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Chapter 1

Introduction

Here are some basic examples of partial differential equations (PDEs).

• Heat equation:
∂u

∂t
(t, x) = c∆u(t, x), x ∈ D ⊆ Rd, t ≥ 0,

• Wave equation:
∂2u

∂t2
(t, x) = c∆u(t, x), x ∈ D ⊆ Rd, t ≥ 0,

• Reaction diffusion equation:

∂u

∂t
(t, x) = c∆u(t, x)− u3(t, x),

where c > 0 and each equation is equipped with suitable initial and boundary conditions.

One way of obtaining a stochastic partial differential equation is to add noise to the right
hand side of the equation (which may or may not depend on the solution u). In many cases (such
as for the heat equation and the reaction diffusion equation) such equations can be represented
in the following evolutionary form:

dXt = A(t,Xt) dt+B(t,Xt) dWt, X0 = x, (1.0.1)

where X takes values in a suitable infinite dimensional Hilbert space H and where W is a U -
valued Wiener process where U is another Hilbert space and where B takes values in the space
L(U,H) of linear operators from U to H. For this to make sense we need to

• define the concept of a U -valued Wiener process when U is infinite dimensional,

• introduce stochastic integrals in infinite dimensions,

• clarify what we mean by a solution of (1.0.1),

• find conditions on A and B which guarantee existence and uniqueness of solutions of
(1.0.1).

There are three different approaches to SPDEs in the mathematical literature, namely:
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2 SPDEs

• the martingale measures approach, see [W86],

• the semigroup approach, see [DZ92],

• the variational approach, see [PR07] or [LR15].

Our emphasis in this lecture will be on the variational approach and we will largely follow
the corresponding references above but we will also discuss the two other approaches. In order
to obtain some idea of the semigroup approach, consider the following SDE in finite dimensions:

dXt = A ·Xt dt+ F (Xt) dt+B(Xt) dWt, X0 = x ∈ Rd,

where A is a d× d-matrix, W is an m-dimensional Wiener process and B is a map from Rd to
Rd×m. Under suitable assumptions (which we discussed in WT3), this SDE has a unique strong
solution and it is easy to see that it can be represented in the form

Xt = eAtx+

∫ t

0
eA(t−s)F (Xs) ds+

∫ t

0
eA(t−s)B(Xs) dWs

which corresponds to the variation-of-constants formula known from the theory of ODEs. Such
a formula also holds in the infinite dimensional case (under suitable assumptions) and the cor-
responding solution X is then called a mild solution. It turns out that the three approaches are
not equivalent in the sense that they cannot be applied to exactly the same family of SPDEs.
For example, to apply the semigroup approach, one needs a dominant linear part A which is not
required in the variational approach.



Chapter 2

The Bochner integral

This chapter follows [LR15, Appendix A] closely (see also [PR07, Appendix A]).

2.1 Definition of the Bochner integral

In the whole chapter (X, ‖.‖) is a Banach space and (Ω,F , µ) is a finite measure space. We want
to define the integral

∫
f dµ for a sufficiently large class of functions f : Ω→ X.

As usual, we start by defining the integral for simple functions. Set

E :=
{
f : Ω→ X

∣∣∣ f =
n∑
k=1

xk1Ak , xk ∈ X, Ak ∈ F , 1 ≤ k ≤ n, n ∈ N
}
,

and define a semi-norm ‖.‖E on the linear space E by

‖f‖E :=

∫
‖f‖ dµ, f ∈ E .

After taking equivalence classes with respect to ‖.‖E (which we will do from now on without
changing notation), (E , ‖.‖E) becomes a normed linear space. For f ∈ E with representation
f =

∑n
k=1 xk1Ak , we define ∫

f dµ :=

n∑
k=1

xkµ(Ak).

It is not hard to see that this definition does not depend on the particular choice of the rep-
resentation and that the map int : (E , ‖.‖E) → (X, ‖.‖) which maps f to

∫
f dµ is linear. The

map int is also Lipschitz (with constant 1), since

‖
∫
f dµ‖ ≤

∫
‖f‖ dµ = ‖f‖E ,

and therefore uniformly continuous and can hence be uniquely extended to a continuous linear
map from the completion Ē of E with respect to ‖.‖E . Just like in the case of stochastic interals
in WT3 it is desirable to have a more concrete representation of Ē .

Definition 2.1. A function f : Ω→ X is called strongly measurable if it is F−B(X)-measurable
and f(Ω) is separable.
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4 SPDEs

We will provide an example of a measurable function which is not strongly measurable in
class. Don’t miss it!

Definition 2.2. Let 1 ≤ p <∞. Then we define

Lp(Ω,F , µ;X) :=
{
f : Ω→ X

∣∣∣ f is strongly measurable and

∫
‖f‖p dµ <∞

}
and the semi-norm

‖f‖Lp :=
(∫
‖f‖p dµ

)1/p
, f ∈ Lp(Ω,F , µ;X).

The corresponding space of equivalence classes is denoted by Lp(Ω,F , µ;X).

Theorem 2.3. L1(Ω,F , µ;X) = Ē.

The following proposition is a kind of replacement for the monotone (or dominated) con-
vergence theorem (which do not make sense for X-valued functions).

Proposition 2.4. For each f ∈ L1(Ω,F , µ;X) there exists a sequence of fn ∈ E such that
‖fn(ω)− f(ω)‖ ↓ 0 for all ω ∈ Ω as n→∞.

The result is an immediate consequence of the following lemma (see [DZ92, Lemma 1.1]).

Lemma 2.5. Let (E, ρ) be a separable metric space and X an E-valued random variable on
(Ω,F ,P). There exists a sequence of random variables Xn taking only a finite number of values
each such that ρ(Xn(ω), X(ω)) ↓ 0 for every ω ∈ Ω.

Proof. Let E0 = {e1, e2, ...} be a countable dense set in E. For n ∈ N define

ρn(ω) = min{ρ(X(ω), ek), k = 1, ..., n}
kn(ω) = min{k ≤ n : ρn(ω) = ρ(X(ω), ek)}
Xn(ω) = ekn(ω).

Then each Xn is a random variable with values in the finite set {e1, ..., en} and ρ(Xn(ω), X(ω)) ↓
0 for every ω ∈ Ω.

2.2 Properties of the Bochner integral

We first state Bochner’s inequality.

Proposition 2.6. Let f ∈ L1(Ω,F , µ;X). Then∥∥∥∫ f dµ
∥∥∥ ≤ ∫ ‖f‖ dµ.

Proof. The claim holds for each f ∈ E and extends to Ē by continuity of the extension int of
int.

Proposition 2.7. Let f ∈ L1(Ω,F , µ;X). Then∫
L ◦ f dµ = L

(∫
f dµ

)
for every L ∈ L(X,Y ), where Y is another Banach space.



Chapter 3

Hilbert space valued Wiener
processes

3.1 Some background in functional analysis

Most of this section is taken from [PR07, Appendix B] (or [LR15, Appendix B]) and [DZ92,
Appendix C]. Proofs or at least references to proofs of the propositions below can be found
there.

Let (U, ‖.‖U ) and (V, ‖.‖V ) be real Banach spaces. As usual, L(U, V ) denotes the set of
all continuous (or bounded) linear operators from U to V and we often write L(U) instead of
L(U,U) when U = V . U∗ := L(U,R) is called the dual space of U . L(U, V ) is itself a Banach
space with respect to the usual addition and multiplication by scalars and the norm

‖f‖U,V := sup
u∈U :‖u‖U=1

‖f(u)‖V .

We point out that L(U, V ) is generally not separable even if U and V are. If, for example, U = l2

is the separable Hilbert space of square summable sequences, then L(U) is not separable (nor
is it a Hilbert space). Sometimes we write ‖.‖U∗ instead of ‖.‖U,R. We encourage the reader to
review the important Hahn-Banach theorem on the extension of bounded linear functionals. We
will use it on several occasions.

Let us now consider the special case in which (U, 〈., .〉U ) and (V, 〈., .〉V ) are real separable
Hilbert spaces.

Definition 3.1. T ∈ L(U, V ) is called a nuclear operator if there exist sequences (aj)j∈N in V
and (bj)j∈N in U such that

Tx =
∞∑
j=1

aj〈bj , x〉U for all x ∈ U

and
∞∑
j=1

‖aj‖V ‖bj‖U <∞.

The space of all nuclear operators from U to H is denoted by L1(U, V ). We write L1(U) instead
of L1(U,U) in case U = V .
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6 SPDEs

Proposition 3.2. The space L1(U, V ) endowed with the norm

‖T‖L1(U,V ) := inf
{∑
j∈N
‖aj‖V ‖bj‖U

∣∣∣Tx =
∞∑
j=1

aj〈bj , x〉U , x ∈ U
}

is a Banach space. Further, ‖T‖U,V ≤ ‖T‖L1(U,V ).

NB: The last claim in the previous proposition is very easy to show! Try it!

Definition 3.3. Let T ∈ L1(U) and let (ek) be an ONB of U . Then trT :=
∑

k〈Tek, ek〉 is
called the trace of T . T ∈ L1(U) is called trace class (operator) in case T is nonnegative definite
(or positive semi-definite), [i.e. 〈Tu, v〉 = 〈u, Tv〉 and 〈Tu, u〉 ≥ 0 for every u, v ∈ U ].

Proposition 3.4. If T ∈ L1(U), then trT is a well-defined real number (the sum converges
absolutely) which does not depend on the choice of the ONB (ek).

Proof. [DZ92, Proposition C.1].

Proposition 3.5. A non-negative definite operator T ∈ L(U) is nuclear iff there exists an ONB
(ek) of U such that ∑

k

〈Tek, ek〉 <∞.

In this case trT = ‖T‖L1(U,V ).

Proof. [DZ92, Proposition C.3].

Definition 3.6. T ∈ L(U, V ) is called a Hilbert-Schmidt operator if∑
j

‖Tej‖2V <∞, (3.1.1)

where (ej) is an ONB of U . The space of all Hilbert-Schmidt operators from U to V is denoted
by L2(U, V ).

Proposition 3.7. The number ‖T‖L2(U,V ) :=
(∑

j ‖Tej‖2V
)1/2

< ∞ does not depend on the
choice of the ONB. Further, L2(U, V ) equipped with this norm is a separable Hilbert space.

Proposition 3.8. We have

L1(U, V ) ⊂ L2(U, V ) ⊂ K(U, V ),

where K(U, V ) denotes the space of all compact linear operators, i.e. the space of all T ∈ L(U, V )
such that the closure of the image of the unit ball in U under the map T is a compact subset of
V .

Remark 3.9. If v ∈ U , then the map u 7→ 〈v, u〉, u ∈ U defines a linear continuous map from U
to R, i.e. an element in U∗. The famous Riesz representation theorem states that the converse
is also true: if v̄ ∈ U∗, then there exists a unique v ∈ U such that v̄(u) = 〈v, u〉 for every u ∈ U .
Clearly, ‖v̄‖U∗ = ‖v‖U . In particular, separability of U implies separability of U∗ (the same
statement does not hold true for Banach spaces).
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3.2 Gaussian measures on Hilbert spaces

In this section we will introduce Gaussian measures on Hilbert spaces (for the more general case
of Gaussian measures on Banach spaces the reader is referred to [B98]). Until further notice,
(U, 〈., .〉) will be a real separable Hilbert space and we will denote its Borel σ-algebra (with
respect to the topology induced by the norm ‖.‖ associated to the inner product 〈., .〉) by B(U).

Definition 3.10. A probability measure µ on (U,B(U)) is called Gaussian if for all v ∈ U the
(bounded, linear) mapping u 7→ 〈u, v〉 from (U,B(U)) to (R,B(R)) has a Gaussian law.

Remark 3.11. If µ is Gaussian, then for each m ∈ N and v1, ..., vm ∈ U , the image µ(v1,...,vm)

of µ under the map u 7→ (〈u, v1〉, ..., 〈u, vm〉) is Gaussian. Recall that a probability measure on
Rm is Gaussian iff the image under every linear combination of the coordinates is a Gaussian
measure on R, but for λ1, ..., λm ∈ R we have λ1〈u, v1〉+ ...+λm〈u, vm〉 = 〈u, λ1v1 + ...+λmvm〉
which has a Gaussian law by definition.

Theorem 3.12. A probability measure µ on (U,B(U)) is Gaussian iff there exists some m ∈ U
and some trace-class Q ∈ L(U) such that

µ̂(u) :=

∫
U

ei〈u,v〉 µ(dv) = ei〈m,u〉− 1
2
〈Qu,u〉, u ∈ U. (3.2.1)

In this case we write N (m,Q) instead of µ. m is called mean of µ and Q is called covariance
(operator) of µ. The Gaussian measure µ determines m and Q uniquely and vice versa.

Further, for all h, g ∈ U , we have

(i)
∫
U 〈x, h〉µ(dx) = 〈m,h〉,

(ii)
∫
U

(
〈x, h〉 − 〈m,h〉

)(
〈x, g〉 − 〈m, g〉

)
µ(dx) = 〈Qg, h〉,

(iii)
∫
U ‖x−m‖

2 µ(dx) = trQ.

Proof. Let us first show “⇐”. Assume that µ satisfies (3.2.1) and let v ∈ U . We have to show
that the image µ(v) of µ under the map u 7→ 〈u, v〉 is Gaussian (on R). For t ∈ R we have∫

R
eitλ dµ(v)(λ) =

∫
U

eit〈v,u〉 dµ(u) =

∫
U

ei〈tv,u〉 dµ(u) = eit〈m,v〉− 1
2
t2〈Qv,v〉,

so µ(v) = N (〈m, v〉, 〈Qv, v〉) .

The proof of the converse statement “⇒” is more complicated (see [LR15, p10ff], or [PR07,
p6ff], or [DZ92, p53ff]).

Property (i) is an immediate consequence of the fact that µ(h) has mean 〈m,h〉 and (ii) with
g = h is an immediate consequence of the fact that µ(g) has variance 〈Qg, g〉. For the general
case, we use the equality ab = 1

4

(
(a+ b)2 − (a− b)2

)
for a, b ∈ R and obtain that the left hand

side of the equality (ii) equals

1

4

(
〈Q(g + h), g + h〉 −

(
〈Q(g − h), g − h〉

)
= 〈Qg, h〉

using the fact that Q is symmetric.



8 SPDEs

Let us show (iii): let (ei) be an ONB of U and observe that for any x ∈ U , we have (using
Parseval’s identity):

‖x−m‖2 = ‖
∑
i

〈x−m, ei〉ei‖2 =
∑
i

|〈x−m, ei〉|2 =
∑
i

|〈x, ei〉 − 〈m, ei〉|2.

Then, by (ii),

trQ =
∑
i

〈Qei, ei〉 =
∑
i

∫
U

(
〈x, ei〉 − 〈m, ei〉

)2
dµ(x) =

∫
U
‖x−m‖2 dµ(x),

so property (iii) follows.

It remains to prove the uniqueness claims.

First assume that µ = N (m,Q) = N (m̄, Q̄). Then, for v ∈ U , µ(v) = N (〈m, v〉, 〈Qv, v〉) =
N (〈m̄, v〉, 〈Q̄v, v〉), so 〈m, v〉 = 〈m̄, v〉 and 〈Qv, v〉 = 〈Q̄v, v〉 for all v ∈ U , so m = m̄. To see
that this also implies Q = Q̄ note that, by (ii), we see that 〈Qu, v〉 only depends on m and µ
but not explicitly on Q, and therefore equals 〈Q̄u, v〉 for all u, v ∈ U . Hence, 〈(Q− Q̄)u, v〉 = 0
for all u, v ∈ U . Letting v := (Q− Q̄)u, we get ‖(Q− Q̄)u‖2 = 0 for all u ∈ U , so Q = Q̄.

Finally, assume that µ = N (m,Q) and µ̄ = N (m,Q). Then µ(v) = µ̄(v) since they have the
same characteristic function. This implies µ = µ̄, but why??? We will provide the answer in
class.

At this point it is not yet clear if for any m ∈ U and trace class Q ∈ L(U) there exists a
Gaussian measure with mean m and covariance Q. The positive answer to this question will be
given in the next section.

Definition 3.13. A U -valued random variable X on (Ω,F ,P) is called Gaussian (with mean
m and covariance Q) if its law is a Gaussian measure (with mean m and covariance Q).

Remark 3.14. Theorem 3.12 shows that if X is Gaussian with mean m and covariance Q, then

(i) E〈X,h〉 = 〈m,h〉,

(ii) cov
(
〈X,h〉, 〈X, g〉

)
= 〈Qg, h〉,

(iii) E‖X −m‖2 = trQ.

3.3 Representation of Gaussian random variables

The following theorem shows in particular, that for every m ∈ U and trace class Q ∈ L(U) there
exists a Gaussian random variable (and hence a Gaussian measure) with mean m and covariance
Q.

Theorem 3.15. Let m ∈ U and Q ∈ L(U) trace class. Let (ek) be an ONB of eigenvectors of
Q with corresponding eigenvalues λ1 ≥ λ2 ≥ .... A U -valued random variable X on (Ω,F ,P)
has law N (m,Q) iff X = m +

∑
k∈K
√
λkβkek a.s., where K = {k : λk > 0} and βk, k ∈ K are

independent N (0, 1) variables. The series converges in L2(Ω,F ,P;U).
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Proof. “⇒”: Assume that X has law N (m,Q). Then, for each ω ∈ Ω, we have X(ω) =∑
k〈X(ω), ek〉ek. Define

βk(ω) :=

{
〈X(ω),ek〉−〈m,ek〉√

λk
k ∈ K

0 k /∈ K.

Then
X(ω) = m+

∑
k

〈X(ω), ek〉ek −
∑
k

〈m, ek〉ek = m+
∑
k

√
λkβk(ω)ek.

Clearly, βk has law N (0, 1) for each k ∈ K. In order to see that they are independent, it suffices
to show that they are jointly Gaussian and uncorrelated. The first claim is easy to show (see
Remark 3.11): just take some finite linear combination of the (βk) and show that it has a normal
law. Then compute the covariance Eβiβj and show that it equals δij in case i, j ∈ K. We will
do this in class.

It remains to show that the series converges in L2(Ω,F ,P;U). There is nothing to prove
when K is a finite set, so we can and will assume that K = N. Since the space L2(Ω,F ,P;U) is
complete it suffices to show that the series is Cauchy. Indeed, for n ≥ m we have

E
(∥∥∥ n∑

k=m

√
λkβkek

∥∥∥2)
=

n∑
k=m

λkE
(
|βk|2

)
=

n∑
k=m

λk.

Since the sum of the λk equals the trace of Q which is finite, the series is Cauchy.

“⇐”: Define X(ω) := m +
∑

k∈K
√
λkβk(ω)ek. We showed above that the series converges

in L2(Ω,F ,P;U). We check that X has law N (m,Q). If K is a finite set, then for u ∈ U , we
have

〈X(ω), u〉 = 〈m,u〉+
∑
k∈K

√
λkβk(ω)〈ek, u〉,

which is normally distributed with mean 〈m,u〉 and variance
∑

k∈K λk〈u, ek〉2. If K is an infinite
set, then we can and will again assume that K = N. Let Xn := m +

∑n
k=1

√
λkβkek. Then

〈Xn, u〉 is normally distributed with mean 〈m,u〉 and variance
∑n

k=1 λk〈u, ek〉2 and

E
(∣∣〈Xn, u〉 − 〈X,u〉

∣∣2) ≤ ‖u‖2E(‖Xn −X‖2
)

which converges to 0 as n → ∞. Since L2 limits of Gaussian random variables are Gaussian it
follows that 〈X,u〉 is normally distributed with mean 〈m,u〉 and variance

∑
k∈K λk〈u, ek〉2 no

matter if K is finite or not. Now

〈Qu, u〉 = 〈Q
∑
j

〈u, ej〉ej ,
∑
k

〈u, ek〉ek〉 =
∑
j

〈u, ej〉2λj ,

so the law of X equals N (m,Q) by Theorem 3.12.

3.4 Infinite dimensional Wiener processes

Definition 3.16. Let Q ∈ L(U) be trace class and let T > 0. A U -valued stochastic process
W (t), t ∈ [0, T ] on a probability space (Ω,F ,P) is called a Q-Wiener process if:

• W (0, ω) = 0 for all ω ∈ Ω,
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• W has a.s. continuous trajectories,

• W has independent increments,

• for every 0 ≤ s ≤ t ≤ T the law of W (t)−W (s) is N (0, (t− s)Q).

Theorem 3.17. Let (ek) be an ONB of U consisting of eigenvectors of the trace class operator
Q with corresponding eigenvalues λk. Then a U -valued stochastic process W (t), t ∈ [0, T ] on
(Ω,F ,P) is a Q-Wiener process iff

W (t) =
∑
k

√
λkβk(t)ek, t ∈ [0, T ],

where βk, k ∈ K := {k : λk > 0} are independent real-valued standard Wiener processes on
(Ω,F ,P). The series converges in L2

(
Ω,F ,P;C([0, T ], U)

)
.

Proof. “⇒”: Let W be a Q-Wiener process. For fixed t ∈ [0, T ], W (t) has law N (0, tQ) and
Theorem 3.15 shows that W (t) =

∑
k

√
λkβk(t)ek, where

βk(t) :=

{
〈W (t),ek〉√

λk
λk > 0

0 otherwise.

Clearly, βk(t) has law N (0, t) for each t ∈ [0, T ] and k ∈ K := {k : λk > 0}. We need to check
that βk is a 1-dimensional Wiener process for each k ∈ K and that the βk are independent. This
is not hard and we will do this in class.

“⇐”: Let W (t) :=
∑

k

√
λkβk(t)ek, t ∈ [0, T ]. The series converges in L2(Ω,F ,P;U) for

each fixed t ∈ [0, T ]. Further, W (0) = 0 almost surely, and, by Theorem 3.15, W (t) has law
N (0, tQ) and, moreover, W (t) −W (s) has law N (0, (t − s)Q) whenever 0 ≤ s ≤ t ≤ T . The
fact that W has independent increments is easy to see (we will do that in class). It remains
to show that the series converges in L2

(
Ω,F ,P);C([0, T ], U)

)
(and hence W has almost surely

continuous trajectories). This is clear in case K is finite, so we assume that K = N. Set

WN (t, ω) :=
N∑
k=1

√
λkβk(t)ek, t ∈ [0, T ].

Then t 7→WN (t, ω) is almost surely continuous and for N ≥M we have

E sup
t∈[0,T ]

(
‖WN (t)−WM (t)‖2

)
= E

(
sup
t∈[0,T ]

N∑
k=M+1

λkβ
2
k(t)

)
≤

N∑
k=M+1

λkE
(

sup
t∈[0,T ]

β2
k(t)

)
= c

N∑
k=M+1

λk,

where c := E
(

supt∈[0,T ] β
2
1(t)

)
, so the sequence is Cauchy. The claim follows since L2

(
Ω,F ,P;C([0, T ], U)

)
is complete.

Let us recall the following definition.

Definition 3.18. Fix T > 0. A filtration F = (Ft)t∈[0,T ] on a probability space (Ω,F ,P) is
called normal (or satisfies the usual conditions) if
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• F0 contains all A ∈ F such that P(A) = 0 and

• Ft = F+
t :=

⋂
s>tFs for all t ∈ [0, T ).

Definition 3.19. A Q-Wiener process W (t), t ∈ [0, T ] on (Ω,F ,F,P) is called a Q-Wiener
process with respect to F if

• W is F-adapted and

• W (t)−W (s) is independent of Fs for all 0 ≤ s ≤ t ≤ T .

Remark 3.20. Let W be a Q-Wiener process on (Ω,F ,P). Then it is a Q-Wiener process with
respect to some normal filtration F. One can choose the smallest normal filtration F containing
the filtration which is generated by W . It is then clear by construction that W is F-adapted
and it is not hard to see that the independence property in the previous definition also holds
(see e.g. [PR07, Proposition 2.1.13.]).





Chapter 4

Stochastic integrals

4.1 Conditional expectation and martingales in Banach spaces

Most of this section is taken from Section 2.2 of [LR15]. In this section we assume that (E, ‖.‖)
is a real separable Banach space. We start with a proposition stating (in particular) that the
Borel-σ-algebra (with respect to the norm topology) B(E) coincides with the Borel-σ-algebra of
the weak topology on E.

Proposition 4.1. (i) There exists a countable set E∗0 ⊂ E∗ such that ‖ϕ‖E∗ = 1 for all
ϕ ∈ E∗0 and ‖x‖ = supϕ∈E∗0 |ϕ(x)| = supϕ∈E∗0 ϕ(x) for all x ∈ E.

(ii) For every set E∗0 as in (i) we have B(E) = σ(E∗) = σ(E∗0).

Proof. Let E0 = {z1, z2, ...} be countable and dense in E. For each n there exists some ϕn ∈ E∗
such that ‖ϕn‖E∗ = 1 and ϕn(zn) = ‖zn‖ (by Hahn-Banach). Define E∗0 := {ϕ1, ϕ2, ...}. Fix
x ∈ E and let zn1 , zn2 , ... be a subsequence of z1, z2, ... such that ‖znk − x‖ → 0. Then

‖znk‖ − ϕnk(x) = ϕnk(znk − x) ≤ ‖ϕnk‖E∗‖znk − x‖ = ‖znk − x‖ → 0,

so lim infk→∞ ϕnk(x) ≥ ‖x‖. Since ‖ϕnk‖E∗ = 1 (i) follows.

Let us show (ii). Obviously, σ(E∗0) ⊆ σ(E∗) ⊆ B(E), since every continuous map is measur-
able. By (i) we have, for each x ∈ E,

‖x‖ = sup
ϕ∈E∗0

|ϕ(x)|.

Therefore, for each a ∈ E and r > 0, we have

B(a, r) := {y : ‖y − a‖ ≤ r} =
⋂
ϕ∈E∗0

{y : |ϕ(y − a)| ≤ r},

so B(a, r) ∈ σ(E∗0). Since the family of closed balls generates B(E) the proof is complete.

We continue with the definition of a conditional expectation.

13



14 SPDEs

Theorem 4.2. Let X be a Bochner-integrable E-valued random variable on (Ω,F ,P) and let
G be a sub-σ-algebra of F . Then there exists a unique (up to sets of P-measure 0) Bochner-
integrable E-valued random variable Z on (Ω,F ,P) which is G-measurable such that∫

A
X dP =

∫
A
Z dP, for all A ∈ G.

Z is called conditional expectation of X. We write E(X|G) instead of Z.

Further, we have ‖E(X|G)‖ ≤ E(‖X‖|G).

Proof. We begin with the existence proof of Z in case X ∈ E . Then X has a representation
X =

∑n
k=1 xk1Ak with disjoint sets A1, ..., An ∈ F . Define

Z :=
n∑
k=1

xkE(1Ak |G).

Then Z is G-measurable and for A ∈ G we have∫
A
XdP =

n∑
k=1

xkP(Ak ∩A) and

∫
A
ZdP =

n∑
k=1

xk

∫
A
E(1Ak |G) dP =

n∑
k=1

xkP(Ak ∩A),

so Z = E(X|G). Further,

‖Z‖ ≤
n∑
k=1

‖xk‖E(1Ak |G) = E
( n∑
k=1

‖xk‖1Ak
∣∣∣G) = E

(
‖X‖

∣∣G).
For the general case and the uniqueness proof the reader is referred to [PR07, Proposition 2.2.1].
The uniqueness proof is slightly different from the usual one due to the lack of an order relation
on E. The existence proof uses Proposition 2.4.

Proposition 4.3. If X is E-valued Bochner-integrable on (Ω,F ,P), G is a sub-σ-algebra of F
and Y : Ω→ E is some map, then Y = E(X|G) iff l(Y ) = E(l(X)|G) for every l ∈ E∗.

Proof. We first show “⇒”. Assume that Y = E(X|G) and l ∈ E∗. Then l(Y ) is G-measurable
since it is the composition of measurable maps. Further, l(Y ) is integrable since |l(Y )| ≤
‖l‖E∗‖Y ‖ and Y is Bochner-integrable. Fix A ∈ G. We show that

∫
A l(Y ) dP =

∫
A l(X) dP.

Since this is clear when P(A) = 0 we now assume that P(A) > 0 and define Q(B) := P(B|A),
B ∈ F . Since Y = E(X|G), we have

∫
Y dQ = 1

P(A)

∫
A Y dP = 1

P(A)

∫
AX dP =

∫
X dQ.

Proposition 2.7 implies∫
A
l(Y ) dP = P(A)

∫
l(Y ) dQ = P(A)l

(∫
Y dQ

)
= l
(
P(A)

∫
X dQ

)
=

∫
A
l(X) dP,

so l(Y ) = E(l(X)|G).

Now we show “⇐”. Let Ȳ := E(X|G) (Ȳ is well-defined and Bochner-integrable since X is
Bochner-integrable). The previous step shows that for each l ∈ E∗ we have

l(Ȳ ) = E(l(X)|G) = l(Y ), a.s..

Define E∗0 as in Proposition 4.1. Since E∗0 is countable, there exists a set N ∈ F of measure 0
such that l(Ȳ (ω)) = l(Y (ω)) for all l ∈ E∗0 and all ω /∈ N . Hence Proposition 4.1 (i) implies
Y (ω) = Ȳ (ω) for all ω /∈ N . Further, arguing like in the remark below, we see that Y is
G-measurable and the proof is complete.
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Remark 4.4. If X : Ω → E is some map, then the reader may wonder whether or not the
assumption that l(X) is integrable for every l ∈ E∗ already implies that X is Bochner-integrable.
Well, measurability of X is easy since B(E) is generated by the family {l−1(A); l ∈ E∗, A ∈
B(R)}, but ‖X‖ is not necessarily integrable. As an example take the separable Hilbert space
E = l2 of square summable sequences of real numbers (with the standard inner product). Let X
take the value (0, ..., 0, 2i/i, 0, ...) with probability 2−i, i = 1, 2, .... Clearly, ‖X‖ is not integrable.
Now consider any l ∈ E∗. According to the Riesz representation theorem, we can identify l with
an element in U . I claim that E|l(X)| <∞. We have

E
∣∣l(X)

∣∣ = E
∣∣〈l,X〉∣∣ ≤ E

∞∑
i=1

(∣∣li∣∣∣∣Xi

∣∣) =

∞∑
i=1

∣∣li∣∣2−i 2i
i
≤ ‖l‖a,

where a denotes the norm of the vector (1, 1/2, 1/3, ...) (which is finite).

In the following, we will always assume that (Ω,F ,F,P) is a normal FPS.

Definition 4.5. An E-valued process M(t), t ≥ 0 on (Ω,F ,F,P) is an F-martingale if

• M is F-adapted,

• E‖M(t)‖ <∞ for all t ≥ 0,

• E(M(t)|Fs) = M(s) almost surely whenever 0 ≤ s ≤ t.

The following proposition is a simple consequence of Proposition 4.3.

Proposition 4.6. If M satisfies conditions (i) and (ii) of the previous definition, then M is an
F-martingale iff l(M) is an F-martingale for every l ∈ E∗.

Proposition 4.7. If M is an F-martingale, p ∈ [1,∞) and E‖M(t)‖p < ∞ for all t ≥ 0, then
‖M(t)‖p, t ≥ 0 is an F-submartingale.

Proof. Adaptedness and integrability is clear. First we show the submartingale property for
p = 1. Define the countable set E∗0 as in the proof of Proposition 4.1. and let t > s ≥ 0. Then

E
(
‖M(t)‖

∣∣Fs) ≥ sup
ϕ∈E∗0

E
(
ϕ(M(t))|Fs

)
= sup

ϕ∈E∗0
ϕ
(
E(M(t)|Fs)

)
= sup

ϕ∈E∗0
ϕ(M(s)) = ‖M(s)‖.

This proves the claim for p = 1. The case p > 1 follows using Jensen’s inequality.

Theorem 4.8. (Maximal inequality) If M is a right-continuous F-martingale, then, for p > 1
and T ∈ (0,∞)(

E
(

sup
t∈[0,T ]

‖M(t)‖p
))1/p

≤ p

p− 1
sup
t∈[0,T ]

(
E
(
‖M(t)‖p

))1/p
=

p

p− 1

(
E
(
‖M(T )‖p

))1/p
.

Proof. This is an easy consequence of the previous proposition and Doob’s maximal inequality
for real-valued non-negative submartingales.

Now we fix T > 0 and denote by M2
T (E) the space of all E-valued continuous square

integrable martingales.
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Proposition 4.9. The space M2
T (E) equipped with the norm

‖M‖M2
T

:= sup
t∈[0,T ]

(
E
(
‖M(t)‖2

))1/2
=
(
E
(
‖M(T )‖2

))1/2
≤
(
E
(

sup
t∈[0,T ]

‖M(t)‖2
))1/2

≤ 2
(
E
(
‖M(T )‖2

))1/2

is a Banach space.

Proof. [LR15, p26]

Proposition 4.10. Let T > 0 and let W (t), t ∈ [0, T ] be a U -valued Q-Wiener process with
respect to F. Then W ∈M2

T (U).

Proof. Clearly, W is adapted and has continuous paths. Further, E‖W (t)‖2U = t · trQ <∞, so
W is square integrable. It remains to check the martingale property which is easy (we will do
this in class).

4.2 Definition of the stochastic integral

Fix T > 0, real separable Hilbert spaces (H, 〈., .〉H) and (U, 〈., .〉U ), a trace class operator
Q ∈ L(U), a normal filtered probability space (Ω,F ,F,P) and a Q-Wiener process W with re-
spect to F. Define ΩT := [0, T ]×Ω and PT := λT ⊗P where λT denotes the Lebesgue measure on
[0, T ]. We want to define the stochastic integral

∫ t
0 Φ(s) dW (s), t ∈ [0, T ] for a reasonably large

class of processes Φ with values in L(U,H). The basic steps of the construction are (similarly
as in the finite dimensional case)

Step 1: For a certain class E of “elementary” L(U,H)-valued processes we define the stochastic
integral Int : E →M2

T (H) =:M2
T in a natural way.

Step 2: For a certain norm on (equivalence classes of) E we show that Int : E →M2
T is a linear

isometry, so we can extend Int uniquely to a linear isometry on the (abstract) completion Ē of E .

Step 3: Find a more explicit representation of Ē .

Step 4: Extend the map Int further by localization.

Let us go into more detail:

Step 1:

Definition 4.11. An L := L(U,H)-valued process Φ(t), t ∈ [0, T ] on (Ω,F ,F,P) is called
elementary if there exist (deterministic) 0 = t0 < ... < tk ≤ T , k ∈ N such that

Φ(t) =

k−1∑
m=0

Φm 1(tm,tm+1](t), t ∈ [0, T ], (4.2.1)

where, for each m ∈ {0, ..., k − 1}, Φm is an Ftm-measurable map from Ω to L and Φm(Ω) is a
finite subset of L. We denote the set of all elementary processes by E .
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For Φ ∈ E with representation (4.2.1) we define

Int(Φ)(t) :=

∫ t

0
Φ(s) dW (s) :=

k−1∑
m=0

Φm

(
W (tm+1 ∧ t)−W (tm ∧ t)

)
, t ∈ [0, T ].

As usual, one has to ensure that this definition does not depend on the representation of Φ. It
remains to verify that Int(Φ) ∈M2

T .

Continuity of the map t 7→ Int(Φ)(t) is clear from the definition.

To see that Int(Φ)(t) is square integrable for a given t ∈ [0, T ] note that

‖Φm

(
W (tm+1 ∧ t)−W (tm ∧ t)

)
‖H ≤ ‖Φm‖L(U,H)‖W (tm+1 ∧ t)−W (tm ∧ t)‖U .

Since Φm takes only finitely many values and W (tm+1∧ t)−W (tm∧ t) is Gaussian (hence square
integrable), our claim follows.

We skip the proof of the martingale property (see e.g. [LR15, p29]).

Step 2: Recall the well-known fact that for a positive semi-definite Q ∈ L(U) there exists a
unique positive semi-definite R ∈ L(U) such that R ◦ R = Q. We call R the square root of Q
and denote it by Q1/2. If Q is trace class, then, obviously, Q1/2 ∈ L2(U) (see Section 3.1 for
the definition) and ‖Q1/2‖2L2(U) = tr (Q). Let L2 := L2(U,H). Recall that S ∈ L(U,H) and

S̃ ∈ L2(U) imply S ◦ S̃ ∈ L2(U,H). We can now state the Itô isometry property of Int on E .

Theorem 4.12. If Φ =
∑k−1

m=0 Φm 1(tm,tm+1] ∈ E, then

∥∥Int(Φ)
∥∥2

M2
T

=
∥∥∥∫ .

0
Φ(s) dW (s)

∥∥∥2

M2
T

= E
(∫ T

0
‖Φ(s) ◦Q1/2‖2L2

ds
)

=: ‖Φ‖2T .

Proof.

∥∥Int(Φ)
∥∥2

M2
T

= E
(∥∥∥∫ T

0
Φ(s) dW (s)

∥∥∥2

H

)
= E

(∥∥∥ k−1∑
m=0

Φm

(
W (tm+1)−W (tm)

)∥∥∥2

H

)
=

k−1∑
m=0

E
∥∥Φm∆m

∥∥2

H
,

where ∆m := W (tm+1) −W (tm). It remains to show that E
∥∥Φm∆m

∥∥2

H
= (tm+1 − tm)E

∥∥Φm ◦
Q1/2

∥∥2

L2
. The proof is not difficult but a bit lengthy (see [LR15, p31]) and we skip it.

Remark 4.13. Note that, strictly speaking, both ‖.‖M2
T

and ‖.‖T are semi-norms and become

norms only after defining corresponding equivalence classes (which we will assume without chang-
ing notation). Note that if two elementary processes Φ and Φ̃ belong to the same equivalence
class then it does not follow that they agree almost surely on [0, T ]! If, for example, Q ≡ 0, then
all elementary processes are equivalent.

Before entering into Step 3, we introduce the pseudo inverse of a linear operator S ∈ L(U,H)
(for more details and some proofs see [LR15, Appendix C]).

Definition 4.14. Let S ∈ L(U,H) and define its null space Ker(S) := {x ∈ U : Sx = 0} as
usual. The pseudo inverse of S is defined as

S−1 :=
(
S|Ker(S)⊥

)−1
: S
(
Ker(S)⊥

)
= S(U)→ Ker(S)⊥.
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Note that the map S−1 is linear and one-to-one.

Proposition 4.15. Let S ∈ L(U) and define 〈x, y〉S(U) := 〈S−1x, S−1y〉U . Then
(
S(U), 〈., .〉S(U)

)
is a separable Hilbert space.

Step 3: After this short excursion we return to our set-up. It turns out that the space
L(U,H) is not very convenient to work with as a space where the integrand Φ takes values in.
The space is neither Hilbert nor is it separable when U and H are infinite dimensional. On the
other hand, in many cases, W (t) takes values in a proper subspace U0 of U and hence there is
no point in defining the integrand Φ outside that subspace. Define

U0 := Q1/2(U), 〈u0, v0〉0 := 〈Q−1/2u0, Q
−1/2v0〉U , u0, v0 ∈ U0.

Then (U0, 〈., .〉0) is a separable Hilbert space by Proposition 4.15.

Abbreviate L0
2 := L2(U0, H) and let (gk) be an ONB of

(
Ker

(
Q1/2

))⊥
. Then

(
Q1/2gk

)
is an

ONB of (U0, 〈., .〉0
)
. We extend (gk) to an ONB of U . Note that ‖S‖L0

2
= ‖S ◦Q1/2‖L2(U,H) =∑

k〈SQ1/2gk, SQ
1/2gk〉H for each S ∈ L0

2. Let

L(U,H)0 := {S|U0 : S ∈ L(U,H)}.

Then L(U,H)0 ⊂ L0
2 since S ∈ L(U,H) implies

‖S|U0‖2L0
2

=
∑
k

‖S ◦Q1/2gk‖2H ≤ ‖S‖2L(U,H)trQ <∞.

Further, for Φ ∈ E , we have

‖Φ‖T =
(
E
(∫ T

0
‖Φ(s) ◦Q1/2‖2L2

ds
))1/2

=
(
E
∫ T

0
‖Φ(s)‖2L0

2
ds
)1/2

.

Definition 4.16. The predictable σ-algebra PT is the sub-σ-algebra of B([0, T ])⊗FT defined as

PT := σ
({

(s, t]× Fs : 0 ≤ s < t ≤ T, Fs ∈ Fs
}
∪
{
{0} × F0 : F0 ∈ F0

})
.

A process Y defined on ΩT taking values in a measurable space is called predictable if Y is
measurable with respect to PT .

Proposition 4.17.

PT = σ
(
Y : ΩT → R

∣∣Y adapted and left-continuous
)
.

Proof. Let P̃ := σ
(
Y : ΩT → R

∣∣Y adapted and left-continuous
)
. To see that PT ⊆ P̃, take

(s, t] × Fs as in the previous definition and define Y (u, ω) := 1(s,t](u) 1Fs(ω), u ∈ [0, T ]. Then

Y is adapted and left-continuous, so (s, t] × Fs ∈ P̃. Obviously, we also have {0} × F0 ∈ P̃ if
F0 ∈ F0.

The opposite direction is proved by approximation.

Now we are ready to identify the completion Ē of E .

Proposition 4.18. We have

Ē = N 2
W (0, T ;H) :=

{
Φ : ΩT → L0

2

∣∣Φ predictable and ‖Φ‖T <∞
}

= L2
(
ΩT ,PT ,PT ;L0

2

)
.
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You can find the proof in [LR15, p33ff]. One has to check that E ⊂ N 2
W (0, T ;H), that

N 2
W (0, T ;H) is complete and that E is dense in N 2

W (0, T ;H).

Step 4: Now we extend the definition of the stochastic integral by localization.

Definition 4.19. The set

NW (0, T ;H) :=
{

Φ : ΩT → L0
2

∣∣Φ predictable with P
(∫ T

0
‖Φ(s)‖2L0

2
ds <∞

)
= 1
}

is called the space of stochastically integrable processes on [0, T ].

For Φ ∈ NW (0, T ;H) and n ∈ N define τn := inf
{
t ∈ [0, T ]

∣∣ ∫ t
0 ‖Φ(s)‖2

L0
2

ds > n
}
∧T . Then,

for each n ∈ N, τn is an F-stopping time, 1(0,τn]Φ is L0
2-predictable, and E

∫ T
0 ‖1(0,τn](s) Φ(s)‖2

L0
2

ds ≤
n <∞, so t 7→

∫ t
0 1(0,τn](s) Φ(s) dW (s) is well-defined and inM2

T . One has to ensure that letting
n → ∞, we obtain a limit and that this limit does not depend on the particular choice of the
stopping times. The limit is a continuous local martingale (but generally not a martingale). For
details, see [LR15].

4.3 Cylindrical Wiener processes

As before, we assume that (U, 〈., .〉U ) is a real separable Hilbert space. In this section we will show
how one can define a Q-Wiener process for positive semi-definite Q ∈ L(U) without assuming
that Q is trace class. Define U0 := Q1/2(U) and 〈u0, v0〉0 as before, where Q1/2 denotes the
unique positive semi-definite R ∈ L(U) such that R2 = Q (this fact does not depend on the
trace class property of Q).

Since U0 ⊆ U we can define the inclusion map J : U0 → U . Is J ∈ L2(U0, U)? Take an
ONB (gk) of (KerQ1/2)⊥ and define ek := Q1/2gk as before. Then (ek) is an ONB of U0 and∑

k

〈Jek, Jek〉U =
∑
k

〈JQ1/2gk, JQ
1/2gk〉U =

∑
k

〈Q1/2gk, Q
1/2gk〉U =

∑
k

〈Qgk, gk〉U

is finite iff Q is trace class. We now replace U by a different space U1 and a different map (which
we again call J) so that J becomes Hilbert-Schmidt.

Proposition 4.20. There exists a separable Hilbert space (U1, 〈., .〉1) and J : (U0, 〈., .〉0) →
(U1, 〈., .〉1) which is Hilbert-Schmidt and one-to-one.

Proof. Define U1 := U and let αk > 0 be real numbers which are square summable. For (ek)
and (gk) as above let

J(u) :=
∑
k

αk〈u, ek〉0ek, u ∈ U0.

Then J is one-to-one and∑
l

〈Jel, Jel〉U =
∑
l

α2
l 〈el, el〉U =

∑
l

α2
l 〈Q1/2gl, Q

1/2gl〉U ≤ ‖Q1/2‖2L(U)

∑
l

α2
l <∞,

so J is Hilbert-Schmidt.
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We now fix (U1, 〈., .〉1) and J as in the previous definition (but not necessarily as in its
proof) and define Q1 := J ◦ J∗ ∈ L(U1). We claim that Q1 is trace class. Clearly, Q1 is positive
semi-definite and for an ONB (fk) of U1 we have∑

k

〈Q1fk, fk〉1 =
∑
k

〈J∗fk, J∗fk〉0 <∞

due to the fact that J is Hilbert-Schmidt implies that J∗ is also Hilbert-Schmidt.

Proposition 4.21. Let (ek) be an ONB of U0 := Q1/2(U) and let (βk) be independent real-valued
Brownian motions. Then the sum

W (t) :=
∑
k

βk(t)Jek, t ∈ [0, T ]

converges in M2
T (U1) and defines a Q1-Wiener process on U1. Further, Q

1/2
1 (U1) = J(U0) and

for u0 ∈ U0 we have

‖u0‖0 = ‖Q−1/2
1 Ju0‖1 = ‖Ju0‖Q1/2

1 (U1)
,

so J : U0 → Q
1/2
1

(
U1

)
is an isometry.

The process W is called a cylindrical Q-Wiener process in U .

Proof. [LR15, p50f]

Next, we define the stochastic integral with respect to a cylindrical Q-Wiener process (where
Q ∈ L(U) is positive semi-definite but not necessarily trace class). Let W be a cylindrical Q-
Wiener process with Q1 and J as above. Define

NW :=
{

Φ : ΩT → L0
2

∣∣Φ predictable and P
(∫ T

0
‖Φ(s)‖2L0

2
ds <∞

)
= 1
}
.

Note that this definition does not depend on the choice of Q1 and J . We want to define the
stochastic integral of Φ ∈ NW . For φ ∈ L0

2 we have

‖φ‖2L0
2

=
∑
k

〈φek, φek〉H =
∑
k

〈φJ−1
(
Jek

)
, φJ−1

(
Jek

)
〉H = ‖φ ◦ J−1‖2

L2(Q
1/2
1 (U1),H)

,

so, for Φ ∈ NW , we define ∫ t

0
Φ(s) dW (s) :=

∫ t

0
Φ(s) ◦ J−1 dW (s),

where the second integral should be interpreted as stochastic integral with respect to the Q1-
Wiener process W which we defined before (one has to check that Φ◦J−1 is really stochastically
integrable with respect to the Q1-Wiener process W ).

Remark 4.22. The stochastic integral is independent of the choice of (U1, 〈., .〉1) and J . To see
this consider Φ ∈ E with representation (4.2.1). Then

Φm ◦ J−1
(
W (tm+1 ∧ t)−W (tm ∧ t)

)
= Φm ◦ J−1

(∑
k

βk(tm+1 ∧ t)Jek −
∑
k

βk(tm ∧ t)Jek
)

= Φm

(∑
k

βk(tm+1 ∧ t)ek −
∑
k

βk(tm ∧ t)ek
)
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does not depend on U1 and J , so for Φ ∈ E the stochastic integral does not depend on U1 and
J and this immediately implies that the same is true for general Φ ∈ NW . Note however that E
is in general not contained in L0

2!





Chapter 5

Stochastic differential equations in
infinite dimensional spaces

In this chapter we largely follow Chapter 4 of [LR15] but we will impose more restrictive assump-
tions in order to keep things reasonably simple. In particular, we will assume that the coefficients
of an infinite dimensional stochastic differential equation are neither explicitly time-dependent
nor random.

5.1 Gelfand triples and conditions on the coefficients

Let (H, 〈., .〉H) be a real separable Hilbert space with dual H∗ and let (V, ‖.‖V ) be a reflexive
Banach space (please take a look at basic monographs in functional analysis in case you don’t
know what reflexive means). We assume that V ⊂ H continuously and densely (meaning that
there is a one-to-one linear continuous map L from V to H such that L(V ) is dense in H). Then
it follows that H∗ ⊂ V ∗ continuously and densely and identifying H and H∗ we get

V ⊂ H ⊂ V ∗.

Defining V ∗〈z, v〉V := z(v) for v ∈ V , z ∈ V ∗, we have

V ∗〈z, v〉V = 〈z, v〉H for all z ∈ H, v ∈ V.

(V,H, V ∗) is called a Gelfand triple. The fact that H∗ ⊂ V ∗ continuously and densely and that
H∗ is separable implies that V ∗ is separable (since every dense set in H∗ is also a dense set in
V ∗ with respect to the corresponding topologies) which in turn implies that V is separable.

Recall that B(V ) = σ(V ∗) and B(H) = σ(H∗) by Proposition 4.1. Without proof, we state
Kuratowski’s theorem (see [J78, p420] or [C13, Theorem 8.3.7]).

Theorem 5.1. Let (E1, d1) and (E2, d2) be Polish spaces and assume that f : E1 → E2 is
one-to-one and Borel-measurable. Then f(B(E1)) ⊂ B(E2).

Since V,H, V ∗ are Polish, Kuratowski’s theorem implies immediately the following: V ∈
B(H), H ∈ B(V ∗), B(V ) = B(H) ∩ V , and B(H) = B(V ∗) ∩H.

We will study stochastic differential equations of the following type

dX(t) = A(X(t)) dt+B(X(t)) dW (t), X(0) = x ∈ H, (5.1.1)

where

23
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• A : V → V ∗ is measurable,

• B : V → L2(U,H) is measurable, where U is a real separable Hilbert space,

• W is a cylindrical Q-Wiener process with Q = id ∈ L(U),

• X takes values in H.

We impose the following conditions on A and B:

(H1) (Hemicontinuity) For all u, v, x ∈ V the map λ 7→ V ∗〈A(u+ λv), x〉V is in C(R,R).

(H2) (Weak monotonicity) There exists some c ∈ R such that for all u, v ∈ V we have

2 V ∗〈A(u)−A(v), u− v〉V + ‖B(u)−B(v)‖2L2(U,H) ≤ c‖u− v‖
2
H .

(H3) (Coercivity) There exist α ∈ (1,∞), c1 ∈ R, c2 ∈ (0,∞) and c4 ∈ R such that for all v ∈ V

2 V ∗〈A(v), v〉V + ‖B(v)‖2L2(U,H) ≤ c1‖v‖2H − c2‖v‖αV + c4.

(H4) (Boundedness) There exist c3, c5 ≥ 0 such that for all v ∈ V we have

‖A(v)‖V ∗ ≤ c3‖v‖α−1
V + c5,

where α is as in (H3).

Remark 5.2. Note that, even in the finite dimensional case in whichA : Rd → Rd, property (H1)
alone does not imply continuity of A (try to find a counterexample when d = 2!). Interestingly,
(H1) and (H2) together do imply continuity even in the general case. More precisely, un → u in
the norm topology of V implies A(un)→ A(u) weakly in V ∗, see [LR15, p71fff].

Remark 5.3. It may be interesting to investigate whether measurability of A and B actually
follow from (H1)-(H4).

In order to get some feel for conditions (H1)-(H4), we look at two examples.

Example 5.4. Let us consider the finite dimensional case H = V = V ∗ = Rd, U = Rm. Then
(H1) holds if the drift A : Rd → Rd is continuous (by the previous remark continuity of A is even
necessary for (H1) and (H2) to hold). (H2) is the usual one-sided (global) Lipschitz condition as
in WT3. (H3) with α = 2 is essentially the one-sided linear growth conditions from WT3 while
(H4) imposes a linear growth condition on A(v) which we did not need to impose in the finite
dimensional case.

The next example is truly infinite dimensional.

Example 5.5. Let Λ ⊆ Rd be non-empty and open. Does A = ∆ (the Laplace operator on
Λ) satisfy (H1)-(H4) for a suitable choice of (V,H, V ∗) at least in case B ≡ 0? If yes, then
this means that the usual (deterministic) heat equation is covered by our approach. We first
consider the Laplacian ∆ as an operator on C∞0 (Λ) which is the space of infinitely differentiable
real functions on Λ with compact support. A reasonable choice for the spaces are V = H1,p

0 (Λ)
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for p ∈ [2,∞) and H = L2(Λ) (the space of functions on Λ which are square-integrable with
respect to Lebesgue measure). We explain what H1,p

0 (Λ) is and show that A satisfies (H1)-(H4)
for B ≡ 0.

For p ∈ [1,∞) and u ∈ C∞0 (Λ) define

‖u‖1,p :=
(∫

Λ
|u(x)|p + |∇u(x)|p dx

)1/p

and denote the completion of C∞0 (Λ) ⊂ Lp(Λ) with respect to the norm ‖.‖1,p by H1,p
0 (Λ). This

space is called Sobolev space of order 1 in Lp with Dirichlet boundary conditions. Observe that
the embedding i : C∞0 (Λ) → Lp(Λ) is continuous since for u ∈ C∞0 (Λ), we have ‖u‖p ≤ ‖u‖1,p,
so ‖i‖L(C∞0 (Λ),Lp(Λ)) ≤ 1. Let ī : H1,p

0 (Λ)→ Lp(Λ) be the unique continuous linear extension of

i. Note that the map ī is one-to-one and that H1,p
0 (Λ) ⊂ Lp(Λ).

Next, we want to extend the gradient operator ∇ : C∞0 (Λ) → Lp(Λ;Rd) to H1,p
0 (Λ). Let

u ∈ H1,p
0 (Λ) and take a sequence (un) in C∞0 (Λ) which converges to u in H1,p

0 (Λ). Then, in
particular, (∇un) is Cauchy in Lp(Λ;Rd). Define ∇u := limn→∞∇un in Lp(Λ;Rd). This limit
only depends on u and not on the approximating sequence (un). We mention without proof that
H1,p

0 (Λ) is reflexive whenever p ∈ (1,∞) ([LR15, p79]).

Now, we assume p ∈ [2,∞) and define V := H1,p
0 (Λ), H = L2(Λ), V ∗ :=

(
H1,p

0 (Λ)
)∗

. If
p > 2, then we assume, in addition, that |Λ| <∞, where |Λ| denotes the d-dimensional Lebesgue
measure of the set Λ. Then V ⊂ Lp(Λ) ⊂ H where both inclusions are continuous and dense.
We want to extend ∆ with domain C∞0 (Λ) to a bounded linear operator A : V → V ∗. First note
that A maps C∞0 (Λ) to itself which is a subspace of L2(Λ) ⊂ V ∗, so A maps C∞0 (Λ) to V ∗.

For u, v ∈ C∞0 (Λ), we have, using integration by parts and Hölder’s inequality,∣∣∣V ∗〈∆u, v〉V ∣∣∣ =
∣∣∣〈∆u, v〉H ∣∣∣ =

∣∣∣ ∫
Λ

(
∆u)v dx

∣∣∣ =
∣∣∣− ∫

Λ

(
∇u
)(
∇v
)

dx
∣∣∣

≤
(∫

Λ

∣∣∇u(x)
∣∣ p
p−1 dx

) p−1
p
(∫

Λ

∣∣∇v(x)
∣∣p dx

)1/p
≤ ‖|∇u|‖ p

p−1
‖v‖1,p,

so, using Hölder’s inequality again, we obtain

‖∆u‖V ∗ ≤ ‖|∇u|‖ p
p−1
≤
(∫

Λ

∣∣∇u(x)
∣∣p dx

)1/p(∫
Λ

1 dx
) p−2
p−1 ≤ ‖u‖1,p|Λ|

p−2
p−1 ,

so ‖∆u‖V ∗ ≤ ‖u‖1,p|Λ|
p−2
p−1 . So the map

∆ :
(
C∞0 (Λ), ‖.‖1,p

)
→ V ∗

is continuous and linear and can therefore be uniquely extended to a continuous linear operator

A : V → V ∗ (with norm ‖A‖L(V,V ∗) ≤ |Λ|
p−2
p−1 ).

We claim that A satisfies conditions (H1), (H2), (H4) and that A satisfies (H3) if, in addition,
p = 2.

(H1) By linearity, V ∗〈A(u+ λv), x〉V = V ∗〈Au, x〉V + λ V ∗〈Av, x〉V which is continuous in λ.

(H2) Let u, v ∈ V and choose sequences (un) and (vn) in C∞0 (Λ) such that un → u and vn → v
in V . Then

V ∗〈A(u)−A(v), u− v〉V = lim
n→∞ V ∗〈∆

(
un − vn

)
, un − vn〉V ≤ 0.
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(H3) For p = 2, α = 2, v ∈ V , and a sequence (vn) in C∞0 such that ‖vn − v‖V → 0, we have

2 V ∗〈A(v), v〉V = 2 lim
n→∞ V ∗〈∆vn, vn〉V = −2 lim

n→∞

∫
Λ

∣∣∇vn(x)
∣∣2 dx

= −2

∫
Λ

∣∣∇v(x)
∣∣2 dx = 2

(
‖v‖2H − ‖v‖21,2

)
.

(H4) For v ∈ V , ‖A(v)‖V ∗ ≤ ‖v‖1,p |Λ|
p−2
p−1 , so (H4) holds.

Now assume that B : V → L2(U,H) is not necessarily 0 but satisfies ‖B(u) − B(v)‖2L2(U,H) ≤
c‖u−v‖2H and ‖B(v)‖2L2(U,H) ≤ c̃

(
‖v‖2H +1

)
for some c, c̃ ≥ 0 and all u, v ∈ V (in fact the second

property follows from the first for some suitable c̃). Then, for A as above, (A,B) satisfies (H1),
(H2), (H4) for every p ∈ [2,∞). If p = 2, then (A,B) also satisfies (H3). In this case, the results
in the next section imply that the sde

dX(t) = ∆X(t) dt+B(X(t)) dW (t)

has a unique solution.

5.2 Existence and uniqueness of solutions and an Itô formula

We assume that A and B satisfy assumptions (H1)-(H4). Fix T > 0 and denote Lebesgue
measure on [0, T ] by λT .

Definition 5.6. A continuous H-valued F-adapted process (X(t))t∈[0,T ] is called a solution of

(5.1.1) if for its λT ⊗ P-equivalence class X̂ of V ∗-valued processes, we have

X̂ ∈ Lα([0, T ]× Ω, λT ⊗ P;V ) ∩ L2([0, T ]× Ω, λT ⊗ P;H)

for some α > 1 and, P-almost surely,

X(t) = X(0) +

∫ t

0
A(X̄(s)) ds+

∫ t

0
B(X̄(s)) dW (s), t ∈ [0, T ],

where X̄ is any V -valued predictable modification of X̂.

Remark 5.7. Any continuousH-valued F-adapted process (X(t))t∈[0,T ] whose λT⊗P-equivalence

class X̂ is in Lα([0, T ]× Ω, λT ⊗ P;V ) has a V -valued predictable modification X̄. To see this,
define R := {(s, ω) ∈ [0, T ]×Ω : X(s, ω) ∈ V }. Then R ∈ PT since it is the inverse image of the
set V ∈ B(H) under the (left-)continuous H-valued process X (which is therefore predictable).

Define

X̄(s, ω) :=

{
X(s, ω) (s, ω) ∈ R,
0 else.

Then X̄ has the asserted property.

Remark 5.8. In the definition of a solution in [LR15], the word predictable is replaced by
progressively measurable. This is really a matter of taste. Our definition has the advantage that
we do not need to introduce the progressive σ-algebra at all and that our integrands in stochastic
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integrals will be predictable as required and we do not have to argue that in fact we could also
allow progressive integrands. Another advantage of our definition is that it generalizes to more
general integrators (possibly with jumps) in which case one cannot allow general progressive
integrands. On the other hand, [LR15] allow the coefficients to be time-dependent and random
(which we do not) and in this case requiring them to be progressive is a weaker assumption than
predictability.

Before we state and prove the main result on existence and uniqueness of solutions to
(5.1.1) we state a kind of Itô’s formula without proof (see [LR15, p91fff]; note that in the finite
dimensional case this is a special case of the usual Itô’s formula).

Theorem 5.9. Let α > 1 and X0 ∈ L2(Ω,F0,P;H). Let Y ∈ L
α
α−1 ([0, T ]× Ω, λT ⊗ P;V ∗) and

Z ∈ L2([0, T ]× Ω, λT ⊗ P;L2(U,H)) be predictable. Define the continuous V ∗-valued process

X(t) := X0 +

∫ t

0
Y (s) ds+

∫ t

0
Z(s) dW (s), t ∈ [0, T ].

If the λT⊗P equivalence class X̂ of X satisfies X̂ ∈ Lα([0, T ]×Ω, λT⊗P;V ), and if E
(
‖X(t)‖2H <

∞ for λT -almost all t ∈ [0, T ], then X is adapted and continuous H-valued and

‖X(t)‖2H = ‖X0‖2H+

∫ t

0

(
2V ∗〈Y (s), X̄(s)〉V +‖Z(s)‖2L2(U,H)

)
ds+2

∫ t

0
〈X̄(s), Z(s) dW (s)〉H , t ∈ [0, T ],

where X̄ is any V -valued predictable modification of X.

Theorem 5.10. Let A and B satisfy (H1)-(H4) and let X0 ∈ L2(Ω,F0,P;H). Then there exists
a unique solution of (5.1.1) with X(0) = X0 in the sense of the previous definition. Moreover,

E
(

sup
t∈[0,T ]

‖X(t)‖2H
)
<∞.

Proof. We can and will assume that H (and hence V ) is infinite dimensional. The basic strategy
of the proof is as follows:

a) define finite dimensional “projected solutions” X(n),

b) show that there exists a subsequence X(nk) which converges to some process X̄ in an appro-
priate sense,

c) show that X̄ solves (5.1.1),

d) show uniqueness.

Let us now provide more details about these steps (for full details, see [LR15, Theorem 4.2.4]:

a) Let (en)n∈N be an ONB of H such that ei ∈ V for all i ∈ N and span{ei, i ∈ N} is dense
in V . Define Hn := span{e1, ..., en}, n ∈ N0. Define the projection map Pn : V ∗ → Hn by
Pny :=

∑n
i=1 V ∗〈y, ei〉V ei. For ease of notation we assume that U is infinite dimensional and let
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(gn)n∈N be an ONB of U (the necessary change in case U is finite dimensional will be obvious).
Let

W (t) =

∞∑
i=1

βi(t)Jgi

be a representation of W with independent standard Wiener processes βi, i ∈ N and define

W (n)(t) :=

n∑
i=1

βi(t)gi.

For n ∈ N consider the SDE

dX(n)(t) = PnA(X(n)(t)) dt+ PnB(X(n)(t)) dW (n)(t), X(n)(0) = PnX0.

We will show in class that the conditions for existence and uniqueness of a strong solution (with
values in the finite dimensional space Hn) from WT3 are satisfied.

b) Define
K := Lα([0, T ]× Ω, λT ⊗ P;V ).

We claim that there exists some C > 0 such that

‖X(n)‖K + ‖A(X(n))‖K∗ + sup
t∈[0,T ]

E
(
‖X(n)(t)‖2H

)
≤ C (5.2.1)

for all n ∈ N. By the usual Itô formula (from WT3), we have

‖X(n)(t)‖2H = ‖X(n)
0 ‖

2
H +

∫ t

0

(
2V ∗〈PnA(X(n)(s)), X(n)(s)〉V + ‖PnB(X(n)(s))‖2L2(U,H)

)
ds+Mn(t)

= ‖X(n)
0 ‖

2
H +

∫ t

0

(
2V ∗〈A(X(n)(s)), X(n)(s)〉V + ‖PnB(X(n)(s))‖2L2(U,H)

)
ds+Mn(t)

≤ ‖X(n)
0 ‖

2
H +

∫ t

0

(
c1‖X(n)(s)‖2H − c2‖X(n)(s)‖αV + c4

)
ds+Mn(t),

where Mn is a continuous local martingale and where we used (H3) and ‖Pn‖L(H) ≤ 1. This
implies

Z(t) := ‖X(n)(t)‖2H + c2

∫ t

0
‖X(n)(s)‖αV ds ≤ c1

∫ t

0
Z(s) ds+ c4t+ ‖X(n)

0 ‖
2
H +Mn(t).

By a straightforward localization argument we see that EZ(t) < ∞ for all t and Gronwall’s
inequality applied to EZ(t) implies

EZ(t) ≤ ec1t
(
c4t+ E‖X(n)

0 ‖
2
H

)
≤ ec1t

(
c4t+ E‖X0‖2H

)
,

so boundedness of the first and the third term in (5.2.1) follow.

It remains to show boundedness of the second term in (5.2.1). Using Hölder’s inequality
and (H4), we obtain

‖A
(
X(n)(.)

)
‖K∗ = sup

f∈K,‖f‖K=1
E
∫ T

0

(
A(X(n)(s)

)
f(s) ds ≤ sup

f∈K,‖f‖K=1
E
∫ T

0
‖A
(
X(n)(s)

)
‖V ∗‖f(s)‖V ds

≤ E
(∫ T

0
‖A
(
X(n)(s)

)
‖

α
α−1

V ∗ ds
)α−1

α ≤ E
(∫ T

0

(
c5 + ‖X(n)(s)‖α−1

V

) α
α−1

ds
)α−1

α
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which is bounded with respect to n by the previous step, so the proof of (5.2.1) is complete.

The fact that K is reflexive implies that every bounded sequence in K has a weakly con-
vergent subsequence. By (5.2.1) this means that there is a subsequence X(nk) of X(n) which
converges to some X̃ weakly in K, i.e. T (X(nk))→ T (X̃) for every T ∈ K∗. Since the approxi-
mating processes are predictable, we can assume that so is X̃.

c) We skip the proof that X̄ is a solution.

d) To show uniqueness, assume that X and Y are two solutions with the same initial condition
with corresponding X̄ and Ȳ as in Definition 5.6. Applying Theorem 5.9 to the difference X−Y ,
we get, using (H2),

‖X(t)− Y (t)‖2H

=

∫ t

0

(
2V ∗〈A

(
X̄(s)

)
−A

(
Ȳ (s)

)
, X̄(s)− Ȳ (s)〉V + ‖B(X̄(s))−B(Ȳ (s))‖2L2(U,H)

)
ds+M(t)

≤ (c ∨ 0)

∫ t

0
‖X̄(s)− Ȳ (s)‖2H ds+M(t)

= (c ∨ 0)

∫ t

0
‖X(s)− Y (s)‖2H ds+M(t),

where M is a continuous local martingale and the last equality holds for all t ∈ [0, T ] and almost
all ω ∈ Ω , so uniqueness follows from the stochastic Gronwall lemma.





Chapter 6

The martingale measure approach to
SPDEs

This chapter follows [W86] rather closely. Another reference is [DKMNX09], in particular the
first article.

The random wave equation in the one-dimensional case can be written as

∂2u

∂t2
=
∂2u

∂x2
+ Ẇ (t, x),

where Ẇ (t, x) is space-time white noise. Our previous results do not apply to this equation. We
first introduce the Brownian sheet and white noise.

6.1 White noise and the Brownian sheet

Let (E, E , ν) be a σ-finite measure space and Ẽ := {A ∈ E : ν(A) <∞}.

Definition 6.1. A white noise based on ν is a map W : Ẽ × Ω→ R such that

(i) (Ω,F ,P) is a probability space,

(ii) W (A) is measurable and N (0, ν(A))-distributed for every A ∈ Ẽ ,

(iii) if A ∩ B = ∅, A,B ∈ Ẽ , then W (A) and W (B) are independent and W (A ∪ B) =
W (A) +W (B) a.s.

Does there exist a white noise associated to ν? We show that the answer is yes.

If W is white noise, then W is a Gaussian process with index set Ẽ, i.e. the distribution of(
W (A1), ...,W (An)

)
is Gaussian (why?) and for A,B ∈ Ẽ we have

cov
(
W (A),W (B)

)
= cov

(
W (A),W (A ∩B) +W (B\A)

)
= ν(A ∩B).

Conversely, if ν is given, we define C(A,B) := ν(A ∩ B) for A,B ∈ Ẽ. It is easy to see that
the function C is nonnegative definite and therefore there exists a centered Gaussian process
W with index set Ẽ with covariance function C on some probability space (Ω,F ,P) and W is
easily seen to be white noise based on ν.

31
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Remark 6.2. If W is white noise based on ν then we can define
∫
f dW for f ∈ L2(E, E , ν) in

a straightforward way by first defining the integral for linear combinations of indicators of sets
in Ẽ and then for general f by approximation. Then

E
((∫

f dW
)(∫

g dW
))

=

∫
fg dν.

Note that here we restrict our attention to deterministic functions f which is quite a bit easier
than the case of random functions f .

An important special case is covered by the following definition.

Definition 6.3. Let E = Rn+ := {(t1, ..., tn) : ti ≥ 0, i = 1, ...n} be equipped with the Borel
σ-algebra and let λ = ν be Lebesgue measure on E. For t = (t1, ..., tn) ∈ E define (0, t] :=
(0, t1]× ...× (0, tn]. If W is white noise based on λ, then

Wt := W
(
(0, t]

)
, t ∈ E

is called (d-dimensional) Brownian sheet.

Remark 6.4. • Wt, t ∈ E is centered Gaussian with covariance

E
(
WsWt

)
= E

(
W ((0, s])W ((0, t])

)
= λ

(
[0, s] ∩ [0, t]

)
=
(
s1 ∧ t1

)
· · ·
(
sn ∧ tn

)
=: s ∧ t.

In particular Wt, t ∈ E is a standard Brownian motion in case n = 1.

• For fixed t2, ..., tn ≥ 0, the process t1 7→ W(t1,...,tn) is (one-dimensional) Brownian motion
with “volatility” t2 · · · tn.

Proposition 6.5. The trajectories of the Brownian sheet have a continuous modification which
is even Hölder 1

2 − ε for any ε > 0.

Proof. This follows from a straightforward application of Kolmogorov’s continuity theorem (as
in case n = 1).

Remark 6.6. Let W be an n = d + 1-dimensional Brownian sheet (with d ≥ 1). Denote the
coordinates by (t, x1, ..., xd). Then µ := L

(
W1,.

)
is a centered Gaussian measure on the Hilbert

space H = L2
(
[0,∞)d,B

(
[0,∞)d

)
, e−(x1+...+xd) dx

)
. Let us compute the covariance operator Q.

For f, g ∈ H and V (x) := W1,x, x ∈ Rd+ we have

E
(
〈V, f〉H〈V, g〉H

)
=

∫
Rd+

∫
Rd+
f(x)g(y)E

(
V (x)V (y)

)
e−|x|−|y| dx dy

=

∫
Rd+

∫
Rd+
f(x)g(y)(x ∧ y)e−|x|−|y| dxdy = 〈Qf, g〉H ,

where

Qf(y) =

∫
Rd+
f(x)(x ∧ y)e−|x| dx.

It follows that Wt, t ≥ 0 is a Q-Wiener process.
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Let us explain the interesting phenomenon of propagation of singularities. For ease of
exposition we assume n = 2. For a proof see [W86, p208]. We will give a heuristic explanation
in class.

Proposition 6.7. Fix t0 > 0 and a random variable S ≥ 0 which is measurable with respect to
σ(Ws,t, s ≥ 0, t ∈ [0, t0]) and for which

lim sup
h↓0

WS+h,t −WS,t√
2h log log 1/h

=∞ a.s. (6.1.1)

for t = t0 (such random variables exist!). Then, (6.1.1) holds for all t ≥ t0.

6.2 The Brownian sheet and the vibrating string

We present the following simple example (for details see [W86, p281ff]).

Let n = 2 and define

D := {(s, t) ∈ R2 : s+ t ≥ 0}, R̂st := D ∩
(
(−∞, s]× (∞, t]

)
, s+ t ≥ 0.

Let W be white noise on R2 based on Lebesgue measure and define Ŵst = W (R̂st). Note that
Wst := Ŵst − Ŵs0 − Ŵ0t, s, t ≥ 0 is the two-dimensional Brownian sheet (draw a picture!).

Let V (x, t) be the vertical position of a guitar string at time t ≥ 0 and location x ∈ R. We
model the motion by the following stochastic wave equation.

∂2V

∂t2
=
∂2V

∂x2
+ Ẇ (x, t)

with initial conditions V (x, 0) = ∂V
∂t (x, 0) = 0, x ∈ R, where Ẇ (t, x) is space-time white noise.

So far we have not yet defined what we mean by a solution but let us solve it anyway.

If Ẇ (x, t) is replaced by some smooth f(x, t), then one easily checks that

V (x, t) =
1

2

∫ t

0

∫ x+t−s

x+s−t
f(y, s) dy ds, t ≥ 0, x ∈ R

solves the equation.

Rotate the coordinates by 450: u := s−y√
2

, v := s+y√
2

, V̂ (u, v) = V (y, s), f̂(u, v) = f(y, s).

Then

V̂ (u, v) =
1

2

∫
R̂uv

f̂(u′, v′) du′ dv′.

If we (formally) change fdyds to W (dy,ds), then we obtain the explicit formula

V̂ (u, v) =
1

2
Ŵuv, u+ v ≥ 0.

This consideration can be made rigorous by interpreting the SPDE in the distributional sense
(in a distributional sense, the Brownian sheet is infinitely differentiable and white noise is the
space-time derivative of the Brownian sheet).
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6.3 Martingale measures

To keep things simple we will not present the general definition of a martingale measure but
only that of an orthogonal martingale measure with time index set [0, T ] for fixed T > 0 (for the
general case of “worthy” martingale measures, see [W86]).

In the whole section, let (E, E , ν) and Ẽ be as before. Further, from now on, we assume that
(Ω,F ,F,P) is a filtered probability space with normal filtration.

Definition 6.8. M = Mt(A), t ∈ [0, T ], A ∈ Ẽ is called an orthogonal martingale measure
(based on ν) if, almost surely,

• M0(A) = 0 for all A ∈ Ẽ ,

• t 7→Mt(A) is an F-martingale with càdlàg paths for all A ∈ Ẽ ,

• for disjoint sets A,B ∈ Ẽ we have MT (A ∪B) = MT (A) +MT (B) almost surely,

• EM2
T (A) = ν(A) for all A ∈ Ẽ ,

• for any disjoint setsA,B ∈ Ẽ the martingalesMt(A) andMt(B) are orthogonal, i.e.Mt(A)Mt(B)

is a martingale (or, equivalently, E
((
Mt(A)−Ms(A)

)(
Mt(B)−Ms(B)

)
|Fs
)

= 0 a.s. when-

ever 0 ≤ s ≤ t ≤ T ).

Remark 6.9. The third property in the previous definition is also true for t ∈ [0, T ] instead of
T (why?).

Remark 6.10. If M is an orthogonal martingale measure based on ν, then for any t ∈ [0, T ],
νt(A) := EM2

t (A), A ∈ Ẽ is σ-additive (and can be uniquely extended to a σ-finite measure on
(E, E)).

Example 6.11. Let Π be a Poisson point process on [0, T ] × E with intensity λ ⊗ µ (I will
explain this in class). Define

Pt(A) := Π([0, t]×A), t ∈ [0, T ], A ∈ Ẽ .

Then Mt(A) := Pt(A)− tµ(A) defines an orthogonal martingale measure (based on ν = Tµ). In
fact, for disjoint sets A,B ∈ Ẽ , the martingales Mt(A) and Mt(B) are not only orthogonal but
even independent and t 7→Mt(A) is a compensated Poisson process (with intensity µ(A)).

Example 6.12. Let (E, E , ν) be as above and let W be white noise on Ē := E× [0, T ] based on
µ⊗ λT where λT is Lebesgue measure on [0, T ] and µ = ν/T . Then M = Mt(A), t ∈ [0, T ], A ∈
Ẽ is an orthogonal martingale measure based on ν. In fact, for disjoint sets A,B ∈ Ẽ , the
martingales Mt(A) and Mt(B) are not only orthogonal but even independent and t 7→Mt(A) is
Brownian motion (up to a deterministic factor which can be computed by the formula EM1(A) =
µ(A) (or EMT (A) = ν(A)).

For simplicity we will stick to the set-up in the previous example in the following and even
assume that the measure µ (or ν) is finite (so Ẽ = E). We continue to use the letter M for the
martingale measure defined in the previous example. We want to define the stochastic integral
with respect to M . We proceed as usual by first defining the stochastic integral for elementary
processes.
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Definition 6.13. Fix T > 0. If f : E×[0, T ]×Ω→ R is of the form f(x, s, ω) = X(ω)1(a,b](s)1A(x),
A ∈ E , 0 ≤ a < b ≤ T , x ∈ E, and X is bounded and Fa-measurable, then we define

f ·Mt(B) := X(ω)
(
Mt∧b(A ∩B)−Mt∧a(A ∩B)

)
.

It is not hard to see that f ·M is again an orthogonal martingale measure but it is generally
untrue that the martingales f ·Mt(A) and f ·Mt(B) are independent when A and B are disjoint
(try to find a simple example!).

It is clear how to extend the definition of the stochastic integral to elementary processes,
i.e. linear combinations of simple processes as above.

As usual, we need to define and compare suitable norms on the spaces of integrands f and
a space containing f ·M . For f ∈ L2(E× [0, T ]×Ω, µ⊗λ⊗P), we define the usual L2-norm by

‖f‖2M := E
(∫ T

0

∫
E
f2(x, s, ω) dµ(x) ds

)
.

For elementary f , B ∈ E , t ∈ [0, T ], one easily checks that

E
(
(f ·M)2

t (B)
)
≤ ‖f‖2M (6.3.1)

(with equality if t = T and B = E). Then one defines a suitable class of predictable processes
PM in L2(E × [0, T ] × Ω, µ ⊗ λ ⊗ P) in which the elementary processes are dense. This allows
us to define (f · M)2

t (B) for f ∈ PM by approximation. We will skip the proof that (f ·
M)2

t (B) has a modification with the desired properties (in particular that it is a martingale
measure). We will denote such a modification by

∫ t
0

∫
A f(x, s)M(ds, dx) := f ·Mt(A). If M is

the martingale measure associated to white noise W as in Example 6.12 (which is the only case
we are considering) then we also write∫ t

0

∫
A
f(x, s) Ẇ (s, x) dµ(x) ds instead of (f ·M)t(A).

We mention that for ψ ∈ PM , t ∈ [0, T ] and B ∈ E , we have

E
(
(ψ ·M)2

t (B)
)

= E
∫ t

0

∫
B
ψ2(s, x) dµ(x) ds.

Note that the usual Itô integral (with respect to Brownian motion) is a special case of
this integral by letting E be a set of cardinality 1. It is natural to ask how this more general
stochastic integral compares to that defined in Chapter 4. Here is at least a partial answer. For
more details see [DZ92, p99ff].

Let U := L2(E, E , µ) with ONB ek, k ∈ N and let W (t) :=
∑∞

k=1 βk(t)Jek, t ∈ [0, T ] be a
cylindrical Q-Wiener process with Q = I in U and J : U → U1 Hilbert-Schmidt and one-to-one
as in Chapter 4. Again, we assume that µ is a finite measure. W is white noise on E × [0, T ]
based on µ⊗ λ in the following sense: for A ∈ E and 0 ≤ s ≤ t ≤ T define

W (A× (s, t]) :=
∞∑
k=1

(
βk(t)− βk(s)

) ∫
A
ek(x) dµ(x).
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This is white noise as in Example 6.12 (check it!). For example, we have, for 0 ≤ s ≤ t ≤ T and
A,B ∈ E)

E
(
W (A× (s, t])W (B × (s, t])

)
=
∞∑
k=1

(t− s)
∫
A
ek(x) dµ(x)

∫
B
ek(y) dµ(y)

= (t− s)〈1A, 1B〉U = (t− s)µ(A ∩B).

Now let Mt(A) := W (A×(0, t]) be as before. For f(x, s, ω) = X(ω)1(a,b](s)1A(x) as in Definition
6.13 we have

(f ·M)t(B) = X(ω)
(
Mt∧b(A∩B)−Mt∧a(A∩B)

)
= X(ω)

∞∑
k=1

((
βk(t∧b)−βk(t∧a)

) ∫
A∩B

ek(x) dµ(x)
)
.

(6.3.2)
GivenA,B ∈ E andX(ω), can we find some predictable Φ(B) ∈ L2(U,R) such that

∫ t
0 Φ(s) dW (s) =

(f ·M)t(B) for Φ(s) = 1(a,b](s)Φ
(B)? Indeed we can. Define

Φ(B)(g) := 〈X(ω)1A∩B(.), g〉U .

Then (at least if X takes only finitely many values)∫ t

0
Φ(s) dW (s) =

(
X(ω)1A∩B(.)J−1

)( ∞∑
k=1

βk(t ∧ b)Jek −
∞∑
k=1

βk(t ∧ a)Jek

)
= X(ω)

∞∑
k=1

(
βk(t ∧ b)− βk(t ∧ a)

)
〈1A∩B, ek〉U ,

which equals (6.3.2), so the two integrals coincide.

We point out that stochastic integrals can be defined also for martingale measures which
are not white noise but not for completely general martingale measures. In these cases there is
no such analogy between the different ways of defining stochastic integrals.

6.4 A parabolic SPDE in one space dimension

This section is based on [W86, p311ff] and Lecture notes by Pardoux which are no longer
available. We will not provide full proofs. Consider the SPDE

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + f(t, x;u(t, x)) + g(t, x;u(t, x))Ẇ (t, x), t ≥ 0, 0 ≤ x ≤ 1,

with initial condition u(0, x) = u0(x), x ∈ [0, 1] and Dirichlet boundary condition u(t, 0) =
u(t, 1) = 0, t ≥ 0. Here, Ẇ denotes “space-time white noise”, i.e. white noise on [0, T ] × [0, 1]
based on Lebesgue measure. There are (at least) two ways to define what we mean by a solution
of the equation, namely the weak formulation (weak is meant in the pde sense and not in the
sense of weak solutions as defined in WT4 in the context of martingale problems) and the mild
formulation. For the weak formulation, we first integrate both sides from time 0 to time t,
multiply by a sufficiently smooth function ϕ from [0, 1] to R and then perform integration by
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parts with respect to x:∫ t

0
u(t, x)ϕ(x) dx =

∫ t

0
u0(x)ϕ(x) dx+

∫ t

0

∫ 1

0
u(s, x)ϕ′′(x) dx ds

+

∫ t

0

∫ 1

0
f(s, x;u(s, x))ϕ(x) dx ds+

∫ t

0

∫ 1

0
g(s, x;u(s, x))ϕ(x)W (ds, dx).

A predictable process u with continuous paths is called a weak solution if the previous equation
holds for every function ϕ which is continuous on [0, 1], and satisfies ϕ(0) = ϕ(1) = 0 and
ϕ ∈ C2(0, 1). Note that the stochastic integral has been defined before (provided the integrand
is in PM where M is the orthogonal martingale measure associated to W ).

Let us now explain the mild formulation. First, let p(t, x, y), t ≥ 0, x, y ∈ (0, 1) be the
fundamental solution of the one-dimensional heat equation on [0, 1] with Dirichlet boundary
conditions, i.e. the solution of the SPDE above with f = g = 0 and with initial condition
p(0, x, .) = δx (a unit point mass at x). Then p is given by

p(t, x, y) =
1√
4πt

∑
n∈Z

[
exp

(
− (2n+ y − x)2

4t

)
− exp

(
− (2n+ y + x)2

4t

)]
as one can easily check. The mild formulation is now given by the following variation of constants
type formula:

u(t, x) =

∫ t

0
p(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0
p(t− s, x, y)f(s, y;u(s, y)) dy ds

+

∫ t

0

∫ 1

0
p(t− s, x, y)f(s, y;u(s, y))W (ds, dy)

and a solution to this equation is called a mild solution. It is natural to ask whether weak
and mild solutions exist and if so whether or not they coincide. Fortunately, under natural
conditions on the coefficients, the answer is positive. We impose the following assumptions
(which are stronger than necessary) and skip the proof that under these conditions a continuous
predictable process u is a weak solution of the SPDE iff it is a mild solution.

(H1) f, g are bounded and measurable.

(H2) There exists some k ≥ 0 such that |f(t, x; r) − f(t, x; r̃)| ≤ k|r − r̃| for all t, r, r̃ and the
same for g.

Theorem 6.14. If (H1), (H2) hold and if u0 is continuous and satisfies u0(0) = u0(1) = 0,
then there exists a unique continuous and predictable mild solution of the SPDE. Moreover,

sup
0≤x≤1

sup
0≤t≤T

E|u(t, x)|p <∞ for every p ≥ 2.

Proof. We first show uniqueness. Assume that u and v are two (continuous) solutions and define
ū := u− v. We will continue the proof in class.

Next, we sketch the existence proof. We perform a Picard iteration starting with u0(t, x) = 0.
As usual, we then define un+1(t, x) by replacing u by un in the right-hand side of the mild
equation and define

Hn(t) := sup
0≤x≤1

E
(∣∣un+1(t, x)− un(t, x)

∣∣2).
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One shows by induction that Hn is bounded and measurable. We will continue the proof in
class.

It is of interest to investigate the Hölder-regularity of the solution u.

Theorem 6.15. Under the assumptions above, the solution u has a modification which is Hölder
of order 1/4− ε jointly in (t, x) for any ε > 0.

Proof. We check the conditions of Kolmogorov’s continuity theorem. Clearly, it suffices to show
this for the stochastic integral term

v(t, x) =

∫ t

0

∫ 1

0
p(t− s, x, y)g(s, y;u(s, y))W (ds, dy).

For h, k ≥ 0 and p ≥ 1, we have(
E|v(t+k, x+h)−v(t, x)|p

)1/p
≤
(
E|v(t+k, x+h)−v(t+k, x)|p

)1/p
+
(
E|v(t+k, x)−v(t, x)|p

)1/p
.

Both summands on the right hand side can be estimated from above in a way which allows to
apply Kolmogorov’s theorem. We might do this in class.
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