

Navigating Shape Space

Ulrich Pinkall Keenan Crane and Peter Schroeder

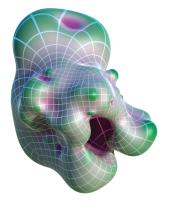
DFG-Forschungszentrum MATHEON Mathematik für Schlüsseltechnologien

June 22, Obergurgl

Shape Space

- Shape space: Space of *all* possible surface shapes
- No special geometry
- No special parameter mesh

Modelling or animation:
 "Navigation in shape space"



Space *M* of all *textured surfaces*:

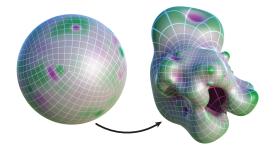
 $\mathcal{\tilde{M}} = \mathsf{space} \ \mathsf{of}$ immersions

 $S^2
ightarrow \mathbb{R}^3$

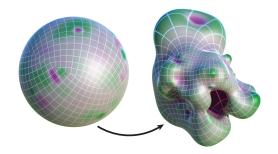
modulo translation, rotation and scale.

▷ Shape space of (not parametrized) surfaces:

$$\hat{\mathcal{M}} = \tilde{\mathcal{M}} / \mathsf{Diff}(S^2)$$



- $\triangleright \ \hat{\mathcal{M}} = \tilde{\mathcal{M}} / \mathsf{Diff}(S^2) \text{ is } \\ \text{difficult to work with.}$
- $\widehat{\mathcal{M}} \text{ is hard to discretize}$ (because the mesh itself is a kind of "texture").
- Cannot be avoided for some applications (e.g. medical).



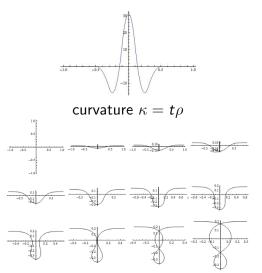
Plane Curves

- ▷ Simpler case: Shape space of curves in ℝ² (not necessarily closed)
- ▷ Parametrize by

 $\gamma: [\mathbf{0}, \mathbf{1}] \to \mathbb{R}^2$

with $|\gamma'| = \mathrm{const}$

▷ Shape uniquely defined by the curvature density κ ds on [0, 1]



Shape space is a vector space!

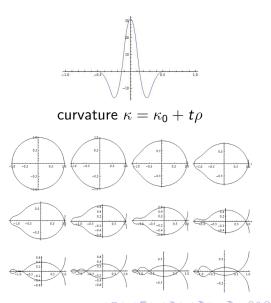
< 3 > < 3 >

Closed Plane Curves

 For closed curves κ has to satisfy

$$\oint \kappa \, \textit{ds} \in 2\pi \mathbb{N}$$

- Shape space is a collection of parallel hyperplanes!
- More conditions to kill the remaining translational period (let us ignore these for now)



Closed Plane Curves

 Every closed plane curve admits a parametrization

 $\gamma: \mathcal{S}^1 \to \mathbb{R}^2$

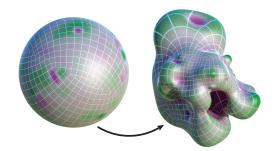
with constant speed.

 $\triangleright \ \gamma \text{ is unique up to} \\ \text{precomposition with a} \\ \text{rotation of } S^1.$

If we ignore this ambiguity (and the problem with periods) the shape space of closed plane curves is

$$\mathcal{M} = \{ \text{ densities } \kappa \, ds \, \text{ on } S^1 \, | \, \oint \kappa \, ds \in 2\pi \mathbb{N} \, \}$$

- ▷ Every topological sphere in ℝ³ admits a conformal parametrization f : S² → ℝ³.
- f is unique up to precomposition with a Möbius transformation of S².



 Similar situation as with constant speed parametrizations of plane curves

⊳ Let

$$f:S^2 \to \mathbb{R}^3$$

be a conformal immersion.

 $\triangleright\,$ The analogue of the curvature density $\kappa\,ds$ is the mean curvature half-density

$$u = H ds$$

▷ *ds* is a function on the tangent bundle:

$$ds(X) = |df(X)|$$

We often write

$$ds = |df|$$

▷ *ds* is the square root of the induced Riemannian metric

 $ds^2 = |df|^2$

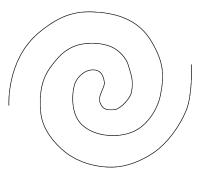
- ▷ In the conformal setting a compatible metric is the same as a volume form S^2 .
- $\triangleright u^2 = H^2 |df|^2$ is a 2-form and can be integrated.
- \triangleright The product of half-densities is a 2-form and can be integrated.
- \triangleright The space ${\mathcal H}$ of all half-densities is a euclidean vector space.

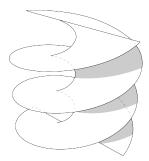
Space of Spheres

The set \mathcal{M} of all half-densities on S^2 for which there is a conformal immersion $f: S^2 \to \mathbb{R}^3$ with mean curvature half-density

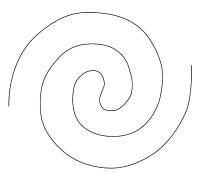
$$H|df| = u$$

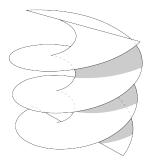
is a hypersurface in \mathcal{H} .

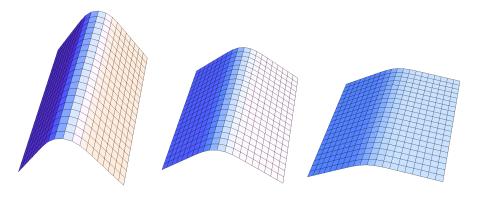


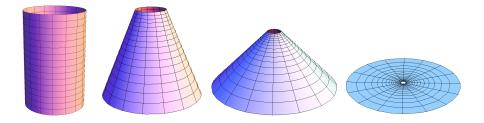


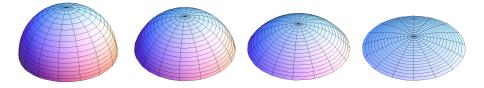
- ▷ For most $u \in M$ the corresponding surface f is unique up to translation, rotation and scale.
- $\triangleright \mathcal{M}$ is a decent model for shape space!

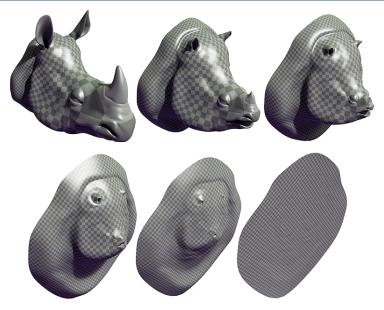


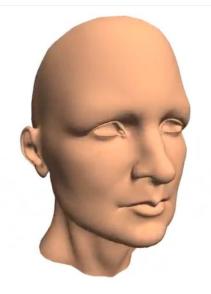




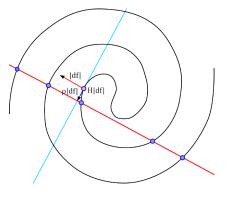




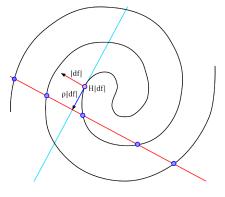




- ▷ Normal to \mathcal{M} at a half-density u is N = |df|.
- $\triangleright \text{ Move out tangentially and} \\ \text{project back to } \mathcal{M} \text{ along } N$
- Eigenvalue problem (numerical linear algebra)
- \triangleright After moving out far enough the projection jumps to a different sheet of $\mathcal M$



- ▷ Normal to \mathcal{M} at a half-density u is N = |df|.
- $\triangleright \text{ Move out tangentially and} \\ \text{project back to } \mathcal{M} \text{ along } N$
- Eigenvalue problem (numerical linear algebra)
- \triangleright After moving out far enough the projection jumps to a different sheet of $\mathcal M$



g = Gaussian bump

 $ho = -\Delta g$

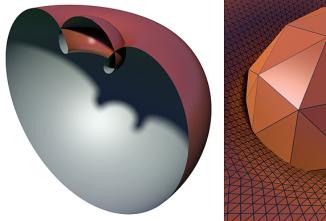


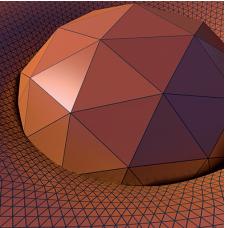
Bigger bumps

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Huge bumps





Many moderate bumps

