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Conformality of discrete surfaces

When
should one consider two discrete surfaces with the same
combinatorics as conformal to each other?
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Conformal smooth surfaces

R3 = span{i , j , k} ⊂ H

f and f̃ are conformal to
each other

⇔ ∃ λ : M → H

such that

df̃ = λ̄df λ.
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Spin transformations

Find f̃ conformal to f from λ if

0 = d(λ̄df λ) = d λ̄ ∧ df λ− λ̄df ∧ dλ

Special solutions if
df ∧ dλ = 0

Special property of these solutions:

H̃|df̃ | = H|df |
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Special case: Minimal surfaces

M = C, f (z) = jz

λ = φ+ ψj , φ, ψ : C → C.

 

df ∧ dλ = 0 ⇔ φ, ψ holomorphic

df̃ = 2i Im(φψdz) + j(ψ2dz − ψ̄2dz̄)

Weierstrass representation!
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Discrete Spin structures: Combinatorics

Start with an arbitrary cell decomposition (V̂ , Ê , F̂ ) of an
oriented surface M̂.

Construct the quad-surface M with vertices and faces

V = V̂ ∪ F̂ F = Ê .
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Discrete Spinors: Analysis

Assume M is realized as a discrete surface in R3, i.e we have a
function f : V → R3.

Then on each quad q ∈ F the differential df is represented by
four edge vectors e0, e1, e2, e3.

Spinors are functions
λ : E → H

(see talks by C. Mercat and D. Cimasoni).
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Discrete spin structures

For each quad q ∈ F choose a two dimensional subspace Uq ⊂ H4

containing (1, 1, 1, 1) such that if the four λ-values on the edges of
q lie in Uq then

λ̄0e0λ0 + λ̄1e1λ1 + λ̄2e2λ2 + λ̄3e3λ3 = 0.

λ is called holomorphic if this holds
for all quads q ∈ F .

The choice of these Uq defines a
holomorphic spin structure on M.

There is a canonical choice.
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Applications

Minimal surfaces with
arbitrary
quad-combinatorics

Spin-transformations
of the cylinder  
discrete tori for which
H2|df |2 is a flat
metric

Discrete Dirac
spheres: H2|df |2 has
constant curvature.

Discrete isothermic
surfaces without
curvature line grid
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Enneper
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