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Abstract

We introduce stochastic delay equations, also known as stochastic delay
differential equations (SDDEs) or stochastic functional differential equations
(SFDEs) driven by Brownian motion. We start with some examples. Then
we prove existence and uniqueness of (strong) solutions to a large class of
such equations under a monotonicity assumption on the coefficients. We
then show that the solutions generate a Markov process taking values in
some function space. Large parts of these notes are devoted to the question
of existence and uniqueness of an invariant probability measure for this
Markov process as well as the question whether in this case all transition
probabilities converge to the invariant probability measure. We will also say
a few words about the convergence rate. It turns out that for stochastic
delay equations the right concept of convergence of transition probabilities
is weak convergence rather than total variation convergence. The results in
the second part of the notes are quite recent and are based on joint work
with Oleg Butkovsky and Alexey Kulik. Several of these results can also be
applied to other infinite dimensional Markov processes like those generated
by some stochastic partial differential equations (SPDEs).

The reader is supposed to know basic concepts and results of stochastic
analysis such as the It6 integral and continuous-time martingales and to
know the concept of a Markov process. Knowledge of stochastic differential
equations (without delay) is useful but not required.

1 Introduction

This section is supposed to be a gentle introduction to stochastic delay equations
with as little theory as possible.



1.1 Existence and uniqueness of solutions: a special case

Consider the equation

AX (1) = g(X (¢ - 1)) dW (2), (1.1)

where W (t), t > 0 is a one-dimensional Brownian motion defined on some proba-
bility space (€2, F,P) and ¢g: R — R is continuous. We want to solve the equation.
This means that we look for a stochastic process X (t), t > 0 which satisfies (almost
surely)

X(t) :X(O)+f0tg(X(s—1))dW(s) (1.2)

for every t > 0. In order to have any chance of obtaining a unique solution, we need
to specify an initial condition and it is clearly not enough to specify X (0) only:
we need to specify X (s) for all s € [-1,0] (or some other interval of length 1). Let
n be an arbitrary (deterministic) function in C := C'([-1,0],R). Then we can solve
equation (1.1) with initial condition 7 explicitly and uniquely on the interval [0,1]
by

X(1) =n(0)+ [ gla(s - 1)) (s).

The solution is a continuous process on the interval [0, 1] and therefore serves as an
initial condition to solve the equation on [1,2] and so on. Observe that unlike the
case of stochastic differential equations without delay we do not need any growth
condition on ¢ in order to guarantee existence of a global solution (for such an
equation). Neither do we require g to be locally Lipschitz continuous to ensure
uniqueness of solutions (even continuity of g is not really needed but we will still
assume this property to hold in the following).

1.2 Continuous dependence on the initial condition

Next, we can ask whether the unique solution X depends continuously on the initial
condition 7. We always equip the space C with the supremum norm | -||e. In order
to answer the question, we need to clarify which topology we are working with.
In order to ease the exposition, let us assume that g satisfies a global Lipschitz
condition, i.e. there exists some L > 0 such that |g(x)-g(y)| < Ljx-y| for all z,y € R.
Let us temporarily denote the unique solution of (1.2) with initial condition 1 by
X" and let us just look at the solution on the interval [0, 1].

Proposition 1.1. The map n — X7(t) is continuous from C to L*(Q2, F,P) for
every t € [0,1].



Proof. Let 1,¢ € C. Then
BIX7(0) - X*(0)
“E0)+ [ g0rs - 1D)AW () ~6(0) - [ g(o(s- 1) W ()
<20n(0) - 9O + 28| [ g(n(s - 1)) - g(6(s - 1)) AW (s)]

=20(0) - 6(O)P +2 [ Jg(u(s - 1)) - g(o(s - )P ds
<2(1+12)n- 912,

so the claim follows. O
Remark 1.2. Note that we have proved more than we claimed in Proposition 1.1.

The statement of the previous proposition is certainly no surprise. The follow-
ing proposition (which goes back to S. Mohammed [27]) is more surprising because
there is no analog for nondelay equations. For ease of exposition we just consider
the linear case g(z) = x here.

Proposition 1.3. Consider the solution X" of (1.1) with g(x) = x and initial
condition 1 € C. For any modification of the solutions X", the map n+— X7(1) is
almost surely discontinuous from C to R.

Proof. We show that the map n — X7(1) is almost surely discontinuous at the
point 7 = 0. To see this, let ¢ > 0 and define 15 € C as n5(s) := esin(2wsn),
s€[-1,0], n e N. Then,

Y,:=X"(1)=¢ /01 sin(2msn) dW (s).

The sequence Y7, ... is L.i.d. with £(Y;) = N(0,3¢?). In particular, the sequence
Y1(w), Ya(w), ... is almost surely unbounded and therefore the image of an arbitrary
neighborhood of 17 = 0 under the map ¢ — X?(1) is almost surely unbounded. This
means that the map n —~ X7(1) is almost surely discontinuous. O

1.3 Reconstruction property

Next, we discuss the so-called reconstruction property. Imagine that you secretly
write down an initial condition 7 € C. Then you simulate the solution X of equation
(1.1) with initial condition 7 and you tell me the values of X (¢) for ¢ € [99, 100] say.
Can I recover n without knowing the Brownian motion trajectory ¢ » W (¢)? For



a non-degenerate SDE like dY (¢) = =Y (¢t) d¢t + dW (t) this is certainly impossible.
We claim however that for the solution of (1.1) this is possible almost surely in
case g : R - R is one-to-one and strictly positive. I will try to convince you of
this in the lecture. Let me give you the following hint: the reconstruction uses the
(local) law of the iterated logarithm for Brownian motion.

1.4 Affine equations

Next, we consider the linear (or affine) equation with additive noise
dX(t) =-aX(t-1)dt+dW (1), (1.3)

where a > 0 and we continue to assume that W is one-dimensional Brownian
motion. The equation is not of the type (1.1) but it follows as before that for
every 1 € C, equation (1.3) has a unique solution X (¢), ¢ > 0 with initial condition
1. The equation resembles the SDE

dY (1) = —aY (t) dt + dW (2),

the solution of which is called Ornstein-Uhlenbeck process which is a real-valued
Gaussian process and which has the property that for every initial condition y € R,
the law of the solution Y (¢) with initial condition y converges in the total variation
norm to NV(0, 5-) (the definition of total variation convergence will be given later).
Is the same true for solutions to (1.3)7 Well, this depends on the value of a. If a
is too large, then solutions start to oscillate more and more as time increases and
the law of X (¢) will not converge to anything in any reasonable sense when ¢ — oo.
It is not hard to show that the critical value of a is 7/2: for a € (0,7/2), the law
of X (t) converges to a Gaussian distribution in the total variation norm as ¢t - oo
for any initial condition while for a > /2 this is not the case.

Generally, affine SFDEs with additive noise (also multi-dimensional) can be
solved explicitly in terms of the fundamental solution of the homogeneous equa-
tion just like inhomogeneous affine FDEs by a variation-of-constant formula. It is
apparent from that formula that the solution of such an SFDE with determinis-
tic initial condition is a Gaussian process. More general affine SFDEs have been
treated in [14], [28], and [17].

1.5 The linear chain trick

Finally, we will briefly discuss the so-called linear chain trick which is well-known
in the mathematical literature of deterministic FDEs and which allows to convert



certain classes of SFDEs into an equivalent finite system of SDEs. We start with
the following example:

dX (t) = af fi X (t+5) e ds) dt +b( f: X(t+s)ersds)dW (),  (14)

where A\, > 0 and W is standard Brownian motion as before. This equation has
unbounded delay and therefore we should specify an initial condition n which is a
continuous function from (—oo, 0] to R such that |f70°0 e n(s) ds| < oo for v e {\, u}.
Defining
0 0
Y(t):= f X(t+s)erds, Z(t):= f X(t+s)e"ds

—00 —

we can replace (1.4) by the following equivalent system of SDEs without delay

AX () = a(Y (1)) dt +b(Z()) dW (1)
dY (t) = (X(t) =AY (¢)) dt
dZ(t) = (X (t) - pZ(t))dt.

Analyzing this system is often much easier than analyzing (1.4) directly. This lin-
ear chain trick works for more general SFDEs but it does not work for every SFDE.
In particular it never works for SFDEs with bounded delay (unless the SFDE is
actually an SDE).

Further reading: The article [27] by S. Mohammed does not only contain the
above proof that the solutions of the SDDE (1.1) with g(z) = = almost surely fail
to depend continuously upon the initial condition. He also shows that at least
there is a modification which almost surely depends measurably upon the initial
condition (with respect to the L? norm), but (quite surprisingly!) any modification
which depends measurably upon the initial condition is necessarily almost surely a
nonlinear function of the initial condition. [30] contains a larger class of examples
of linear SFDEs which are almost surely discontinuous with respect to the initial
condition.

2 Existence and uniqueness of solutions

In this section, we will provide sufficient conditions for existence and uniqueness
of strong solutions of an SFDE with bounded memory. Let r > 0 be the maximal
delay, m,d > 1, and let C := C([-r,0],R?) be the space of continuous functions
from [-r,0] to R equipped with the supremum norm |.|. and the Borel-o-field



B(C). Recall that C is a Polish space, i.e. separable and complete with respect to
|- |- Let W be m-dimensional Brownian motion. Consider the equation
dX(t) (X)) dt+g(Xy)dW(t), t>0 (2.1)
)(b = T,

where z€C, f:C > R? and ¢g:C - R¥™ are continuous and bounded on bounded
subsets and where we used the standard notation X;(s) := X (t+s), s € [-r,0]. For
A e R™™m we denote the Frobenius norm by

A] = (Tx(AA"))" = (;agjy@

Theorem 2.1. Assume that there exists a constant K such that f,g satisfy the
following one-sided Lipschitz condition:

2(f () = f(),2(0) = y(0)) + lg(x) - g < K|l - y %

for all z,y € C. Then, equation (2.1) has a unique strong (global) solution X.
Further, for each t >0, the map x — X7 which maps the initial condition to the
solution segment at time t is continuous in probability. In fact the following holds:
for every p € (0,1) there exist universal constants c1(p),ca(p) such that for every
T>0 and z,y € C we have

E SuloTng”(lt) — XV < (K +1)P||lz - y|Zea(p) exp{ei (p) KT,
0<t<

where X# denotes the solution of (2.1) with initial condition z € C.

Remark 2.2. Let us check first that the one-sided Lipschitz condition in the
theorem is weaker than a Lipschitz condition. Assume that both f and ¢ satisfy a
global Lipschitz condition, i.e. there exist constants Ly and L, such that

[f(@) = FWI< Lyllz =yl lg(x) =gl < Lgllz - ylo, for all 2,y eC.

Then, by the Cauchy-Schwarz inequality,

2(f (@) = f(y),2(0) = y(0)) + lg(=) - g(W)I* < 2Ly |2 — y[[|x(0) - y(0)| + L= - y[%
<(2Ls+ Ly) |z -yl
so the assumption in the theorem holds for K =2L; + L2.

As an example which satisfies the condition of the theorem but does not satisfy
a global Lipschitz condition take d = m =1, g =0 and f(x) = —z(0) or f(z) =

—sign((0))/|z(0)]-



Before proving Theorem 2.1, we quote the following Stochastic Gronwall lemma
which is proved in [34].

Proposition 2.3. Let Z be a non-negative process with continuous paths defined
on [0, 00) which is adapted with respect to a given filtration (F;), t >0 and which
satisfies the inequality

Z2(t) < K fot Z*(u) du+ M(t) + C,

where C, K >0 and M is a continuous local martingale with respect to the same
filtration satisfying M(0) =0 and Z*(u) := SUPycsey Z(S) is the running supremum
of Z. Then, for each 0 < p < 1, there exist universal finite constants c1(p), c2(p)
(not depending on M,C, K or T') such that

E(Z*(T))? < CPey(p) exp{c1(p) KT} for every T > 0.

Proof of Theorem 2.1. We skip the proof of existence of a strong solution and just
mention that it can be achieved by first defining an Euler approximation ¢™ with
step size 1/n and then showing that this sequence - stopped when the process
becomes large - is a Cauchy sequence in an appropriate complete metric space.
One then has to show that the limit ¢ really solves the equation. Details of the
proof can be found in [34] (under even slightly weaker assumptions), see also [40]
for the somewhat easier proof in the non-delay case.

Let us now show uniqueness (which is easier than showing existence). Let X
and X be two solutions with the same initial condition z € C. Then, using It6’s
formula, we get for t > 0

dIX(t) = X (8] = 2(X (1) - X (1), f(Xe) = f(Xp)) dt + [g(Xe) = g(Xo) P dt + dM(2),

where M is a continuous local martingale satisfying M (0) = 0. Using the assump-
tion in the theorem, we obtain

X(0) - XOP <K [1X, - X s+ M(0).

Define Z(t) := | X (t)- X (¢)|?. Then Proposition 2.3 implies Z = 0, so X = X almost
surely.

Finally, we show the continuity property in the statement of the theorem. Let
x,y € C and denote the solutions starting at = and y by X* and XY respectively.
Then we have, for ¢ > 0,

dIXT()-XY ()P = 2(X7(1)-XV(2), f(X7)-f (XV)) dt+g(X7)—g(XP)? dt+dM (1),
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where M is a continuous local martingale satisfying M (0) = 0. Using the one-sided
Lipschitz condition in the theorem, we get

XC(6) = XU < Je(0) -y () + K [ 17 = X2 ds + M (1),
Define Z(t) := | X*(t) — X¥(t)[?>, t > 0. Then, for ¢ >0,
2(6) <10(0) - y(O)F + K [ 2*(s)ds + Ko = yl2 + M(2)
and Proposition 2.3 implies for 7> 0 and p € (0, 1)
E(Z*(T))? < (K + 1)z - y|*)"c2(p) exp{ei(p) KT},

so the continuity claim follows. ]

Further reading: The idea to prove existence and uniqueness of solutions to an
SDE which satisfies a one-sided Lipschitz condition goes back to Krylov (see [16]).
An extended version of these results for SDEs can be found in [24]. [25] contains
an existence and uniqueness proof for SFDEs with jumps and random and time-
dependent coefficients. Existence and uniqueness of weak solutions for SFDEs with
additive noise and very general drift f can be found in [36].

3 Markov property, strong Markov property and
Feller property

In this section we prove the Markov and Feller property of solutions to SFDEs.

Proposition 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then the
solution process X, t 20 is a C-valued Markov process. In fact, X;, t >0 is even a
Feller process, i.e. the map x — Ep(X?) is continuous from C to R for every t >0
and every bounded and continuous function ¢ from C to R.

Proof. We follow the proof of Proposition 4.1. in [2]. FixO<s<tandlet h:C - R
be bounded and measurable. Our goal is to show that

E(h(X)|Fs) = E(h(X3)|Xs), (3.1)

where F, denotes the complete o-field generated by W (u), 0 < u < s which implies
the Markov property. To establish (3.1) consider the equation

XED ) =2(0)+ [T dus [TgXE) W (W), vzs aee. (32

8



It follows from the previous section that this equation has a unique strong solution
and Xt(s’z) is (Gst, B(C))-measurable, where G, is the complete o-field generated
by W (u)-W(s), s <u < t. Introduce the function ® : CxQ - C, (z,w) Xt(s’x)(w).
We saw that for fixed = € C the function ®(z,-) is (Gs, B(C))-measurable. The
last statement in Theorem 2.1 says that the map z — ®(z,-) is continuous in
probability. Since C is Polish, the map ® has a modification ® which is jointly
measurable (see [10]). Strong uniqueness of solutions yields that

Xy (w) = d(X,,w) as.,

where we used the fact that X, is Fy-measurable and the o-fields Fs and G, are
independent.

The fact that ® is jointly measurable shows that h(®(Xj,-)) is o(Xs, Ger)-
measurable. Using the independence of Fs and G, once more, we obtain

E(h(X)|Fs) = E(M( (X, )| Fs) = Ef (B(,-))|a=x,

and

E(h(X0)1X,) = E(h(P(X;,))|X,) = Bf(®(,-))la-x,

and therefore identity (3.1) holds.
The Feller property is an immediate consequence of the last statement of The-
orem 2.1. [

We will not give a rigorous definition or proof of the strong Markov prop-
erty which roughly speaking states that the Markov property does not only hold
for fixed times but also for stopping times. A well-known theorem states that a
Feller process with (right-)continuous trajectories automatically enjoys the strong
Markov property (see for example [40], Theorem 4.2.5 or [35], Theorem 3.3.1)
showing that the strong Markov property holds in our set-up.

4 Flows

In this section, we will provide sufficient conditions which guarantee that an SFDE
generates a stochastic semi-flow (we will not discuss the related question under
which an SFDE generates a random dynamical system, cf. the comments at the
end of this section). Since by definition a semi-flow depends continuously upon
the initial condition and we already know that this property fails to hold for some
equations for which the coefficient in front of the noise depends on the past, we
only discuss equations for which only the drift depends on the past. Let us consider

AX (1) = £(X,)dt + iai(X(t))dWi(t). (4.1)

9



It turns out that under slight regularity assumptions one can represent the semi-
flow generated by the solution X via the flow generated by the same equation but
without drift (or at least without the part of the drift which depends on the past).
We assume the following:

e f can be decomposed in the form f(n) = H(n) +b(n(0)), neC.

e H is globally Lipschitz continuous, i.e. there exists L such that |H(n) -
H(7)| < L|n-1n]e for all n, neC.

® b oy,...,0, € C’é’(s for some ¢ € (0,1).

Consider the SDE (without delay)

4Y (£) = b(Y (1) dt + 3 o, (¥ (1) dWi(t), £ > s (4.2)
Y(s) =z,

where s > 0.
We start with the following lemma which is a special case of Theorem 4.6.5
in [21].

Lemma 4.1. There exists a process W : [0,00)2 x R? x Q — RY which satisfies the
following:

(i) For each s> 0, v € RY, the process ¥si(x,w), t > s solves (4.2).
(ii) For each s> 0, x € R and w € Q we have VU, ((z,w) = .

(111) The maps (s,t,z) » Vg (z,w) and (s,t,x) » D,V (z,w) are continuous
for each w € Q. Further, V,,(.,w) is a Cl-diffeomorphism for each s,t > 0
and w € ).

(iv) For each s,t,u>0, and w €2 the following semi-flow property holds:
U u(ow) =V, (Lw) o Uy, (L, w).
Note that by (ii) and (iv) we have U ,(.,w) = (\I!t,s(.,w))_l.

Let U(u,z,w) = ¥, (x,w). We define the processes £ : [0,00) x R? x ) — R4
and F:[0,00) x RIx C x Q) - R? by

g(uawi) I=‘I’(’U,, -,w)‘l(x) = ‘I]u,O(wi)v
F(u,z,n,w) :=(Dm\Ils,t(u, x,w))_lH(n)
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and consider the (random) equation

z(t,w) = V(t, [5(3, n(0),w) + fst Flu,&(u,2(u,w),w), z,(w)) du],w) (4.3)
for ¢ > s with initial data
x(t,w)=n(t-s) for te[s-r,s],

where 7 is an Fs,-measurable C-valued random variable. We suppress the depen-
dence of z on s and 7 for notational simplicity.

It turns out that solving (4.3) for x with initial condition 7 is equivalent to
solving (4.1) with initial condition 7 at time s. Moreover, (4.3) can be solved w-
wise and the solution has very good regularity properties. At first, it is not clear
whether (4.3) admits global solutions (which exist for all ¢ > s). One direction of
the equivalence claim can be shown as follows (see Proposition 2.2 in [4] for details
and for the converse): assume that z solves (4.3) for some s >0 and 7 up to some
stopping time. Then z is a continuous semimartingale to which we can apply It6’s
formula and obtain that = solves (4.1).

Next, one can check that on a set of full measure €y, (4.3) admits a unique
local solution up to the explosion time for all s and 7. This solution depends
continuously on (t,7n) for each s and the solution enjoys the following semi-flow
property for every 0 < s<t<wu, neC, and w e ()y:

.I’(S,??, U,CL)) = x(t,xt(s,n,t,w),u,w),

up to explosion (see Proposition 2.3 in [4] for a proof).

It is natural to ask whether the solution of (4.3) can be shown to exist globally.
It is reasonable to conjecture that this is true since we assumed H to satisfy a
global Lipschitz condition. It seems however that this conjecture has not been
proven so far and it might even be wrong. The following sufficient conditions for

(4.1) to admit a global solution have been proven in [31] (see also Proposition 2.4
in [4]).

Proposition 4.2. Under the assumptions above, each of the following conditions
guarantee that the solutions to (4.3) exist globally:

(i) There exist ¢ >0 and v € [0,1) such that |H(n)| < c(1+|n|%) for allneC.
(ii) There exists € (0,7) such that H(n) = H(7) whenever n|i_, -5 = 7|[-r-5]-
(111) For all we Q) and T € (0,00), we have that

sup ||(Dx\lf07u(x,w))71\| < 00

0<u<T,zeRd

11



Note that property (iii) does not always hold under our assumptions.

The reader might ask if we really need to exclude all kind of delays in the
coefficient in front of the noise if we want to have a chance that the SFDE generates
a semi-flow. This is not the case. As an example, consider the scalar SFDE

dX () = a(X;) dt + o( ft_tl X(s)ds)dW (t),

where d =m =7 =1. Writing Y (¢) := ftt_l X(s)ds, t >0, we obtain the equivalent
system of SFDEs

AX () = a(X,) dt + o (Y (1)) AW (1)
dY (t) = (X(t) - X(¢t-1))de.

If a satisfies (ii) in Proposition 4.2 and o € Cé’g for some ¢ € (0,1), then the
previous result shows that the equation generates a stochastic semi-flow if we use
the decomposition H(n) := (a(n1),-n2(-1)) and b(x,y) = (0,2). Note that — in
general — neither of the conditions in the previous proposition holds if we use the
decomposition H(n) = (a(n),12(0) = n2(-1)), b= 0 instead.

Remark 4.3. The reader may wonder why we need extra conditions in Proposition
4.2 to guarantee non-explosion of the flow. After all, Theorem 2.1 tells us that a
global solution exists when f and g (i.e. H, b, and o) satisfy a global Lipschitz
condition. Well, there is a subtle difference between global existence of solutions
and global existence of semi-flows and the former does not imply the latter even if a
local semi-flow exists. The former property is ofen referred to as weak completeness
and the latter as strict or strong completeness. [22] contains an example of a two-
dimensional SDE without drift and with ¢ bounded and C* for which strong
completeness does not hold (but weak completeness does).

Further reading: The presentation of the material in this section is based on [31]
and [4] (the latter being more general by also allowing for random and time-
dependent coefficients and more general driving martingales). [31] and [32] focus
on random dynamical systems: we show that the class of SFDEs treated above do
not only generate a semi-flow but even a random dynamical system. [32] contains a
statement about stable and unstable manifolds of the linearization of the solution
around a stationary trajectory.

5 Invariant measures: existence

Let T be either [0,00) or Ny. Let Xy, t € T be a Markov process taking values in a
measurable space (E,£). Whenever (E,d) is a metric space, £ is supposed to be

12



the Borel-o-algebra on E. In any case we assume that all singletons in £ belong
to £. We denote the space of bounded measurable functions on (F,&) by b€.
If (E,d) is metric, then C,(F) denotes the space of all bounded and continuous
functions on E. M;(FE) denotes the set of probability measures on (F,£).

Let us briefly recall some basic concepts:

o A family P;, t € T of Markov kernels on (F,€) is called a (normal) Markov
transition function if Py =1d and P,,, = P, o P, for all s,t € T.

e To each Markov kernel K on F we associate a map from b€ to b€ by Ky(z) =
[ o(y)K(z,dy) (we will use the same symbol for the kernel and this map).

e To each Markov kernel K on E we associate a map K* from M;(E) to
M (E) by K*u(A) = [ K(x,A)du(x), where A €&.

Definition 5.1. A probability measure p on (E, &) is called invariant (probability)
measure (abbreviated ipm) of the Markov semi-group (P,), t € T if

pu(A) = f Py(z,A)du(z) for all te T, Aef.
E

Note that when we speak of an invariant measure then we always mean invariant
probability measure. An important question in the theory of Markov processes is
whether a given Markov process (or the associated Markov semi-group) admits an
invariant measure p and if so whether or not y is unique. If so, then it is natural to
ask whether the transition probabilities P;(z,.) converge to p as t — oo for every
x € E (for this question to make sense we need to specify a topology on M;(FE)).
Finally, if this is true, then one can ask about the speed of convergence. In this
section we treat the existence question only.

The following paragraphs including Theorem 5.3 and its proof are adapted
from [5]. Missing proofs can be found there. We start with a well-known sufficient
criterion for the existence of an invariant measure which is due to Krylov and
Bogoliubov. We formulate the result for continuous time (it should be clear how
to treat the easier discrete time case). We will assume until further notice that the
state space (E,d) is Polish, i.e. separable with complete metric d. We denote the
open ball with radius ¢ around = € E by B(x,9).

Definition 5.2. Let (P,) be a Markov semi-group on (FE,d).

e (P,) is called stochastically continuous if

ltilr(l)ﬂ]%(x,B(x,(i)) =1, forall ze E,0>0.

13



e A stochastically continuous Markov semi-group (FP;) is called Feller semi-
group if P,(Cy(E)) ¢ Cp(E) holds for every t > 0.

e A Markov process (X;) is called Feller process if its associated semigroup is
Feller.

For a Feller semigroup (P;) we define
1 rT
Re (e, B) = f P(x,B)dt, 1€ E, T>0, BeE&,
0

(measurability of the integrand with respect to (¢,z) is shown in [5]). Ryr is a
Markov kernel, so we can define Rj..

Theorem 5.3. (Krylov-Bogoliubov). Let (P;) be a Feller semigroup on (E,d). If,
for some v e M1(E) and some sequence T, 1 oo, the sequence RY v, n e N is tight,
then (P,) has at least one invariant probability measure.

Proof. Since E is Polish, Prohorov’s theorem tells us that tightness of a sequence of
probability measures implies the existence of some p € M;(E) and a subsequence
of R} v which converges to p weakly (we denote the subsequence with the same
symbol for notational simplicity). Fix v > 0 and ¢ € C,(F). Then P,p € Cy(E)
and — abbreviating (¢, ) := [ ¢ dk for 1) € C4,(E) and a finite measure x on E —

(0, Prp) = (Pop, p) = (Pogp, lim Rp, v)

1 T,
= lim —(P,p, Plvds)
0

1 Thn+v
=ALI& an(907/U Ps*yd3>
) 1 Tn ) 1 Th+v . 1 v .
=i (te. [ Pvds) e e, [ Pivds) - e, [ Pivas))
= (o, ).

Since this holds for all ¢ € Cy(F) it follows that P*u = p and the theorem is
proved. O

Note that the previous theorem shows in particular, that a Feller transition
function on a compact state space E admits at least on invariant measure.

Unfortunately the conditions of Theorem 5.3 can rarely be checked directly in
case F is non-compact. A well-known method is to construct a Lyapunov function.

Let us look at the special case of SFDEs and find sufficient conditions on the
coefficients for which the assumptions of Theorem 5.3 are satisfied and therefore
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an invariant measure exists. We will always assume that the coefficients satisfy
the assumptions of Theorem 2.1. We denote by Bg the closed ball in C around
0 with radius R. (FP;) is the Feller semigroup associated to the solution process
(Xt), t 20 of the SFDE (2.1) and P,(-) denotes the probability of an event subject
to the condition X = =z.

The following result is a straightforward consequence of the last statement in
Theorem 2.1.

Proposition 5.4. For every R>0, € >0, and T > 0 there exists S > R such that

inf P,(|IX ()| < S forallte[0,T])>1-ec.
xeBR

Proposition 5.5. Assume that there exists an initial condition x € C such that

t

lim lim inf1 Ps(x, BR) ds=1.

—o00 t—o0 0
Then (P;) admits an invariant measure.

Proof. Fix ¢ >0 and R > 0 such that

t

1
liminf— | Py(z, Bg)ds>1-¢/2.

tooo 0

Choose a compact set C' in C such that

inf P.(y,C)>1-¢/2.
yeBR

It is easy to see that such a set C' exists by using the previous proposition and the
fact that ¢ is bounded on bounded subsets of C.
Then

Py(z,C) =P,(X, € C) =P,(X, € C|X,_, € Bg)P,(Xs_ € Bg)
> (1-¢/2)Py( X,y € Bg).

Hence,
1t 1 [t
liminf—/ Ps(:c,C)dsz(1—5/2)liminf—f P, .(x, Br)ds
tooo ¢t Jo t-oo t Jo
>(1-¢/2)" 2 1-¢,

and it follows easily that the assumptions of Theorem 5.3 are satisfied for v = 9,
and any sequence T}, - oo. [
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Remark 5.6. The reader may wonder if the liminf in the statement of Proposition
5.5 can be replaced by limsup. My answer is: I don’t know (if you know the answer:
please tell me).

Proposition 5.7. Assume that there exists some T’ >0 such that

hm hmlnf— Z PmT(a: BR) 1.

k—)OO m= 1

Then (P,) admits an invariant measure.

Proof. Using Proposition 5.5 we see that for € € (0,1) and R > 0 there exists S > R
such that

i%f P,(|X(t)| < S for all t € [0,T]) >1-e.

TEDR

This implies that for each m € Ny and s € [mT, (m + 1)T'], we have
P,(Xs € Bs) > (1 -&)Py(X,ur € Br)

and therefore

t—o0

1 rt 1 &
liminf — Py(z,Bg)ds > (1 -¢)liminf — Z PmT(x,BR)

t 0 k— o0 k m=1
so the assertion follows from the previous proposition by letting R — oo and using
the assumption in the proposition. ]

The following proposition provides a useful criterion for the existence of an
invariant measure of an SFDE in terms of a Lyapunov function V.

Proposition 5.8. Assume that V : C — [0,00) is measurable and there exist T >
0 and an increasing function ¢ : [0,00) = R such that limg_. . p(R) = oo and
E.V(Xr)<V(z)-¢(|z|e). Then P admits an invariant measure.

Proof. Note that ¢(0) <0. For ke N and R >0, we have

EV(Xir) - V(@)= Y Eo(V(Xor) = V(Xim1yr))

IN
Mwi

( P(R)Po(| X n-yrl > R) = ()P (| X(u-nyr| < R))

'—‘»—\

=5 (= () + (9R) = ()oKt € Br)).

m=0
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Since V' > 0, we get

R =
0<—p(R) + (¢(R) = @(0)) liminf - 5 Po(Xynr € Br).
o0 m=0
If R is so large that p(R) = ¢(0) > 0, then

o k=1 p(R)
i 7 2 P (Yo € Be) > o

1
k—oo k‘
and the claim follows from Proposition 5.7 since limp_,o p(R) = co. O
As an application, we present the following example.

Proposition 5.9. Consider the equation
AX (1) = (X (D) + LX) dt + g(X,) AW (1), Xo =7 €C,

where (in addition to the assumptions in Theorem 2.1) fo and g are bounded and
M sup, Lo (f1(v), v)/v? < 0. Then the equation admits an invariant measure.

Idea of the proof. We try the Lyapunov function V(z) := |z(0)[>. Using Ito’s for-
mula and Young’s inequality, we get

dX(OF = 2(X (1), A(X(#))) dt + 2(X (1), fo(Xp)) dt + |g(X)|* dt + dM (2)
< —ky| X () dt + ko dt +dM ().

where k1, ko > 0 and M is a continuous local martingale. It is rather clear that
this should imply that the assumptions of Proposition 5.5 hold (we will not check
this here), but unfortunately V' (x) := [2(0)|?> does not satisfy the assumptions of
Proposition 5.8 since V' (z) = 0 in case x(0) = 0 but still |z|. may be arbitrarily
large and it is impossible that E,V (X7) < V(x) — ¢; in that case.

Alternatively, one can try V(z) = [2(0)|?+dD(z)? for some ¢ > 0, where D(x) :=
SUD; e[_r01 |7(t) — 2(5)] is the diameter of the range of x € C. Roughly speaking,
if || is large, then either |z(0)[? is large in which case E|X (r)|?> will be much
smaller due to the strong drift towards the origin or |z(0)]? is small and D(x) is
large in which case E|X (7)|?> will not be much larger than |z(0)|*> but ED(X,)?
will be much smaller than D(x). O

Next, we look at a more complicated example (for proofs and further results,
see [2]). For x € C, D(x) = sup; j(_.q |7(t) — ¥(s)| denotes the diameter of the
range of x € C as in the previous example.
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Proposition 5.10. Assume that the coefficients f,g in SFDE (2.1) satisfy, in
addition to our general hypotheses in Theorem 2.1,

e there exists K >0 such that for all x,y € C we have
(f(@) = f(y),2(0) =y(0)): +lg9(=) - g(YI* < K|z - y|2

e sup,ec g7 ()] < oo

e g is globally bounded and f is sublinear, i.e. there exist $€[0,1) and K >0
such that

()] < K(1+]]%,)
for all z €C.

e There exist constants ay,as > 0 and a function k : R, - R, such that
lHm, o (K(2)27F) = 00 and

(f(x),2(0)) < —ai]x(0)|, for any x € C with D(x) < k(|Jz(0)|) and |x(0)| > M.

Then, the Markov process generated by the solution process admits an invariant
measure.

Remark 5.11. In fact the conditions even guarantee uniqueness of an invari-
ant measure and exponential convergence (in a suitable sense) of the transition
probabilities to the invariant measure, so one should certainly expect that the
non-degeneracy assumption on g in the theorem is not needed if one just wants to
show the existence of an invariant measure. The proof of the proposition is a bit
lengthy. The Lyapunov function we use is

V() = exp{Az(0)] + (D(2) = 7]2(0)").}, w eC,

where A\, > 0 are suitably chosen constants. Note that the first condition in
the proposition is slightly stronger than the one in Theorem 2.1. It means in
particular that ¢ satisfies a global Lipschitz condition. It is not clear to me if
everything remains true if the + after the ) is deleted.

Further reading: General results on the existence of invariant probability mea-
sures can be found in the monograph [26]. [36] contains results on the existence
of invariant measures for solutions of SFDEs with non-degenerate additive noise
which are not necessarily Feller (and hence Theorem 5.3 cannot be applied). [7]
contains an existence result for an invariant measure for an SFDE which is similar
to the one in Proposition 5.9: f, and ¢ are not necessarily bounded but linearly
bounded and f; grows superlinearly, i.e. limjyo{f1(v),v)/|v]? = —oc0.
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6 Uniqueness and stability of invariant measures:
Coupling

A classical way to prove uniqueness of an invariant probability measure of a Feller
semigroup is to show that the semigroup is irreducible and strong Feller. Has-
minskii’s theorem then states that the semigroup is tq-reqular for some ty > 0 and
Doob’s theorem states that a tg-regular Feller semigroup can have at most one
invariant probability measure p and if p exists, then all transition probabilities
converge to u (in total variation). We will neither explain these terms nor provide
proofs and refer the interested reader to Chapter 4 of the monograph [5] instead.
We point out that a rather general version of Doob’s theorem (more general than
the statement in [5] with a rather short and transparent proof based on coupling)
has been shown in [19]. This uniqueness criterion can be applied to a large class of
SFDEs but even if the noise coefficient of the SFDE is non-degenerate (and there-
fore the Markov semigroup is irreducible) the strong Feller property, which says
that the semigroup maps b€ to Cy,(F), fails to hold in many interesting examples.
It fails in particular whenever the reconstruction property addressed at the begin-
ning of these notes holds. We will therefore not pursue this approach any further.
Instead, we will introduce the coupling technique which can be employed to show
uniqueness of an invariant measure as well as convergence of transition probabili-
ties to the invariant measure (the latter property is often referred to as stability or
asymptotic stability of the invariant measure). We point out that Doeblin seems
to have been the first person to employ the coupling technique to show uniqueness
of an invariant measure and convergence (including rate of convergence) of the
transition probabilities (see [6]). The coupling technique has been used to show
convergence of transition probabilities for irreducible and aperiodic discrete time
Markov chains with countable state space but has also proven useful in many other
cases (we just mention the Propp-Wilson algorithm as an example).

We start by defining the two most important convergence concepts for mea-
sures. Let (E,d) be a metric space with Borel-o-algebra £.

Definition 6.1. For u,v € M(FE) we call
drv(p,v) = sup u(A) = v(A))|

total variation distance of p and v.

It is easy to check that drv is a metric on M;(E) which takes values in [0, 1].
Note that p,v € My(E) are singular if and only if dpry(p,v) =1 (recall that the
probability measures p and v are called singular if there exists some A € £ such
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that u(A) =1 and v(A) =0). Another possibility to define convergence in M;(FE)
is weak convergence.

Definition 6.2. We will say that u,, t € T in M;(E) converges weakly to €

Ml(E>7 if
i [ fap= [ fau
holds for every f e Cp(F). In this case we write p; = p.

Note that the total variation distance does not depend on the topology on E.
It makes sense for any measurable space (F,£).

If the space (E,d) is separable, then one can find a metric p on M;(FE) such
that for any sequence pu, € M1(E), n € Ny and € M;(E) we have u,, = p if and
only if lim,, e p(fin, 1) = 0. One such metric is the L'-Wasserstein metric.

Definition 6.3. Let (£, d) be a separable metric space and u,v € Mq(FE). Then
the L'-Wasserstein distance of i and v is given by

p(p,v) = inf /];XE d(z,y) An1dé(x,y), (6.1)

where the infimum is taken over all £ € M;(E x E) such that {77! = pand {myt = v,
where m;: £ x E' — FE is defined as m;(e1,e2) = e;, i € {1,2}.

A probability measure £ € E'x E as in the previous definition is called a coupling
of p and v. Note that we have p(u,v) < drv(p,v) (this follows from (6.1) by
using the estimate d(z,y) A1 <1-0,, and applying the so-called coupling lemma
which can be found in [23], p.19), so on a separable space (F,d) total variation
convergence implies weak convergence. It is easy to see that the converse is not
true.

There are many examples of SFDEs for which the transition probabilities con-
verge to the unique invariant measure in the total variation metric (we will see
this below), but there are also cases, in which the best we can hope for is weak
convergence. One example is the following:

AX (1) = - X (¢)dt + g(X (L - 1)) dW (1),

where g : R — R is strictly positive, bounded and bounded away from 0, strictly
increasing, and C' with bounded derivative. We will see below that the corre-
sponding Markov process has a unique invariant measure g and that all transition
probabilities converge to p weakly. It is however clear that the transition prob-
abilities cannot possibly converge to p in total variation: just as in the example
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discussed in the introduction, the equation has the reconstruction property and
this means in particular that for Pi(x,.) and P,(y,.) are singular for any ¢ > 0
whenever x # y. Therefore, we have drv(P;(z,.), P(y,.)) = 1 and therefore it is
impossible that both P;(z,.) and P;(y,.) converge to u in total variation.

Let us now state two propositions which provide sufficient conditions in terms of
the existence of couplings for uniqueness and asymptotic stability of an invariant
measure, the first for convergence with respect to dry and the second for weak
convergence.

Proposition 6.4. Let (E,&) be a measurable space for which the diagonal A :=
{(z,2) : 2 e E} ¢ E®E and let (Xi)wer be an E-valued Markov process with
semigroup (P;). Assume that for each pair x,y € E, there exists a probability
space (2, F,P) and processes (XF) and (X)) whose laws coincide with that of the
Markov process started at x respectively y and which are coupled in such a way that
limy 0o P(X? = X7) = 1. If there exists an invariant probability measure 7, then it
15 unique and for each x € E we have

lim drv (P 6z, m) = 0. (6.2)

Proof. Note that uniqueness follows from (6.2). If 7 is an invariant probability
measure and z € F/, then

dry (P 6y, ) = sup|m(A) - (F70,)(4)|

= sup| (P m)(A) = (P78, (4)
AeE

= sup| [ (P78,)(A) w(dy) - (Po.)(A)
A€ JE

—sup| [ (P73,)(4) = (P8.)(A) m(dy)
A€ JE

< [ sup|(P8,)(4) - (B8 (A)] m(dy)

< /ES;E? IP(X} € A) -P(XT e A)|n(dy)

< [ P(X7 + X7)|m(dy)

so the claim follows using the assumption thanks to the dominated convergence
theorem. ]

We will now formulate a similar proposition which instead of total variation
convergence yields only weak convergence. On the other hand, we do not require
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that the trajectories starting at different initial conditions couple in the sense that
they become equal but we require only that they are close with high probability.

Proposition 6.5. Let (E,d) be a Polish space and let (Xi)wr be an E-valued
Markov process. Assume that for each pair x,y € E, there exists a probability
space (2, F,P) and processes (XF) and (X)) whose laws coincide with that of the
Markov process started at x respectively y and which are coupled in such a way
that d( X7, X}) converges to 0 in probability as t — oo. If there exists an invariant
probability measure 7, then it is unique and for each x € E we have

tlim Pré, =m,
where the limit is to be understood in the sense of weak convergence.

Proof. If m is an invariant probability measure, = € E and f € Lip,(£) with Lip-
schitz constant L, then

| [ s@)ynta) - [ 1) (Pra)ay)|=| [ B w(a2) - [ B n(az)]
< [ E|FOX) - (x| ()
< [ B((La(x;,X0)) A (21f1.0)) 7(d2)

so the claim follows using the assumption thanks to the dominated convergence
theorem. [

Example 6.6. This is an example of an SDDE to which the previous proposition
can be applied (see [33] for more general equations for which the method works).
For ease of exposition take d=m =1, r=1, a <0 and let g : R - R be bounded
and Lipschitz with constant L. Consider the SFDE

dX(£) = —a X () dt + g(X (£ - 1)) dW (D).

We consider the solution X% of this equation with initial condition x € C. Note
that this defines a coupling for any pair of initial conditions x,y € C (we drive X*
and X¥ with the same Brownian motion). Let Z(t) := X#(¢) - X¥(¢). 1td’s formula
now shows

dZ (D) = -2a|Z ()Pt + (g(X7) - g(XP)) At + 22 (1) (9(XF) - g(X})) AW (1).

Integrating the equation, we see that (since g is bounded) supy.r E|Z(1)]? < o0
for each T'> 0 and

E|Z(H)2 < |Z(0) - 2a[0tIE|Z(s)|2ds ) LfotIE|Z(s 1)Pds.
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This is an inequality for the (deterministic) function ¢ — E|Z(t)|? and it is not hard
to show that lim;. E|Z(¢)|?> =0 in case L is sufficiently small compared to a. At
this point the proof is not yet finished: we have to show that also lim;_,., E|Z;|> = 0
(we will not do this here). Once this is done, then it is clear that the assumptions
of Proposition 6.5 hold and we obtain uniqueness of an invariant measure. Note
that existence of an invariant measure follows from Proposition 5.9.

One certainly expects to have uniqueness of an invariant measure in this ex-
ample in case ¢ is non-degenerate even when the Lipschitz constant L of g is large
but it is impossible to prove this fact using the coupling above: there are examples
of functions g for which the difference of solutions starting at different initial con-
ditions (and which are driven by the same Brownian motion W) does not converge
to 0. In this case one can try a different coupling by driving equations with differ-
ent initial conditions with different Brownian motions. A more systematic way to
prove uniqueness of an invariant measure will be presented in the next section.

7 Uniqueness and stability of invariant measures:
Generalized couplings

We saw in the previous section that even if we know that a unique invariant mea-
sure exists, it may be difficult to show uniqueness by constructing an appropriate
coupling. In this section, we relax the conditions by defining the concept of a
generalized coupling. It turns out that generalized couplings are often much easier
to construct than couplings and that they still allow to conclude uniqueness and
(under additional assumptions) weak convergence of transition probabilities and
sometimes even rates of convergence.

Let us start with an example which is supposed to illustrate the usefulness of
a generalized coupling.

Example 7.1. Consider SFDE (2.1). In addition to the assumptions in Theorem
2.1 we assume that g is non-degenerate in the sense that for every x € C, g(x) has a
right inverse g~ () such that sup,. |¢g~'(z)] < co. Consider the pair of processes

dX (1) = f(Xe) dt + g(Xe) AW (2), Xo =2
dY'(t) = f(Ye) dt + AM(X(2) = Y/(1)) dt + g(Yy) AW (?), Yo =y

where A > 0 is a constant. Note that Y does not solve the original equation.
On the other hand, the additional drift A\(X (¢) — Y (¢)) helps to push Y to X.
It is not unreasonable to hope that for A > 0 sufficiently large, the difference
Z(t) = X(t) - Y (t) will almost surely converge to 0 as ¢t - oo (which is generally
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not true when A = 0). Even though we have changed the law of Y by adding a
drift we can hope that the change is not too severe. Indeed, if lim;,., Z(t) = 0
holds, then (due to the non-degeneracy assumption on g) we may hope to be able
to apply Girsanov’s theorem to see that the law of Y'(¢), ¢t > 0 is equivalent (or at
least absolutely continuous) with respect to the law of the same process with A =0
(i.e. the true solution). If there exist two different ergodic invariant measures pi
and o say, then in some sense they cannot be very close to each other and this
contradicts the existence of a generalized coupling.

Let us first formalize the concept of a generalized coupling (and repeat that of
a coupling).

Definition 7.2. Let (E,£) be a measurable space and let p,v € M;(FE). Then
the set o
Clu,v)={e My(ExE): &npt =, émyt = v}

is called the set of couplings of ;1 and v and either of the sets

G, v) 1= € € My(B x BY s €mpt = o, mg™ ~ )
Cp,v):={Ee My(ExE): émit < p, émy' < v}

is called set of generalized couplings of p and v.

Here, “«<” means that the measure on the left hand side is absolutely continuous
with respect to that on the right hand side and “~” means that both measures are
equivalent, i.e. mutually absolutely continuous.

The following theorem makes the consideration in the previous example precise
in a rather general set-up. It can be found in [20] and generalizes a similar result
in [12]. The statement is formulated in discrete time. Note that uniqueness of the
invariant measure of a continuous-time Markov process follows from the uniqueness
of the invariant measure for the time-discretized Markov process, so there is no
loss of generality in considering the discrete time case only.

Theorem 7.3. Let jy, e be ergodic invariant measures of the Markov kernel P
on the Polish space (E,d). If there exists a set M € EQE for which py ® pe (M) >0
such that for all (z,y) € M and all € >0, there exists £ e C(P,,P,) s.t.

) ) 1n—1 o o
gy = ls%lhmsup— ; f((:v,y) € BN x ENo: d(z;,7;) < 5) >0,

n—oo 1 ;

then py = ps.
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Proof. If puy # ps, then py L ps. Choose m € N. Since F is Polish and every
probability measure on a Polish space is known to be inner regular, there exist
disjoint compact sets K7", KJ* such that p;(K™) >1-1/m, ¢ =1,2. Then there
exists some ¢, > 0 such that ¢, < dist(K7*, K3*).

Let

1 n—-1
A = {5; e BV s = Y 1gen(z;) > M(K{”)}, i=1,2.
n j=0 ¢
Birkhoft’s ergodic theorem shows that
IP’;B(A;") =1 for p;-almost every x € F,;i=1,2, meN.
Therefore, the set
Mn{(z,y) e ExE: P, (A") =1, P,(A3") =1 for all m e N}

has positive p; ® po-measure. Fix some pair (z,y) in that intersection and let £™
be as in the theorem (with € = ¢,,). Note that the pair (z,y) does not depend
on m! Since P,(A7") =1 and &" « P, (and similarly for y), we get £™(A") = 1,
t = 1,2 and, by dominated convergence,

n-1
lim 1255”(:3: Tje K") = pi(K") >1-1/m, i=1,2. (7.1)

By assumption, for m € N we find a sequence n; - co in N such that

n;—1

1
<L (@) e B x B0 (a5 <o),
2 nyi%

Agy

Hence, using (7.1)

Q 1 n;-1 B B

=< — 3 (e e K + (25 ¢ K5Y)) <2/m
Ny 420

which is a contradiction in case m > a,,/4, so we have proved the statement in

the theorem. O

Remark 7.4. Theorem 7.3 remains true if we relax the conditions on d as follows.
We just assume that d is a positive definite and lower semi-continuous function
from E x E to [0,00) (such a function is sometimes called a premetric). This
relaxation sometimes allows to construct generalized couplings more easily. It is
easy to check that the proof still works: all we have to check is that the d-distance
of two disjoint compact sets in FE is strictly positive and this follows immediately
from lower semi-continuity.
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Remark 7.5. The result is wrong without taking averages. As an example take
E =1[0,1), u1 = 0o, p2 = Lebesgue measure and consider the deterministic Baker’s
transform x ~ 2z mod 1.

Remark 7.6. The assumptions in Theorem 7.3 are insufficient to show weak con-
vergence of transition probabilities. As an example (with discrete time), take
E = Ny with transition probabilities pog = 1, pjj-1 = 1/3, pjj+1 = 2/3, j > 1. The
assumptions of Theorem 7.3 are satisfied with M = E x E (and hence the invariant
measure g is unique) but clearly transition probabilities starting from 7 > 1 do not
converge to dy (neither in total variation nor weakly).

Next, we address the question of weak convergence of transition probabilities.
[12] contains general results in this direction which are then applied to SFDEs
(without using generalized couplings). Here, we present the approach in [20] which
uses generalized couplings. We just present the statements and basic ideas and refer
the reader to [20] for proofs. We will use d(u,v) (rather than p(z,y) to denote the
Wasserstein distance associated to d which was introduced in Definition 6.3.

Theorem 7.7. Let P be Feller. Let u be an ergodic invariant measure and p ®
u(M) =1. If for each (x,y) € M

sup limlim inf{(d(Xn7 Y,) < 6) >0,
¢eO(P, py) V0 "7

then

u(a: : d(Pn(q;, .),,u) > 5) -0, n—>o00, >0.

We can give a stronger conclusion if we assume more regularity on the semi-

group.
Definition 7.8. X is called an e-chain w.r.t. the metric d if for any z € £/, £ > 0
there exists d > 0 such that

d(P.(x,.), P.(y,.)) <e, neNy, d(z,y) <0.

Proposition 7.9. If, in addition, X is an e-chain, then

P.(y,.) = p for p-a.a. ye E.
Example 7.10. F = {0} u{27% ke Ny}. Consider the deterministic map
1 1

- - -~ 1-0~0.

8

The chain is Feller (with respect to the Euclidean distance). It is not an e-chain,
but satisfies all other previous assumptions and conclusions. The chain does not
satisfy the asymptotic strong Feller property introduced by Hairer and Mattingly
(for those who know this concept).
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The next theorem provides sufficient conditions for the convergence of the tran-
sition probabilities for a given initial condition x.

Proposition 7.11. Under the conditions of Theorem 7.7, the chain X is mixing
w.rt. Py, ice. Eu(f(Xo0)9(Xn)) = Euf(Xo)Eug(Xo) for all f,gebE.

Theorem 7.12. Assume that v is an ergodic invariant measure such that X is
mizing. Fix x € E and assume that there exists M € £ such that (M) >0 and for
every y € M there exists £ € C(P,,P,) such that m (&) ~P, and

lim ¢(d(X,,,Y,) <e)=1

for every € >0. Then P,(z,.) = p.

Remark 7.13. In previous theorem, the condition m(§) ~ P, cannot be dropped!
We take the same example as in Remark 7.6: £ ={0,1,2,...}, poo = 1, pis-1 = 1/3,
Dii+1 = 2/3, 1= ]_,2,

For each i # 0 there exists £ € C(IP;, Py) such that m5(€) = Py and the trajectories
a.s. meet after finite time. Nevertheless, the transition probabilities from ¢ # 0 do
not converge to p = dy.

Remark 7.14. All of the previous results (uniqueness and convergence of all
transition probabilities) can be applied to SFDEs which satisfy the non-degeneracy
assumption in Example 7.1.

Idea of proof of Theorem 7.7. Step 1: Show that the assumption in terms of & €
C(P,,P,) implies

limliminf sup &(d(X,,Y,) <e)>0.
g0 m=eoeeo(p, py)

(observe the different order of lim, liminf, and sup compared to the statement of
the theorem!)
Step 2: Define

yre= sup E(d(Xn,Yn) <e), T = [ 71 () pu(dly).
£eC(Py,Py)

Show that lim,,_,., '™ = 1 for each € > 0.
Then it follows that

u(m : d(Pn(x, .),,u) > 5) -0, n—>o00, >0.
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8 Exponential growth rate of a simple linear SDDE

This section is based on the article [38] to which we refer the reader for full proofs.
We go back to the linear equation in the first section, namely

AX (1) = X (t - 1)dW (2), (8.1)

where W is one-dimensional Brownian motion. For an initial condition n € C we
denote the solution by X". Let

1
A1, w) = limsup - log | X/
t—o0

We ask:

e Is it true that for every n # 0, A(n,.) is almost surely a limit rather than just
a limsup?

e If so, does there exist a deterministic number A such that for every n £ 0 we
have A(7,.) = A almost surely?

We will give a positive answer to both questions by applying the previous results
about uniqueness of an invariant measure.

We start by looking at a similar but easier problem which has been studied
several decades ago. Consider a linear SDE of the form

dX (1) = AX (1) dt + Y BX () AW (1), (8.2)

where W71, ..., W,, are independent standard Brownian motions and A, By, ..., B,, €
R4 are given matrices. If the coefficients are sufficiently non-degenerate then we
expect that there exists some A € R such that limy_,e §log|X7| = A almost surely
for each x € R\{0}. The following classical way to prove such a result goes back
to Furstenberg and Hasminskii: project the solution to equation (8.2) onto the
(Euclidean) unit sphere in R9. Due to the linearity of the equation the projected
process £ is also a Markov process, in fact even a Feller process. Since the state
space S%1 of £ is compact, it follows from Theorem 5.3 that £ has at least one
invariant measure p (this is true even if all B; are 0). Using It6’s formula, one
can see that the radial part |X*(¢)| of the solution starting at x € R¥\{0} has a
representation of the form

(o)) = lelexp{ [ ao(e(e.a0)/lz@D ds + 35 [ a(eCs.a0)l(O)) i)}
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for some explicit continuous functions ¢;, ¢ = 0,---,m. If the invariant measure y is
ergodic, then Birkhoft’s ergodic theorem shows that

}Lr?o glog | X" ()] = /Sd_l qo(y) dp(y)

for p-almost all z € S9! which is often called Furstenberg-Hasminskii formula. If
p is unique then it follows that the formula holds for every x € S4-1 ( [13] provides
conditions on the matrices for this to hold).

It is reasonable to hope that a corresponding result should hold for equation
(8.1). Since the state space of this equation is the infinite dimensional space C, we
should project the solution process onto the unit sphere of C or some other infinite
dimensional normed space. This unit sphere is not compact in the norm topology,
so even existence of an invariant measure is not automatic.

It turns out, that ...
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