#### Weierstrass representation of discrete surfaces

#### Ulrich Pinkall

Technische Universität Berlin

DDG 2007

Joint work with C. Bohle



## Conformality of discrete surfaces



When

should one consider two discrete surfaces with the same combinatorics as conformal to each other?



### Conformal smooth surfaces



$$\mathbb{R}^3 = span\{i, j, k\} \subset \mathbb{H}$$

f and  $\tilde{f}$  are conformal to each other

 $\Leftrightarrow \exists \quad \lambda: M \to \mathbb{H}$ 

such that

 $d\tilde{f} = \bar{\lambda} df \lambda.$ 



## Spin transformations

• Find  $\tilde{f}$  conformal to f from  $\lambda$  if

$$0 = d(ar{\lambda} df \lambda) = dar{\lambda} \wedge df \lambda - ar{\lambda} df \wedge d\lambda$$

• Special solutions if

$$df \wedge d\lambda = 0$$

• Special property of these solutions:

$$\tilde{H}|d\tilde{f}| = H|df|$$



## Special case: Minimal surfaces

• 
$$M = \mathbb{C}, \quad f(z) = jz$$

• 
$$\lambda = \phi + \psi j, \qquad \phi, \psi : \mathbb{C} \to \mathbb{C}.$$

$$\sim \rightarrow$$

• 
$$df \wedge d\lambda = 0 \quad \Leftrightarrow \quad \phi, \psi \quad \text{holomorphic}$$

• 
$$d\tilde{f} = 2i \operatorname{Im}(\phi \psi dz) + j(\psi^2 dz - \bar{\psi}^2 d\bar{z})$$

#### Weierstrass representation!



## Discrete Spin structures: Combinatorics

- Start with an arbitrary cell decomposition  $(\hat{V}, \hat{E}, \hat{F})$  of an oriented surface  $\hat{M}$ .
- Construct the quad-surface M with vertices and faces

$$V = \hat{V} \cup \hat{F}$$
  $F = \hat{E}$ .





# Discrete Spinors: Analysis

- Assume M is realized as a discrete surface in  $\mathbb{R}^3$ , i.e we have a function  $f: V \to \mathbb{R}^3$ .
- Then on each quad  $q \in F$  the differential df is represented by four edge vectors  $e_0, e_1, e_2, e_3$ .



Spinors are functions

$$\lambda: E \to \mathbb{H}$$

(see talks by C. Mercat and D. Cimasoni).



#### Discrete spin structures

For each quad  $q \in F$  choose a two dimensional subspace  $U_q \subset \mathbb{H}^4$ containing (1, 1, 1, 1) such that if the four  $\lambda$ -values on the edges of q lie in  $U_q$  then

$$\bar{\lambda}_0 e_0 \lambda_0 + \bar{\lambda}_1 e_1 \lambda_1 + \bar{\lambda}_2 e_2 \lambda_2 + \bar{\lambda}_3 e_3 \lambda_3 = 0.$$



- λ is called *holomorphic* if this holds for all quads q ∈ F.
- The choice of these  $U_q$  defines a holomorphic spin structure on M.
- There is a canonical choice.



#### Discrete spin structures

For each quad  $q \in F$  choose a two dimensional subspace  $U_q \subset \mathbb{H}^4$ containing (1, 1, 1, 1) such that if the four  $\lambda$ -values on the edges of q lie in  $U_q$  then

$$\bar{\lambda}_0 e_0 \lambda_0 + \bar{\lambda}_1 e_1 \lambda_1 + \bar{\lambda}_2 e_2 \lambda_2 + \bar{\lambda}_3 e_3 \lambda_3 = 0.$$



- λ is called *holomorphic* if this holds for all quads q ∈ F.
- The choice of these  $U_q$  defines a holomorphic spin structure on M.
- There is a canonical choice.



# Applications



- Minimal surfaces with arbitrary quad-combinatorics
- Spin-transformations of the cylinder ↔ discrete tori for which H<sup>2</sup>|df|<sup>2</sup> is a flat metric
- Discrete Dirac spheres: H<sup>2</sup>|df|<sup>2</sup> has constant curvature.
- Discrete isothermic surfaces without curvature line grid



## Enneper



