note that for each t at most one of the summands in the infinite sums in (4.1.2) and (4.1.3) is
non-zero. Note further that the process Mt(f) is adapted, has continuous paths and satisfies
M0(f) = 0. It is not hard to show that Mt(f) is a local martingale. We will now impose an
additional condition on the joint quadratic variation of the local martingales M(., x), x ∈ Rd
(which is a bit stronger than the condition in [Ku90]).

Assumption 4.2. There exists a continuous function a : Rd × Rd → R such that

〈M(., x),M(., y)〉t = t a(x, y), t ≥ 0, x, y ∈ Rd,

and that there exists some δ > 0 such that for every compact set K in Rd

sup
x,y,x′,y′∈K;x 6=x′,y 6=y′

|a(x, y)− a(x′, y)− a(x, y′) + a(x′, y′)|
|x− x′|δ|y − y′|δ

<∞.

Before we proceed with the definition of Mt(f) for more general processes f , we provide an
example which shows how this new stochastic integral is related to the one defined in WT3.

Example 4.3. Let W 1
t , ...,W

m
t be independent standard F-Brownian motions and let σk : Rd →

R, k = 1, ...,m be measurable. Define

M(t, x) :=
m∑
k=1

σk(x)W k
t .

Clearly, M satisfies Assumption 4.1. Further, we have

〈M(., x),M(., y)〉t = t
m∑
k=1

σk(x)σk(y),

so the first part of Assumption 4.2 holds with a(x, y) =
∑m

k=1 σk(x)σk(y). The second part of
Assumption 4.2 holds in case all functions σk are locally δ-Hölder continuous for some δ > 0. If
f is a simple process as in (4.1.2), then

Mt(f) =

m∑
k=1

∫ t

0
σk(fs) dW k

s ,

where the right hand side denotes the usual Itô integral (introduced in WT3).

We provide the following theorem (which is a special case of results in [Ku90]) without proof.
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Theorem 4.4. Let Assumption 4.2 hold and let f : [0,∞)×Ω→ Rd be adapted with continuous
paths. For a (deterministic) partition ∆ := {0 = t0 < t1 < ...} such that ti →∞ define

f∆
t (ω) :=

∞∑
i=0

fti(ω)1(ti,ti+1](t); t ≥ 0, ω ∈ Ω.

Then,

a) Mt(f) :=
∫ t

0 M(ds, fs) := lim|∆|→0Mt(f
∆) exists, where the limit is understood in the

sense of uniform convergence on compact subsets of [0,∞) in probability (ucp),

b) M.(f) ∈M0
loc,

c) if g is another adapted process with continuous paths, then

〈M.(f),M.(g)〉t =

∫ t

0
a(fs, gs) ds, a.s.

We are now in a position to formulate a theorem about existence and uniqueness of solutions
of Kunita-type stochastic differential equations of the form

dXt = b(Xt) dt+M(dt,Xt), X0 = x ∈ Rd. (4.1.4)

We will impose the following assumptions on b and M = (M1, ...,Md).

Assumption 4.5. a) b : Rd → Rd is continuous.

b) M i satisfies Assumption 4.1, i = 1, ..., d.

c) a : Rd × Rd → Rd×d is continuous and 〈M i(., x),M j(., y)〉t = t aij(x, y), i, j ∈ {1, ..., d}.

d) Define
A(x, y) := a(x, x)− a(x, y)− a(y, x) + a(y, y), x, y ∈ Rd,

then, for each R > 0 there exists some KR > 0 such that

2〈b(x)− b(y), x− y〉+ tr
(
A(x, y)

)
≤ KR|x− y|2

whenever |x|, |y| ≤ R.

e) There exists K̃ such that 2〈b(x), x〉+ tr
(
a(x, x)

)
≤ K̃

(
|x|2 + 1

)
for all x ∈ Rd.

Remark 4.6. Note that Assumption 4.5 d) implies that Assumption 4.2 holds for each M i and
aii with δ = 1/2 (I will explain this in class; if you want to try by yourself, here is a hint: use
the Kunita-Watanabe inequality). This guarantees that all stochastic integrals in (4.1.4) are
defined.

Remark 4.7. Note that

〈M i(., x)−M i(., y),M j(., x)−M j(., y)〉t = tAij(x, y),

so A(x, y) is symmetric. In fact A(x, y) is even non-negative definite since for z ∈ Rd

0 ≤ 〈
∑
i

zi
(
M i(., x)−M i(., y)

)
〉t =

∑
i,j

zizjtAij(x, y).
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Theorem 4.8. Under Assumption 4.5, the sde (4.1.4) has a unique (strong) solution for every
initial condition x ∈ Rd.

Proof. The proof (via an Euler approximation) is (almost) exactly like that of Theorem 2.27 in
WT3. Therefore we omit it.

Remark 4.9. The reader interested in seeing a proof of the previous theorem under even
slightly weaker assumptions (some guaranteeing only local existence and uniqueness) is referred
to [SS17].

The following proposition is the same as Proposition 2.35 in WT3 (and hence the proof –
based on Kolmogorov’s continuity theorem – is identical).

Proposition 4.10. Assume that, in addition to the assumptions in Theorem 4.8, there exist
p > d such that p ≥ 2 and K ≥ 0 such that

2〈b(x)− b(y), x− y〉+ tr
(
A(x, y)

)
+ (p− 2)‖A(x, y)‖ ≤ K|x− y|2

for all x, y ∈ Rd, where ‖.‖ denotes the matrix norm induced by the Euclidean norm on Rd, then
there exists a modification ϕ of the solution map φ : Rd × [0,∞) × Ω → Rd of (4.1.4) which is
jointly continuous in (t, x).

Remark 4.11. Recall that in the proof of the previous proposition we used Lemma 2.34 in
WT3 which established the bound

E sup
0≤t≤T

|φt(x)− φt(y)|q ≤
(
cq/p + 1

)
|x− y|q exp{KqT/2}, (4.1.5)

for any T > 0, x, y ∈ Rd and q ∈ (0, p), where cr is a constant whose numerical value was given in
the WT3 notes. We then applied Kolmogorov’s continuity theorem (choosing q ∈ (d, p)) to show
the existence of a continuous modification ϕ of φ. In fact Kolmogorov’s continuity theorem as in
the appendix of WT3 can not only be used to prove the existence of a continuous modification
ϕ but also to provide an upper bound on the growth of the diameter of ϕT (A) for a bounded
set A ⊂ Rd. If, for example, we choose A = [0, 1]d, then we obtain for each T > 0, κ ∈ (0, q−dq ),
and u > 0,

P
(

sup
0≤t≤T

sup
x,y∈[0,1]d

|ϕt(x)− ϕt(y)| ≥ u
)
≤ C(κ, q, d) exp{KqT/2}u−q,

for some function C(κ, q, d). Inserting u = exp{γT}, we see that

lim sup
T→∞

1

T
logP

(
sup

0≤t≤T
sup

x,y∈[0,1]d
|ϕt(x)− ϕt(y)| ≥ exp{γT}

)
≤ Kq

2
− γq,

which is negative when γ > K
2 . Under additional assumptions much sharper estimates can be

obtained (see [SS17]). We mention that the claim of Proposition 4.10 is generally untrue even
for an sde of the form

dXt = σ(Xt) dWt,

when σ is bounded and C∞ (but not globally Lipschitz). An example with d = 2 can be found
in [LS11].
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4.2 Stochastic flows generated by stochastic differential equa-
tions

We start by defining the concept of a stochastic (semi-)flow. We restrict our study to Rd-valued
continuous-time flows but of course this concept can be generalized to other state spaces and
more general index sets.

Definition 4.12. Let (Ω,F ,P) be a probability space. Let T ∈ {[0,∞),R}. A measurable map
ϕ : T2×Rd×Ω→ Rd is called a stochastic flow (of homeomorphisms) if there exists a set N ∈ F
such that P(N) = 0 and for all ω /∈ N we have

i) ϕs,u(., ω) = ϕt,u ◦ ϕs,t(., ω), s, t, u ∈ T

ii) ϕs,s(., ω) = idRd , s ∈ T,

iii) (s, t, x) 7→ ϕs,t(x, ω) is continuous.

If ∆ := {(s, t) ∈ T2 : s ≤ t}, then a measurable map ϕ : ∆×Rd×Ω→ Rd is called a (stochastic)
semi-flow if ii) holds and i) and iii) hold for all (s, t), (t, u) ∈ ∆.

Remark 4.13. Note that if ϕ is a stochastic flow, then ϕs,t(., ω) is a homeomorphism of Rd for
all s, t ∈ T and all ω /∈ N . Further, the formula ϕt,s(x, ω) = ϕ−1

s,t (x, ω) holds for all s, t ∈ T and
all ω /∈ N .

It is natural to conjecture that under the conditions provided in the previous section, the
solution of an sde generates a stochastic semi-flow, i.e. one can find a modification ϕ of the
solution map φ which is a stochastic semi-flow (see [SS17] for precise statements and proofs).
Note that we cannot expect that an sde as above generates a stochastic flow since even in
the deterministic case the solution map may not be one-to-one (we will provide an example in
class). Rather than showing the semi-flow property for sdes as above, we impose slighly stronger
conditions and show that under these conditions an sde even generates a stochastic flow.

Theorem 4.14. Assume that b : Rd → Rd and A : Rd × Rd → Rd×d are Lipschitz in the
following sense: there exist (deterministic) constants Lb and κ such that, for all x, y ∈ Rd,

|b(x)− b(y)| ≤ Lb|x− y|, ‖A(x, y)‖ ≤ κ|x− y|2.

Let T := [0,∞) and let ψ : ∆× Rd × Ω→ Rd be the solution map associated to the sde

dXt = b(Xt) dt+M(dt,Xt),

i.e. ψs,t(x), (s, t) ∈ ∆, x ∈ Rd is a solution of

ψs,t(x) = x+

∫ t

s
b(ψs,u(x)) du+

∫ t

s
M(du, ψs,u(x)).

Then there exists a stochastic flow ϕ such that for every s ≥ 0 and x ∈ Rd there exists a set
Ns,x of measure 0 such that

ϕs,t(x, ω) = ψs,t(x, ω), t ≥ s, x ∈ Rd, ω /∈ Ns,x.
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The proof is a bit long and will be split up into the following 5 steps. We basically follow
the proof of Theorem 4.5.1 in [Ku90].

Step 1: There exists a continuous modification ψ̃ : [0,∞)× Rd × Ω→ Rd of ψ0,..

Step 2: ψ̃ can be chosen in such a way that ψ̃t(., ω) : Rd → Rd is one-to-one for all t ≥ 0, ω ∈ Ω.

Step 3: ψ̃ can be chosen in such a way that ψ̃t(., ω) : Rd → Rd is - in addition - onto for all t ≥ 0,
ω ∈ Ω.

Step 4: For ψ̃ as in Step 3 the map (s, x) 7→ ψ̃−1
s (x, ω) is continuous for every ω ∈ Ω.

Step 5: Define ϕs,t(x, ω) := ψ̃t(ψ̃
−1
s (x, ω), ω), s, t ≥ 0 and show that ϕ satisfies the claim in

Theorem 4.14.

Note that we proved Step 1 already: it is a special case of Proposition 4.10. Nevertheless,
a new proof will be given here.

Lemma 4.15. There exists some c ≥ 0 such that for all x, y ∈ Rd there exists a standard
Brownian motion W (possibly on an enlarged probability space) such that for every t ≥ 0, we
have

sup
0≤s≤t

|ψ0,s(x)− ψ0,s(y)| ≤ |x− y| exp{ct+
√
κ W ∗t }, a.s. and

inf
0≤s≤t

|ψ0,s(x)− ψ0,s(y)| ≥ |x− y| exp{−ct+
√
κ ∗Wt}, a.s.,

where W ∗t := sup0≤s≤tWs and ∗Wt := inf0≤s≤tWs.

Proof. Fix x 6= y and ε > 0. Define

Dt := ψ0,t(x)− ψ0,t(y), Z
(ε)
t :=

1

2
log(|Dt|2 + ε),

so

Z
(ε)
t = fε(Dt) for fε(z) :=

1

2
log(|z|2 + ε).

Using Itô’s formula, we get

dZ
(ε)
t =

Dt · (M(dt, ψ0,t(x))−M(dt, ψ0,t(y)))

|Dt|2 + ε
+
DT
t (b(ψ0,t(x))− b(ψ0,t(y)))

|Dt|2 + ε
dt

+
1

2

1

|Dt|2 + ε
tr
(
A(ψ0,t(x), ψ0,t(y))

)
dt−

∑
i,j

Di
tD

j
t

(|Dt|2 + ε)2
Ai,j(ψ0,t(x), ψ0,t(y)) dt.

Note that

N
(ε)
t :=

∫ t

0

Ds

|Ds|2 + ε
·
(
M(ds, ψ0,s(x))−M(ds, ψ0,s(y))

)
is a continuous local martingale and we get

Z
(ε)
t = Z

(ε)
0 +N

(ε)
t +

∫ t

0
αε(s, ω) ds,
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where
c := sup

x,y
sup
s

sup
ε>0

esssupω|αε(s, ω)| <∞

and

d〈N (ε)〉t =
∑
i,j

Di
tD

j
t

(|Dt|2 + ε)2
Ai,j(ψ0,t(x), ψ0,t(y)) dt ≤ κdt.

By the Dambis-Dubins-Schwarz theorem (Theorem 2.23 and Remark 2.24 in WT3), we can find

a Wiener process W (ε) (possibly on an enlarged probability space) such that N
(ε)
t =

√
κW

(ε)
τ(t)

such that τ(t) ≤ t for all t ≥ 0 almost surely. Therefore,

Z
(ε)
t ≥ Z

(ε)
0 +

√
κW

(ε)
τ(t) − ct

≥ log(|x− y|) +
√
κ inf

0≤s≤t
W (ε)
s − ct.

The law of the right hand side does not depend on ε. Defining

Zt := log |Dt| = lim
ε→0

Z
(ε)
t ,

we therefore get

P
(

inf
0≤s≤t

Zs = −∞
)

= P
(

inf
0≤s≤t

|Ds| = 0
)

= 0 for all t ≥ 0.

Therefore, all previous calculations extend to the case ε = 0. Letting Wt := W
(0)
t , we get

Zt ≤ log |x− y|+
√
κ W ∗t + ct

and
Zt ≥ log |x− y|+

√
κ ∗Wt − ct

and the claim in the lemma follows after applying exp to both sides of the equations.

Remark 4.16. The constant c in the previous proof satisfies

c ≤ Lb +
1

2
dκ.

To see this, fix x 6= y. Since the trace of A(x, y) is the sum of its eigenvalues and ‖A(x, y)‖ is
the largest eigenvalue, we get tr

(
A(x, y)

)
≤ d‖A(x, y)‖ ≤ dκ|x− y|2. We mention without proof

that c in the statement of Lemma 4.15 even holds for c = Lb + 1
2(d− 1)κ.

Lemma 4.17. For every p ∈ R and T ≥ 0 there exists some c̃ = c̃(p, T ), such that for every
x 6= y we have

E sup
0≤t≤T

|ψ0,t(x)− ψ0,t(y)|p ≤ c̃|x− y|p.

Proof. For p ≥ 0 the first conclusion in the previous lemma implies

E sup
0≤t≤T

|ψ0,t(x)− ψ0,t(y)|p ≤ |x− y|pE exp{pcT + p
√
κ W ∗T }

and for p ≤ 0, the second conclusion implies

E sup
0≤t≤T

|ψ0,t(x)− ψ0,t(y)|p ≤ |x− y|pE exp{−pcT + p
√
κ ∗WT }.

Since the expected values on the right hand side are finite the assertion follows.
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Note that Lemma 4.17 allows us to apply Kolmogorov’s continuity theorem, thus completing
Step 1. We denote the continuous modification of ψ0,. by ψ̃ (as in the statement of Step 1).

In order to finish the proof of Step 2, we need the following lemma

Lemma 4.18. Define ηt(x, y) := |ψ0,t(x)− ψ0,t(y)|−1, t ≥ 0, x 6= y. For every p ≥ 0 and T ≥ 0
there exists some č = č(p, T ) such that

E
(

sup
0≤u≤T

|ηu(x, y)− ηu(x′, y′)|p
)
≤ č|x− y|−p|x′ − y′|−p|(x, y)− (x′, y′)|p

for all x, y, x′, y′ ∈ Rd such that x 6= y, x′ 6= y′.

Proof. Note that for every x 6= y we have ηt(x, y) 6= 0 for all t ≥ 0 almost surely by the second
conclusion in Lemma 4.15. We have

|ηu(x, y)− ηu(x′, y′)| =
∣∣∣ 1

|ψ0,u(x)− ψ0,u(y)|
− 1

|ψ0,u(x′)− ψ0,u(y′)|

∣∣∣
= ηu(x, y)ηu(x′, y′)

∣∣∣|ψ0,u(x′)− ψ0,u(y′)| − |ψ0,u(x)− ψ0,u(y)|
∣∣∣

≤ ηu(x, y)ηu(x′, y′)
∣∣ψ0,u(x′)− ψ0,u(y′)− ψ0,u(x) + ψ0,u(y)

∣∣
≤ ηu(x, y)ηu(x′, y′)

(∣∣ψ0,u(x)− ψ0,u(x′)
∣∣+
∣∣ψ0,u(y)− ψ0,u(y′)

∣∣).
Applying Hölder’s inequality and Lemma 4.17, we get

E
(

sup
0≤u≤T

|ηu(x, y)− ηu(x′, y′)|p
)

≤
(
E sup

0≤u≤T
|ηu(x, y)|3p

)1/3(
E sup

0≤u≤T
|ηu(x′, y′)|3p

)1/3

(
E sup

0≤u≤T
(|ψ0,u(x)− ψ0,u(x′)|+ |ψ0,u(y)− ψ0,u(y′)|)3p

)1/3

≤ c̃(−3p, T )2/3|x− y|−p|x′ − y′|−p2pc̃(3p, T )1/3
(
|x− x′|p + |y − y′|p

)
.

(note that the last inequality holds for every p > 0). The proof of the lemma is complete.

Now we can complete Step 2 (the one-to-one property). Define I := {(x, y) ∈ R2d : x 6= y}
(which is an open subset of R2d). Note that Kolmogorov’s continuity theorem implies that
there exists a process η̃ : I → C([0,∞),R) which is continuous for all ω ∈ Ω and which is a
modification of η in the sense that P

(
η̃(z) ≡ η(z)

)
= 1 for each z ∈ I. In particular, η̃ does not

attain the value∞ on I. Unfortunately this does not yet show the one-to-one property since we
do not yet know if the modification η̃ corresponds to a modification of ψ0,.. To close this gap
we argue as follows: To define η, we use the continuous modification ψ̃ instead of ψ. Then η
is a continuous process which takes values in [0,∞]. Then we define η̃ as above. Since both η
and η̃ are continuous on I (η taking values in [0,∞] and η̃ taking values in [0,∞)) they actually
agree identically almost surely. This implies that there exists a set N of measure 0 such that
ψ̃t(ω, x) 6= ψ̃t(ω, y) for all t ≥ 0, all x 6= y, and all ω /∈ N . Redefining ψ̃ as the identity map on
N , we ensure that ψ̃ satisfies the properties stated in Step 2.

To complete the proof of Step 3 we need two more lemmas.
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Lemma 4.19. For each T ≥ 0 and p ∈ R there exists some ĉ = ĉ(p, T ) such that

E sup
0≤u≤T

(1 + |ψ0,u(x)|)p ≤ ĉ(1 + |x|)p

for every x ∈ Rd.

Proof. The proof is very similar to that of Lemmas 4.15 and 4.17. Fix x ∈ Rd and define

Dt := ψ0,t(x), Zt :=
1

2
log(|Dt|2 + 1).

As in the proof of Lemma 4.15 Itô’s formula implies

dZt =
Dt · (M(dt, ψ0,t(x))

|Dt|2 + 1
+
DT
t b(ψ0,t(x))

|Dt|2 + 1
dt+

1

2

1

|Dt|2 + 1
tr
(
a(ψ0,t(x), ψ0,t(x))

)
dt

−
∑
i,j

Di
tD

j
t(

|Dt|2 + 1
)2aij(ψ0,t(x), ψ0,t(x)) dt.

Defining the continuous local martingale

Nt :=

∫ t

0

Ds

|Ds|2 + 1
·M(ds, ψ0,s(x)),

we get

Zt = Z0 +Nt +

∫ t

0
α(s, ω) ds,

where α is bounded by a deterministic constant c1 (uniformly in x) as in the proof of Lemma
4.15. The reader is encouraged to show this and to show that the derivative of the quadratic
variation of N is uniformly bounded by a deterministic constant c2. Hint: show (using the
Kunita-Watanabe inequality and the definition and properties of A) that there exists a constant
c3 such that |aii(y, y)| ≤ c3(1 + |y|2) for every i = 1, ..., d and y ∈ Rd. As in the proof of Lemma
4.15 we see that there exists a standard Brownian motion (on a possibly enlarged probability
space) and constants c1, c2 ≥ 0 such that, for every t ≥ 0,

sup
0≤u≤t

(
|ψ0,u(x)|2 + 1

)1/2 ≤ (|x|2 + 1
)1/2

exp{c1t+ c2 W
∗
t },

inf
0≤u≤t

(
|ψ0,u(x)|2 + 1

)1/2 ≥ (|x|2 + 1
)1/2

exp{−c1t+ c2
∗Wt}.

Now the claim follows as in the proof of Lemma 4.17.

Lemma 4.20. For t ≥ 0 and x ∈ Rd define

ζt(x) :=

{ (
1 +

∣∣ψ0,t

(
x
|x|2
)∣∣)−1

, x 6= 0

0, x = 0.

Then, for every T > 0 and p > 0 there exists some c̊ = c̊(p, T ) such that

E
(

sup
0≤u≤T

|ζu(x)− ζu(y)|p
)
≤ c̊|x− y|p

for all x, y ∈ Rd.
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Proof. Let us first assume that x, y 6= 0. Then

|ζu(x)− ζu(y)| ≤ ζu(x)ζu(y)
∣∣∣ψ0,u

( x

|x|2
)
− ψ0,u

( y

|y|2
)∣∣∣.

Applying Hölder’s inequality, we get - as in the proof of Lemma 4.18 and using Lemmas 4.19
and 4.17 -

E
(

sup
0≤u≤T

∣∣ζu(x)− ζu(y)
∣∣p) ≤ ĉ(−3p, T )2/3|x|p|y|pc̃(3p, T )1/3

∣∣∣ x|x|2 − y

|y|2
∣∣∣p

Assuming |y| ≥ |x| (without loss of generality), we obtain∣∣∣ x|x|2 − y

|y|2
∣∣∣ =

∣∣∣x|y|2 − x|x|2 + x|x|2 − |x|2y
|x|2|y|2

∣∣∣
≤ |x− y|
|y|2

+ |x|
∣∣|y|2 − |x|2∣∣
|x|2|y|2

≤ |x− y|
|x||y|

+ |x|2|y||x− y|
|x|2|y|2

= 3
|x− y|
|x||y|

and therefore

E
(

sup
0≤u≤T

∣∣ζu(x)− ζu(y)
∣∣p) ≤ 3pĉ(−3p, T )2/3c̃(3p, T )1/3|x− y|p

as claimed. The case in which x or y are 0 is similar (in fact easier).

The previous lemma together with Kolmogorov’s continuity theorem imply that the process
ζ has a continuous modification ζ̃, i.e. x 7→ ζ̃.(x) is continuous as a map from Rd to C([0,∞),Rd).
In particular, the map is continuous at x = 0 and therefore, for each T > 0,

lim
|x|→∞

inf
0≤u≤T

∣∣ψ̃u(x, ω)
∣∣ =∞, a.s.

Redefine ψ̃ as the identity on the set of measure zero on which the previous property does not
hold for every T > 0. Note that ψ̃0(x) = x almost surely and the exceptional set of measure
zero can be chosen the same for all x ∈ Rd by continuity of ψ̃0. Again, by the same kind
of redefinition, we can and will assume that ψ̃0(x) = x for every x ∈ Rd and ω ∈ Ω. Let

Rd(= Rd ∪ {∞}) be the one-point compactification of Rd and extend (temporarily) the domain

of definition of ψ̄ to [0,∞)× Rd × Ω by

ψ̃t(∞, ω) :=∞.

Then we have, for every ω ∈ Ω,

a) (t, x) 7→ ψ̃t(x) is continuous,

b) ψ̃t(., ω) : Rd → Rd is one-to-one for each t ≥ 0,

c) ψ̃t(∞, ω) =∞ for each t ≥ 0,

d) ψ̃0(x, ω) = x for all x ∈ Rd.
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Since Rd is known to be homeomorphic to the unit sphere Sd in Rd+1 and a well-known theorem
in homotopy theory says that a continuous map f : Sd → Sd which is one-to-one is automatically
onto, it follows from c) that the restriction of ψ̃ to Rd is also onto. Therefore we have finished
Step 3.

Next we show Step 4, i.e. we show that the map (s, x) 7→ ψ̃−1
s (x, ω) is continuous on

[0,∞) × Rd. Fix ω ∈ Ω, (s, x) ∈ [0,∞) × Rd and a sequence (sn, xn) which converges to

(s, x). Let yn := ψ̃−1
sn (xn, ω). By compactness of Rd any subsequence of (sn, xn) has a further

subsequence (snk , xnk) such that ynk converges to some y ∈ Rd. Hence

x← xnk = ψ̃snk (ynk , ω)→ ψ̃s(y, ω),

so ψ̃s(y, ω) = x and therefore y = ψ̃−1
s (x, ω) showing that yn → y, so (s, x) 7→ ψ̃−1

s (x, ω) is
continuous.

It remains to prove Step 5.

Define ϕs,t(x, ω) := ψ̃t(ψ̃
−1
s (x, ω), ω), s, t ≥ 0. We will show that ϕ satisfies the claim in

Theorem 4.14 thus completing the proof of the theorem. The fact that ϕ is a stochastic flow
is easy to see from the definition and the properties of ψ̃ above, so it remains to show that for
each s ≥ 0 and x ∈ Rd, the process ϕs,t(x), t ≥ s solves the sde

Xt = x+

∫ t

s
b(Xu) du+

∫ t

s
M(du,Xu), t ≥ s.

This is clear for s = 0 since ϕ0,t(x) = ψ̃t(x) and ψ̃t(x) agrees with the solution ψ0,t(x) up to a
set of measure 0. In particular, we have, for any 0 ≤ s ≤ t, and z ∈ Rd,

ϕ0,t(z) = z +

∫ t

0
b(ϕ0,u(z)) du+

∫ t

0
M(du, ϕ0,u(z)),

ϕ0,s(z) = z +

∫ s

0
b(ϕ0,u(z)) du+

∫ s

0
M(du, ϕ0,u(z)).

Subtracting these equations, we get

ϕ0,t(z) = ϕ0,s(z) +

∫ t

s
b(ϕ0,u(z)) du+

∫ t

s
M(du, ϕ0,u(z)).

Now, we would like to insert z := ϕ−1
0,s(x, ω). Then we get

ϕs,t(x) = x+

∫ t

s
b(ϕs,u(x)) du+

∫ t

s
M(du, ϕs,u(x)),

provided the following formula holds almost surely:∫ t

s
M(du, ϕ0,u(z))

∣∣∣
z=ϕ−1

0,s(x)
=

∫ t

s
M(du, ϕs,u(x)).

This formula is not obvious but true and follows from Theorem 3.3.3 in [Ku90]. Note that the
corresponding formula for the integral of b does not generate any problem. Therefore, the proof
of Theorem 4.14 is complete.
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4.3 Expansion of stochastic flows

In this section we will discuss how one can obtain an (asymptotic) upper bound for the diameter
of the set ϕ0,T (S, ω) under a stochastic flow ϕ for a bounded set S ⊂ Rd. We will assume that ϕ
is the stochastic flow generated by a stochastic differential equation as in the previous section.
In addition, we assume that b and a are bounded. We will often write ϕT instead of ϕ0,T . Here
is a method how to obtain an upper bound for ϕT (S, ω): cover the set S with a minimal number
NT,ε of cubes C1, ..., CNT,ε of side length ε > 0 with respective centers x1, ..., xNT,ε . We choose
ε = ε(T ) > 0 so small that it is unlikely that the diameter of the image of any of the cubes
under ϕ at time T is larger than 1. If none of the diameters of those cubes exceeds one, then
the diameter of ϕT (S, ω) is at most 2(maxi |ϕT (xi)| + 1). The probability that this quantity
is larger than u can then be estimated from above using a union bound and an estimate of
P(|ϕT (xi)| ≥ u) for every i (which can be obtained easily using boundedness of a and b).

We first establish an asymptotic upper bound for the linear growth rate of the solution of
a stochastic differential equation with bounded a and b. As before we assume that A and b are
Lipschitz. In fact boundedness of b can be weakened a bit in the following proposition and in
Theorem 4.24.

Proposition 4.21. Assume that ‖a(x, x)‖ ≤ A2 for some A > 0 and all x ∈ Rd and that

lim sup
|x|→∞

〈b(x),
x

|x|
〉 ≤ B

for some B ≥ 0. Then, for each compact set S ⊂ Rd and k > 0, we have

lim sup
T→∞

1

T
log sup

x∈S
P
(

sup
0≤t≤T

|ϕt(x)| ≥ kT
)
≤ − 1

2A2
(k −B)2

+.

Proof. Let S ⊂ Rd be compact and k > B (otherwise there is nothing to prove). Fix ε ∈ (0, k−B)
and let r0 > 1 be so large that

〈b(x),
x

|x|
〉+

d− 1

2|x|
A2 ≤ B + ε for all |x| ≥ r0

and that S is contained in a ball of radius r0 around the origin. Let h : R→ R be an even C∞

function such that h(y) = |y| for |y| ≥ 1, h′(y) = 0 for |y| ≤ 1/2, and |h′(y)| ≤ 1 for all y ∈ R.
Applying Itô’s formula to ρt(x) := h(|ϕt(x)|), we get

dρt(x) = dNt + f(ϕt(x)) dt,

where (interpreting an integrand of the form 0/0 as 0)

Nt :=

d∑
i=1

∫ t

0
h′(ρs(x))

ϕis(x)

ϕs(x)
M i(ds, ϕs(x)) and f ∈ C(Rd,R) satisfies

f(x) = 〈b(x),
x

|x|
〉+

1

2|x|
tr a(x, x)− 1

2|x|3
xTa(x, x)x

≤ 〈b(x),
x

|x|
〉+

d− 1

2|x|
A2 ≤ B + ε on the set{|x| ≥ r0}.
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Then, for t ≥ s ≥ 0,

〈N〉t − 〈N〉s ≤
∫ t

s

1

|ϕu(x)|2
ϕTu (x)a(ϕu(x), ϕu(x))ϕu(x) du ≤ A2(t− s).

Therefore, the continuous local martingale N can be represented (possibly on an enlarged space)
in the form Nt = AWτ(t) where W is a standard Brownian motion and τ(t) is a family of stopping
times which satisfies τ(t)− τ(s) ≤ t− s whenever 0 ≤ s ≤ t. For |x| ≤ r0 < kT we get

P
(

sup
0≤t≤T

∣∣ϕt(x)
∣∣ ≥ kT ) ≤ P

(
∃ 0 ≤ s ≤ t ≤ T : ρt(x)− ρs(x) ≥ kT − r0, inf

s≤u≤t
ρu(x) ≥ r0

)
≤ P

(
∃ 0 ≤ s ≤ t ≤ T : A(Wτ(t) −Wτ(s)) + (B + ε)(t− s) ≥ kT − r0

)
≤ P

(
max

0≤s≤1
Ws − min

0≤s≤1
Ws ≥

k −B − ε
A

√
T − r0

A
√
T

)
.

The density of the range R := max0≤s≤1Ws−min0≤s≤1Ws is known (in terms of an infinite sum),
see [F51] and from that formula one easily sees that P(R ≥ u) . exp{−u2/2} (alternatively one
can use the cruder bound P(R ≥ u) ≤ 2P

(
max0≤s≤1Ws ≥ u/2

)
. exp{−u2/8}). Since ε > 0 is

arbitrary this easily implies the statement of the proposition.

Remark 4.22. Proposition 2.8 in [S09] is a generalization of the previous proposition in which
B is allowed to be negative (in this case the formula has to be modified when k < −B).

Next, we establish an upper bound for the tails of the distribution of the diameter of a small
cube under the flow generated by the stochastic differential equation. In the following propo-
sition, we just assume the conditions of Theorem 4.14 and impose no additional boundedness
conditions.

Proposition 4.23. Let the assumptions of Theorem 4.14 be satisfied. Assume that κ > 0. For
γ > 0 and Λ := Lb + 1

2(d− 1)κ define

I(γ) :=


(γ−Λ)2

2κ if γ ≥ Λ + κd,
d(γ − Λ− 1

2κd) if Λ + 1
2κd ≤ γ ≤ Λ + κd,

0 if γ ≤ Λ + 1
2κd.

Then, for each u > 0, we have

lim sup
T→∞

1

T
sup
χT

logP
(

sup
x,y∈χT

sup
0≤t≤T

|ϕt(x)− ϕt(y)| ≥ u
)
≤ −I(γ),

where supχT means that we take the supremum over all cubes χT in Rd with side length exp{−γT}.

Proof. Fix γ > 0 and T > 0. Without loss of generality we assume that χ = χT := [0, e−γT ]d.
Define Zx(t) := ϕt(e

−γTx), x ∈ Rd. Lemma 4.17 (or Lemma 4.15) and Remark 4.16 imply, for
q ≥ 1, (

E
(

sup
0≤t≤T

|Zx(t)− Zy(t)|q
))1/q

≤ 2e−γT |x− y| exp{(Λ +
1

2
qκ)T},

i.e. the assumptions of Kolmogorov’s continuity theorem are satisfied when q > d. Hence, for
ξ ∈

(
0, q−dq

)
, we get
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P
(

sup
x,y∈χ

sup
0≤t≤T

|ϕt(x)− ϕt(y)| ≥ u
)
≤
( 2d

1− 2−ξ

)q 2qd2aξ−b

1− 2qd2aξ−b
exp{(Λ− γ +

1

2
qκ)qT}u−q.

Taking logs, dividing by T , letting T → ∞, and optimizing over q > d yields the claim (I will
provide more details in class; don’t miss it!).

Observe that the asymptotic bound in Proposition 4.21 depends on the bounds B and A
only, while the bound in Proposition 4.23 only depends on the Lipschitz constants Lb and κ of
b and A. Now we combine both propositions to obtain a bound on the linear growth rate of a
bounded set under a stochastic flow as above.

Theorem 4.24. Under the conditions of Theorem 4.14 and Proposition 4.21 we have, for any
bounded subset S ⊂ Rd, d ≥ 1,

lim sup
T→∞

( 1

T
sup
x∈S

sup
0≤t≤T

|ϕt(x)|
)
≤ K,

where

K := B +A

√
2(d− 1)

(
Λ + κ(d− 1) +

√
κ2(d− 1)2 + 2(d− 1)Λκ

)
.

If the drift b is identically 0, then Lb = B = 0 and we have

K = A(d− 1)
√
κ

√
3 + 2

√
2.

Proof. Clearly, it suffices to prove the statement for sets of the form S = [−M,M ]d, M ≥ 1.
Let N(M, r) be the minimal number of cubes of side length r > 0 which cover ∂S. Clearly,

N(M, e−γT ) ≤ 2d
(
3MeγT

)d−1
for γ > 0 and for T > 0 sufficiently large. Fix such γ and T and

let C1, C2, ..., CN(M,e−γT ) be such a cover with centers in S. For k > 0 we have (using the fact
that ϕt is a homeomorphism for each t ≥ 0)

P
(

sup
x∈S

sup
0≤t≤T

|ϕt(x)| ≥ kT
)
≤ Γ1 + Γ2,

where
Γ1 := 2d

(
3MeγT

)d−1
sup
x∈S

P
(

sup
0≤t≤T

|ϕt(x)| ≥ kT − 1
)

and
Γ2 := 2d

(
3MeγT

)d−1
max
i

P
(

sup
0≤t≤T

diamϕt(Ci) ≥ 1
)
.

Therefore, using Propositions 4.21 and 4.23 and the formula log(α + β) ≤ log 2 + log(α ∨ β),
α, β > 0, we get

ζ(γ, k) := lim sup
T→∞

1

T
logP

(
sup
x∈S

sup
0≤t≤T

|ϕt(x)| ≥ kT
)
≤ γ(d− 1) +

[(
− 1

2A2
(k −B)2

+

)
∨
(
− I(γ)

)]
= γ(d− 1)−

[( 1

2A2
(k −B)2

+

)
∧
(
I(γ)

)]
.

If d ≥ 2, then we let γ0 be the unique strictly positive solution of I(γ) = γ(d− 1). Then

γ0 = Λ + κ(d− 1) +
√

2Λκ(d− 1) + κ2(d− 1)2.
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If d = 1, then we define γ0 = Λ + κ. In any case ζ(γ, k) < 0 whenever γ > γ0 and k > k0(γ) :=
B +A

√
2γ(d− 1). Therefore, for every ε > 0, we get

∞∑
n=1

P
( 1

n
sup
x∈S

sup
0≤t≤n

|ϕt(x)| ≥ B +A
√

2γ0(d− 1) + ε
)
<∞

and the first Borel-Cantelli lemma (together with an easy interpolation argument) implies the
assertion of the theorem.

The final statement in the theorem is clear.

Remark 4.25. If the initial set S is of lower dimension than d − 1 then the bound in the
previous theorem can be sharpened (see Theorem 2.3. in [S09]).





Chapter 5

Random Dynamical Systems

5.1 Basic definitions

The basic reference for this chapter is the monograph by Ludwig Arnold [A98]. We start by
defining the concept of a metric dynamical system (MDS) with respect to the group (G,+)
where G ∈ {Z,R} and let G be the corresponding Borel σ-algebra on G. Further let (Ω,F ,P)
be a probability space.

Definition 5.1. Let θ : G× Ω→ Ω satisfy

• θ is (G ⊗ F ,F)-measurable,

• θ0(ω) = ω for all ω ∈ Ω,

• θg+h(ω) = θg(θh(ω)) for all g, h ∈ G, ω ∈ Ω.

• Pθ−1
g = P for each g ∈ G.

Then, (Ω,F ,P, θ) := (Ω,F ,P, (θg)g∈G) is called a metric dynamical system (MDS) with respect
to G.

Next we define the concept ot a random dynamical system (RDS).

Definition 5.2. Let (Ω,F ,P, (θg)g∈G) be an MDS and (E, E) a measurable (state) space. Let
T be a subset of G which contains 0 and is closed with respect to addition. Let T be the trace
σ-algebra of G on T. Then ϕ : T× E × Ω→ E is called a cocycle if

• ϕ is (T ⊗ E ⊗ F , E)-measurable,

• ϕ0(., ω) = idE for all ω ∈ Ω,

• ϕt+s(., ω) = ϕt(ϕs(., ω), θs(ω)) for all s, t ∈ T, ω ∈ Ω.

In this case (Ω,F ,P, θ, ϕ) is called (E-valued) random dynamical system.

From now on, we will always deal with one of the following two cases:

1. Discrete time: G = Z and T = G or T = N0.

2. Continuous time: G = R and T = G or T = [0,∞).

Let us start with a simple class of examples.
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Example 5.3. Let X0, X1, · · · be a stationary process defined on a probability space (Ω̃, F̃ , P̃)
taking values in a measurable space (K,K). Let (E, E) be a measurable space and let f :

E×K → E be a measurable map. For each x ∈ E we define recursively the sequence Y
(x)
n (ω̃) :=

f(Y
(x)
n−1(ω̃), Xn(ω̃)) for n ≥ 1 with initial condition Y

(x)
0 (ω̃) = x ∈ E. The sequences Y

(x)
n are not

yet a random dynamical system since there is no MDS so far. By changing the probability space

we can however find an RDS which has the same joint distribution as (Y
(x)
n , n ∈ N0, x ∈ E) as

follows.

First we extend the sequence X0, X1, · · · to a two-sided stationary sequence: we consider a
stationary sequence X̃i, i ∈ Z such that the laws of (X0, X1, · · · ) and (X̃0, X̃1, · · · ) coincide. Note
that such a sequence always exists in case the (K,K) is a Polish space with its Borel-σ algebra
(possibly on a different probability space) and that the law P of X̃i, i ∈ Z is uniquely defined by
the law of (X0, X1, · · · ) (even if K is not Polish). It is not clear to me if there exists an example
where (K,K) is not Polish and such an extension does not exist. Note that P is a probability
measure on the space (Ω,F), where Ω := KZ and F = K⊗Z. Let G := Z and (θn(ω))k := ωn+k,
n, k ∈ Z. Then (Ω,F ,P, θ) is an MDS. Next, we define X̂n(ω) := ωn, n ∈ Z (or n ∈ N0) and,

recursively, Ŷ
(x)
n (ω) := f(Ŷ

(x)
n−1(ω), X̂n(ω)) for n ≥ 1 with initial condition Ŷ

(x)
0 (ω)) = x ∈ E.

Then we define ϕn(x, ω) := Ŷ
(x)
n (ω), for x ∈ E and ω ∈ Ω. It is straightforward to check that

(Ω,F ,P, θ, ϕ) is a random dynamical system. Note that it is in general impossible to extend ϕ
to an RDS with T = Z (why?).

We will see later that a similar (but slightly more technical) procedure allows us to interpret
solutions of a stochastic differential equation which is driven by a stationary increment process
(like Brownian motion or a Lévy process) as a random dynamical system.

Definition 5.4. Let (Ω,F ,P, θ, ϕ) be an E-valued RDS with respect to G and T as above.
Define

Θt(x, ω) :=
(
ϕt(x), θt(ω)

)
, ω ∈ Ω, t ∈ T, x ∈ E.

Then, the family of maps Θt : Ω× E → Ω× E, t ∈ T is called the skew-product flow associated
to the RDS.

Remark 5.5. It is easy to see that the skew-product flow satisfies the following properties

• Θ is (jointly) measurable,

• Θ0(x, ω) = x, ω ∈ Ω, x ∈ E and

• Θt+s(x, ω) = Θt(Θs(x, ω), ω), s, t ∈ T, x ∈ E, ω ∈ Ω.

Next, we investigate the relation between a stochastic semi-flow and an RDS. Define

∆ := {(s, t) ∈ G×G : s ≤ t},

(this is similar but not identical to the notation in the previous chapter). Recall the definition of
a stochastic semi-flow (here we do not insist on continuity properties and allow a more general
state space and we do not allow exceptional sets of measure 0).

Definition 5.6. Let (Ω,F ,P) be a probability space and (E, E) a measurable space. Let G be
as above. A map φ : ∆ × E × Ω → E is called stochastic semi-flow if the following properties
hold:
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• φ is jointly measurable,

• φs,s(., ω) = idE , s ∈ G, ω ∈ Ω,

• φs,u(., ω) = φt,u(., ω) ◦ φs,t(., ω), s ≤ t ≤ u, s, t, u ∈ G, ω ∈ Ω.

The following proposition shows that any RDS generates a stochastic semi-flow.

Proposition 5.7. Let (Ω,F ,P, θ, ϕ) be an E-valued RDS with respect to G and T := G+ :=
{g ∈ G : g ≥ 0}. Define φ : ∆× E × Ω→ E by

φs,t(x, ω) := ϕt−s(x, θs(ω)), (s, t) ∈ ∆, x ∈ E, ω ∈ Ω.

Then φ is a stochastic semi-flow which enjoys the additional property

φs+h,t+h(x, ω) = φs,t(x, θh(ω)), x ∈ E, (s, t) ∈ ∆, h ∈ G, ω ∈ Ω. (5.1.1)

Proof. Straightforward.

In general, a stochastic semi-flow φ does not correspond to an RDS. However the following
holds.

Proposition 5.8. Let (Ω,F ,P, θ) be an MDS with associated group G and assume that φ :
∆×E×Ω→ E is a stochastic semi-flow which enjoys property (5.1.1). Then ϕt(x, ω) := φ0,t(ω),
t ≥ 0, x ∈ E, ω ∈ Ω is a cocycle and hence (Ω,F ,P, θ, ϕ) is an RDS with T = G+.

Proof. Straightforward.

Remark 5.9. If φ is a semi-flow in the sense that φs,t is only defined for s, t ≥ 0 (and all other
properties in the definition hold), and if φ satisfies (5.1.1) for h ≥ 0, then it is very easy to see
that the claim of Proposition 5.8 still holds.

Definition 5.10. An RDS (Ω,F ,P, θ, ϕ) is called continuous RDS if the state space (E, E) is
Polish and the map x 7→ ϕt(x, ω) is continuous for every t ≥ 0, ω ∈ Ω.

5.2 SDEs and random dynamical systems

An important class of RDS with continuous time are those generated by stochastic differential
equations. To simplify the presentation we do not consider Kunita-type equations here. We
assume that the equation is driven by an m-dimensional Brownian motion. A natural (but not
the only) way to set up a suitable MDS is the following.

Let Ω be the space of Rm-valued continuous functions defined on R which are 0 at 0. We
equip Ω with the corresponding Borel σ-field F (as in Chapter 3). Let P be two-sided m-
dimensional Wiener measure on (Ω,F) (I will explain that in class) and define the shift θ by
(θt(ω))(s) := ωt+s − ωt, s, t ∈ R. Clearly, (Ω,F ,P, θ) is a MDS. Let φ be the solution flow of
an SDE with Lipschitz coefficients (driven by m-dimensional Brownian motion) defined on the
space (Ω,F ,P, θ) with Brownian motion Wt(ω) := ωt, t ≥ 0. If we knew that φs+h,t+h(x, ω) =
φs,t(x, θh(ω)) for all h ≥ 0, ω ∈ Ω, and 0 ≤ s ≤ t, then, by Proposition 5.8 and Remark 5.9, we
get an associated RDS ϕ. Unfortunately, this equality does not necessarily hold. It is not hard
to show that for every s, h ≥ 0 the equality holds almost surely for all t ≥ s but the exceptional
sets may depend on s, h, so the question arises if one can modify the semi-flow φ in such a way
that the equality holds true for all h ≥ 0, ω ∈ Ω, and 0 ≤ s ≤ t. The answer is positive and the
procedure to obtain such a modification is called perfection technique (see [A98] for details).
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5.3 Invariant measures and random attractors

Definition 5.11. Let (Ω,F ,P, θ, ϕ) be an E-valued RDS with respect to G and T as above.
Let µ be a measure on (E × Ω, E ⊗ F) with the property µπ−1

2 = P, i.e. the second marginal of
µ equals the given measure P on Ω. Then µ is called an invariant measure of the RDS if µ is
invariant under the associated skew-product Θ, i.e.

µΘ−1
t = µ for all t ≥ 0.

From now on assume that the state space (E, d) is a Polish space and that (Ω,F ,P, θ, ϕ) is
a continuous RDS.

On the space K of non-empty and compact subsets of E we define the Hausdorff metric dK
as follows

dK(K1,K2) := max
{

sup
x∈K1

inf
y∈K2

d(x, y), sup
y∈K2

inf
x∈K1

d(x, y)
}
.

It is not hard to check that (K, dK) is a metric space (this is even true if (E, d) is an arbitrary
metric space). Further, (K, dK) is complete and separable and hence Polish (this property uses
the fact that (E, d) is Polish).

Definition 5.12. A random compact set A(ω) (i.e. A is a K-valued random variable) is called
a pullback attractor or just attractor or random attractor of the continuous RDS (Ω,F ,P, θ, ϕ) if

i) A is strictly invariant, i.e. ϕt(A(ω), ω) = A(θt(ω)) for all t ≥ 0, ω ∈ Ω.

ii) A attracts all compact sets in the pullback sense, i.e. for each K ∈ K we have

lim
t→∞

sup
x∈K

inf
y∈A(ω)

d(ϕt(x, θ−t(ω)), y) = 0 almost surely.

We call A a weak attractor if A is as above but with “almost surely” in ii) replaced by “in
probability”. We call A a (pullback) point attractor if A is as above but K is replaced by the
family of all singletons in E. Weak point attractors are defined analogously.

Remark 5.13. One can also find slightly different definitions in the literature. Some authors
(e.g. [CF94]) require that in (ii) “compact” is replaced by “bounded” (which is a stronger
condition) or that certain classes of random sets are attracted by A.

Note that a pullback attractor is automatically a pullback point attractor (and the same
for “weak” instead of “pullback”). There are examples for which the converse is not true. Not
every continuous RDS admits a pullback attractor and it is of interest to find conditions which
guarantee that a particular RDS admits a pullback or weak (point) attractor. If an RDS has
an attractor (of whatever kind) then it may or may not be true that A(ω) is almost surely a
singleton. This phenomenon is often called synchronization. A simple but interesting example
is the SDE

dXt =
(
−X3

t +Xt

)
dt+ σdWt,

where W is one-dimensional Brownian motion and σ ≥ 0. The equation generates an R-valued
RDS (in spite of the fact that the drift is not Lipschitz) which admits a pullback attractor A(ω)
for each value of σ ≥ 0. In the deterministic case, we have A(ω) = [−1, 1] (no synchronization)
while A(ω) is a (random) singleton in case σ > 0, i.e. we have synchronization by noise. Point
attractors need not be unique but weak attractors (and hence pullback attractors) are (maybe
I will show this in class).
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